Introduction to Quantum Transport FS 2025

Spring semester 2014
Prof. Dr. Dominik Zumbühl, 

last updated Apr 29, 2014 

previous semesters courses:
(previously "Introduction to Mesoscopic Physics and Quantum Dots")
Spring 2013Spring 2012Spring 2011

overview
Introduction to the physics of charges and spins in nanostructures probed by electronic transport measurements at low temperatures, 
aiming at spintronics, quantum information processing, and novel quantum states of matter. 
Quantum physics in 2D, 1D and 0D.
The course will mainly focus on experiments, but will inevitably discuss some rudimentary condensed matter theory.

lectures Tuesdays, 14:30-16:15, room 3.12
exercises Tuesdays, 16:30-18:15, room 2.04

syllabus (depending on the preferences of the participants)
2D electron gas, quantum Hall effect, conductance quantization, 0.7 structure
phase coherence, Aharonov Bohm effect, weak localization, universal conductance fluctuations
spin-orbit coupling, spin precession and relaxation, spin transistor, persistent spin helix, spintronics
0D: quantum dots, spectroscopy, sequential and cotunneling transport, charge sensing, Kondo effect
double dots, spin-blockade, nuclear spins, spin qubits, spin resonance, exchange gates
1D: Luttinger liquids, spin charge separation, charge fractionalization, Rashba wires, helical conductors, electron and nuclear spin helix, Majorana Fermions, topological insulators

mainly for masters (or PhD) students in nanoscience and physics. Physics III and condensed matter physics lecture is a prerequisite. 6th semester bachelor students are also allowed to take the class. 

credit points 2 credit points lecture and (optional) 2 credit points exercises. Lecture is two hours per week, final presentation with number grade 1-6. The exercises (pass/fail) will consist of 3-4 problem sets and reading of a series of scientific publications relevant to class, meeting one to two hours per week where papers discussed by the students in depth.

purpose of this lecture is to introduce the class to the physics of quantum transport in electronic nanostructures aiming at spintronics, quantum computation, and novel quantum states of matter. The course will mainly focus on experiments, but will inevitably discuss some condensed matter theory.

structure will be a combination of lectures on my part to introduce the basics and subsequent presentations done by students towards the end of the semester on topics that can be chosen by students from a selection. There will be 3-4 problem sets, and moderate amounts of reading assignments in weeks without problem sets as preparation for lectures. The class grade will be based on the presentation given by each student taking the class for credit (presentation toward the end of the semester during class). Sit-ins/students auditing the class (not for credit) are also welcome.
 

Lecture Schedule and Content, FS 2014 (tentative)

 

datelecture content 
Tuesday, Feb 18, 16:15, HS2preliminary meeting

 
Tue, Feb 25, 14:30
room 1.09
solid state physics background
crystals, bands, effective mass approximation, spin-orbit coupling, GaAs conduction and valence bands, DOS, Fermi distribution, doping
lecture notes pdf, slides pdf

additional reading:
Introduction and Motivation pdf
Tue, Mar 4, 14:30
room 3.12
semiconductor surfaces and interfaces
surface states, semiconductor-vacuum interface, band bending, Fermi level pinning, Schottky barrier and diode
lecture notes Chapter 2 pdf

2D electron gases (GaAs)
properties of 2DEGs, scattering mechanisms in 2DEGs and bulk GaAs, screening in 2D and 3D, Friedel Oscillations, ohmic contacts to 2DEGs, lateral gating and nanoscale devices
lecture notes pdf
Tue, Mar 11Basel Fasnacht: no class / no exercise

 
Tue, Mar 18, 14:30
room 3.12
concepts in mesoscopic physics (I)
Drude conductivity, Einstein relation, mesoscopic time and length scales, 
classical Hall effect, (integer) quantum Hall effect, 1D subbands, quantum point contacts, 0.7 structure
lecture notes chapter 3 pdf
lecture slides pdf
Tue, Mar 25, 14:30
room 3.12
concepts in mesoscopic physics (II)
classical Hall effect, (integer) quantum Hall effect, 1D subbands, quantum point contacts, 0.7 structure
lecture notes chapter 3 pdf
lecture slides pdf
Tue, Apr 1no class / no exercise

 
Tue, Apr 8, 14:30
room 3.12
quantum point contacts (QPCs)
van Wees et al., PRL60, 848 (1988) pdf
van Wees et al., PRB38, 3625 (1988) pdf
Cronenwett et al., PRL88, 226805 (2002) pdf
lecture notes pdf

quantum dots I: Introduction
types of quantum dots, open and closed dot regimes, Coulomb blockade and diamonds, quantum confinement energy, constant interaction model, ground state and excited state spectroscopy, sequential and cotunneling transport, Coulomb peak line shapes 
lecture notes pdf

articles:
Kouwenhoven et al., dot review article, pp 1-28 pdf
van Houten et al., CB review, NATO ASI, pp 1-15 pdf
Foxman et al., PRB47, 10020 (1993) pdf
Foxman et al., PRB50, 14193 (1994) pdf
Tue, Apr 15, 14:30
room 3.12
quantum dots II: Few Electron Dots 
lateral / vertical few electron structures, circular symmetry: shell filling, Fock-Darwin states, Singlet-Triplet states, Singlet Triplet ground state transition, 
lecture notes pdf

Few Electron Dots
Tarucha et al., PRL77, 3613 (1996) pdf
Ciorga et al., PRB61, 16315 (2000) pdf
Kouwenhoven et al., Science 278, 1788 (1997) pdf
Kouwenhoven, Austing & Tarucha, RPP 64, 701 (2002) pdf

quantum dots III: Double Quantum Dots
double quantum dots, honey comb stability diagrams,
finite bias transport, anticrossings 
lecture notes pdf

Double Dots
van der Wiel et al., RMP75, 1 (2003) pdf
Tue, Apr 22, 14:30
room 3.12
quantum dots IV: Kondo Effect 
Kondo effect (metals, quantum dots), Kondo screening cloud, zero bias peak, logarithmic temperature dependence, even-odd structure 
lecture notes pdf

Kondo effect
Goldhaber-Gordon et al., Nature 391, 156 (1998) pdf
Cronenwett et al., Science 281, 540 (1998) pdf
Tue, Apr 29, 14:30
room 3.12
quantum dots V: Open Dots
open dot regime, conductance fluctuations,
weak localization, phase coherence, 
random matrix theory, spin-orbit coupling in 
semiconductors and quantum dots, weak antilocalization 
lecture notes pdf

open dot regime 
Huibers et al., PRL83, 5090 (1999) pdf
Tue, May 27, 14:30
room 3.12
presentations
(3 student presentations) 

 

Exercise Schedule and Content, FS 2014 (tentative)

Organization of the exercises: As a preparation for the exercises, the students thoroughly read the one or two papers assigned before the exercise, see list below for a schedule of papers. The assigned papers are typically 3-4 pages long. It is expected that every student has at least two questions ready as a basis or starting point for a discussion. In class, the papers are discussed in detail. Focus is on depth (not breadth). In every exercise class, one student is randomly picked to be the discussion leader / mediator. To assist the discussion, the discussion leader prepares slides containing the graphs of the paper. The exercise is pass fail, based on individual preparedness. 3-4 problem sets will alternate with paper discussions.

datepapers
Tue, Mar 4, 16:30
room 3.12

Aharonov-Bohm (AB)
Significance of Electromagnetic Potentials in the Quantum Theory
Y. Aharonov and D. Bohm
The Physical Review 115, 485 (August 1959), pdf
cited 2'975 times (ISI, 6.3.11)
read/focus on the first three pages

Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings
R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz 
Physical Review Letters 54, 2696 (June 1985), pdf
cited 601 times (ISI, 6.3.11) 

additional reading (not mandatory): 
Aharonov-Bohm Chapter, Delft Mesoscopic Physics Course pdf
Tue, Mar 11
 
Basel Fasnacht, no exercise

 
Tue, Mar 18, 16:30
room 3.12

Aharonov-Bohm (AB2)
Direct Observation of Ensemble Averaging of the Aharonov-Bohm Effect in Normal-Metal Loops
C. P. Umbach, C. Van Haesendonck, R. B. Laibowitz, S. Washburn, and R. A. Webb
Physical Review Letters 56, 386 (January 1986), pdf
cited 119 times (ISI, 6.3.11)

Asymmetry in the Magnetoconductance of Metal Wires and Loops
A. D. Benoit, S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A. Webb, 
Physical Review Letters 57, 1765 (October 1986), pdf
cited 110 times (ISI, 6.3.11)

additional reading (not mandatory): 
"Four Terminal Phase-Coherent Conductance", 
M. Büttiker, PRL 57, 1761 (1986). (1'532 citations, ISI 6.3.11) pdf
Tue, Mar 25, 16:30
room 3.12


Weak Localization (WL)
Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan
Physical Review Letters 42, 673 (March 1979), pdfgang of 4 paper
3'469 citations (ISI, 9.3.11)

Nonmetallic Conduction in Thin Metal Films at Low Temperatures
G. J. Dolan and D. D. Osheroff,
Physical Review Letters 43, 721 (September 1979), pdf
297 citations (ISI, 9.3.11)

additional reading (not mandatory): 
Weak-Localization Section, Delft Mesoscopic Physics Course pdf
Tue, Apr 1, no exercise 
Tue, Apr 8, 16:30
room 3.12

problem set #1
problem set #1, pdf
Tue, Apr 15, 16:30
room 3.12


Weak Localization (WL2)
Quantitative analysis of weak localization in thin Mg films by magnetoresistance measurements
Gerd Bergmann
Physical Review B 25, 2937 (February 1982), pdf,
55 citations (ISI, 9.3.11)

Dephasing time and one-dimensional localization of two-dimensional electrons in GaAs/AlGaAs heterostructures
K. K. Choi, D. C. Tsui, and K. Alavi
Physical Review B 36, 7751 (November 1987), pdf
64 citations (ISI, 9.3.11)

additional reading (not mandatory): 
"Weak Localization in Thin Films: a time of flight experiment with conduction electrons", 
Gerd Bergmann, Physics Reports 107, 1 (November 1983). (1'190 citations, ISI 9.3.11) pdf
Tue, Apr 22, 16:30
room 3.12

problem set #2
problem set #2, pdf
Tue, Apr 29, 16:30
room 3.12


Universal Conductance Fluctuations (UCF)
Magnetoresistance of small, quasi one-dimensional, normal-metal rings and lines
C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb
Physical Review B 30, 4048 (October 1984), pdf,
269 citations (ISI, 27.4.11)

Magnetoresistance Fluctuations in Mesoscopic Wires and Rings
A. Douglas Stone
Physical Review Letters 54, 2692 (June 1985), pdf
301 citations (ISI, 27.4.11)

additional reading (not mandatory): 
"Quantum Transport in Semiconductor Nanostructures", C. W. J. Beenakker and H. van Houten, 
published in Solid State Physics, 44, 1-228 (1991). (709 citations, ISI 30.9.08) pdf
Tue, May 6, 16:30
room 3.12

problem set #3
problem set #3, pdf
Tue, May 13, 16:30
room 3.12

Coulomb Blockade (CB)
Observation of Single-Electron Charging Effects in Small Tunnel Junctions
T. A. Foulton and G. J. Dolan
Physical Review Letters 59, 109 (July 1987), pdf,
791 citations (ISI, 27.4.11)

Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas
J. H. F. Scott-Thomas, Stuart B. Field, M. A. Kastner, Henry I. Smith, D. A. Antoniadis
Physical Review Letters 62, 583 (January 1989), pdf
247 citations (ISI, 27.4.11)

additional reading (not mandatory): 
Comment to Scott-Thomas et al., H. van Houten and C. W. J. Beenakker, PRL 63, 1893 (Oct 1989), pdf
Authors reply, PRL63, 1894 (Oct 1989), pdf
Tue, May 20, 16:30
room 3.12

Circular Quantum Dots
Shell Filling and Spin Effects in a Few Electron Quantum Dot
S. Tarucha, D. G. Austing, and T. Honda, R. J. van der Hage and L. P. Kouwenhoven
Physical Review Letters 77, 3613 (October 1996), pdf,
980 citations (ISI, 27.4.11)

Excitation Spectra of Circular, Few-Electron Quantum Dots
L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, S. Tarucha
Science 278, 1788 (December 1997), pdf
300 citations (ISI, 27.4.11)
Tue, May 27, 16:30
room 3.12

presentations
3 presentations 

 

Projects and Presentations, FS14

Presentations should be no longer than about 20 to 25 minutes, plus 5 to 10 minutes for questions. 
Goal of the presentation is to explain to your fellow classmates the topic you have chosen 
as clearly and as concisely as possible while keeping a critical attitude towards the reported research.
List of available topics (below) might be modified / adapted, but will vaguely consist of the topics listed below.

Topics with more than one article: 
choose one article for in-depth presentation, mention highlights of other paper(s). 

topicrefspresenter
1. charge sensingMeasurements of Coulomb Blockade with a Noninvasive Voltage Probe
M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko,
Phys. Rev. Letters 70, 1311 (1993) pdf

Few-electron quantum dot circuit with integrated charge read out
J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven
Phys. Rev. B 67, 161308R (Apr 2003) pdf 
 
 
2. charge manipulation Coherent Manipulation of Electronic States in a Double Quantum Dot
T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama,
Phys. Rev. Letters 91, 226804 (Nov 2003) pdf 

Manipulation of a Single Charge in a Double Quantum Dot
J. R. Petta, A. C. Johnson, C.M. Marcus, M. P. Hanson, and A. C. Gossard
Phys. Rev. Letters 93, 186802 (Oct 2004) pdf
 
 
3. singlet triplet statesVoltage-tunable singlet-triplet transition in lateral quantum dots
Jordan Kyriakidis, M. Pioro-Ladriere, M. Ciorga, A. S. Sachrajda, and P. Hawrylak
Phys. Rev. B 66, 35320 (Jul 2002) pdf

Cotunneling Spectroscopy in Few-Electron Quantum Dots
D.M. Zumbuühl C.M. Marcus, M. P. Hanson and A. C. Gossard,
Phys. Rev. Letters 93, 256801 (Dec 2004) pdf
 
 
4. spin blockade Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System
K. Ono, D. G. Austing, Y. Tokura, S. Tarucha1,
Science 297, 1313 (Aug 2002) pdf

Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot
A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson and A. C. Gossard,
Phys. Rev. B 72, 165308 (Oct 2005) pdf
 
 
5. spin relaxation I Allowed and forbidden transitions in artificial hydrogen and helium atoms
Toshimasa Fujisawa, David Guy Austing, Yasuhiro Tokura, Yoshiro Hirayama & Seigo Tarucha
Nature 419, 278 (2002) pdf

Zeeman Energy and Spin Relaxation in a One-Electron Quantum Dot
R. Hanson, B.Witkamp, L.M. K. Vandersypen, L. H.Willems van Beveren, J.M. Elzerman, and L. P. Kouwenhoven
Phys. Rev. Letters 91, 196802 (2003) pdf
 
 
6. spin relaxation II Electrical Control of Spin Relaxation in a Quantum Dot
S. Amasha, K. MacLean, Iuliana P. Radu, D. M. Zumbühl, M. A. Kastner, M. P. Hanson, and A. C. Gossard
Phys. Rev. Letters 100, 046803 (Feb 2008) pdf

Optically programmable electron spin memory using semiconductor quantum dots
Miro Kroutvar, Yann Ducommun, Dominik Heiss, Max Bichler, Dieter Schuh, Gerhard Abstreiter & Jonathan J. Finley
Nature 432, 81 (Nov 2004) pdf
 
 
7. spin filteringDetecting Spin-Polarized Currents in Ballistic Nanostructures
R.M. Potok, J. A. Folk, C.M. Marcus, and V. Umansky
Phys. Rev. Letters 89, 266602 (Dec 2002) pdf

Semiconductor few-electron quantum dot operated as a bipolar spin filter
R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, I. T. Vink, and L. P. KouwenhovenHanson, 
Phys. Rev. B 70, 241304R (Dec 2004) pdf
 
 
8. single spin readoutSingle-shot read-out of an individual electron spin in a quantum dot
J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen & L. P. Kouwenhoven
Nature 430, 431 (Jul 2004) pdf

Single-Shot Readout of Electron Spin States in a Quantum Dot Using Spin-Dependent Tunnel Rates
R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F.H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, 
Phys. Rev. Letters 94, 196802 (May 2005) pdf
 
 
9. fast spin readout Cryogenic amplifier for fast real-time detection of single-electron tunneling
I. T. Vink, T. Nooitgedagt, R. N. Schouten, and L. M. K. Vandersypen, W. Wegscheider
App. Phys. Lett. 91, 123512 (Sep 2007) pdf

Fast single-charge sensing with a rf quantum point contact
D. J. Reilly, C. M. Marcusa, M. P. Hanson and A. C. Gossard,
App. Phys. Lett. 91, 162101 (Oct 2007) pdf
 
 
10. nuclear spins Triplet�singlet spin relaxation via nuclei in a double quantum dot
A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson & A. C. Gossard,
Nature 435, 925 (Jun 2005) pdf

Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field
F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, I. T. Vink, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, L. M. K. Vandersypen, 
Science 309, 134 (Aug 2005) pdf
 
 
11. spin manipulationCoherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots
J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, 
Science 309, 2180 (Sep 2005) pdf
 
 
12. electron spin resonance (ESR) Driven coherent oscillations of a single electron spin in a quantum dot
F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven & L. M. K. Vandersypen,
Nature 442, 766 (Aug 2006) pdf
 
 
13. dynamic nuclear polarization Dynamic Nuclear Polarization with Single Electron Spins
J. R. Petta, J. M. Taylor, A. C. Johnson, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Phys. Rev. Lett. 100, 067601 (Feb 2008) pdf
 
 
14. ESR with SOCoherent Control of a Single Electron Spin with Electric Fields
K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen, 
Science 318, 1430 (Nov 2007) pdf
 
 
15. ESR with nuclei Hyperfine-mediated gate-driven electron spin resonance
E. A. Laird, C. Barthel, E. I. Rashba, C. M. Marcus, M. P. Hanson, A. C. Gossard,
Phys. Rev. Lett. 99, 246601 (Dec 2007) pdf
 
 
16. ESR slanting field Electrically driven single-electron spin resonance in a slanting Zeeman field
M. Pioro-Ladriere, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha, 
Nature Physics 4, 776 (Oct 2008) pdf
 
 
17. carbon nanotubes:
SO coupling 
Coupling of spin and orbital motion of electrons in carbon nanotubes
F. Kuemmeth, S. Ilani, D. C. Ralph, P. L. McEuen, 
Nature 452, 448 (Mar 2008) pdf

News and Views: Carbon nanotubes: Old nanotubes, new tricks, Jesper Nygaard, 
Nature Physics 4, 266 (Apr 2008) pdf 
 
 
18. carbon nanotubes:
Wigner crystal and Mott insulator
The one-dimensional Wigner crystal in carbon nanotubes
Vikram V. Deshpande, Marc Bockrath, 
Nature Physics 4, 314 (Apr 2008) pdf, news and views by Jesper Nygaard pdf

Mott Insulating State in Ultraclean Carbon Nanotubes
Vikram V. Deshpande, Bhupesh Chandra, Robert Caldwell, Dmitry S. Novikov, James Hone, Marc Bockrath, 
Science 323, 106 (Jan 2009) pdf, SOM pdf, news and views by C. Schönenberger pdf 
 
 
19. graphene dotsChaotic Dirac Billiard in Graphene Quantum Dots
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim
Science 320, 356 (Apr 2008) pdf

News and Views: Graphene Nanoelectronics, Robert M. Westervelt, 
Science 320, 324 (Apr 2008) pdf

Electron-Hole Crossover in Graphene Quantum Dots
J. G�ttinger, C. Stampfer, F. Libisch, T. Frey, J. Burgdoerfer, T. Ihn, K. Ensslin
Phys. Rev. Lett. 103, 046810 (Apr 2008) pdf
 
 
20. optical hole spinsOptical pumping of a single hole spin in a quantum dot
Brian D. Gerardot, Daniel Brunner, Paul A. Dalgarno, Patrik Ahberg, Stefan Seidl, Martin Kroner, Khaled Karrai, Nick G. Stoltz, Pierre M. Petroff, Richard J. Warburton
Nature 451, 441 (Jan 2008) pdf

A Coherent Single-Hole Spin in a Semiconductor
D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. W�st, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, Science 325, 70 (July 2009) pdf, SOM pdf, perspectives pdf
 
 
21. clean nanotubesTunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes
G. A. Steele, G. Gotz and L. P. Kouwenhoven
Nature Nanotechnology 4, 363 (Apr 2009) pdf, SOM pdf

Strong Coupling between Single-Electron Tunneling and Nanomechanical Motion
G. A. Steele, A. K. H�ttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwenhoven, H. S. J. van der Zant, Science 325, 1103 (August 2009) pdf, SOM pdf, Perspectives pdf
 
 
22. localization and disorder in grapheneThe nature of localization in graphene under quantum Hall conditions
J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, K. von Klitzing, J. H. Smet & A. Yacoby
Nature Physics 5, 669 (July 2009) pdf

Origin of spatial charge inhomogeneity in graphene
Y. Zhang, V. W. Brar, C. Girit, A. Zettl and M. F. Crommie
Nature Physics 5, 722 (July 2009) pdf, SOM pdf
 
23. graphene quantum Hall effectFQHE Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
Xu Du, Ivan Skachko, Fabian Duerr, Adina Luican & Eva Y. Andrei
Nature xxx, xxx (October 2009) pdf, SOM pdf

Observation of the Fractional Quantum Hall Effect in Graphene
Kirill I. Bolotin, Fereshte Ghahari, Michael D. Shulman, Horst L. Stormer, Philip Kim
arXiv:0910:2763 (October 2009) pdf

IQHE Two-dimensional gas of massless Dirac fermions in graphene
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov 
Nature 438, 197 (November 2005) pdf

Experimental observation of the quantum Hall effect and Berry�s phase in graphene
Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim
Nature 438, 201 (November 2005) pdf, SOM pdf
 
 

 

Literature

books
“Mesoscopic Electronics in Solid State Nanostructures”, Thomas Heinzel, Wiley-VCH (2003)
 “Electronic Transport in Mesoscopic Systems”, Supriyo Datta, Cambridge Universy Press (1995)
 “The Physics of Low-Dimensional Semicond.”, John H. Davies, Cambridge University Press (1998)

review articles
“Quantum Transport in Semiconductor Nanostructures”, C. W. J. Beenakker and H. van Houten, published in Solid State Physics, 44, 1-228 (1991) (out of print, available at arXive:cond-mat/0412664) pdf

“Electron Transport in Quantum Dots”, L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt and N. Wingreen, NATO ASI conference proceedings, edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Kluwer, Dordrecht, 1997). pdf

“Coulomb Blockade Oscillations in Semiconductor Nanostructures”, H. van Houten, C. W. J. Beenakker and A. A. M. Staring, published in Single Charge Tunneling, edited by H. Grabert and M. H. Devoret,  NATO ASI series B294 (Plenum, New York, 1992), (out of print, available at arXive:cond-mat/0508454). pdf

“Few-Electron Quantum Dots”, L. P. Kouwenhoven, D. G. Austing and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001). pdf

“Electron transport through double quantum dots”, W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1-22 (2003) pdf

“Recipes for Spin Based Quantum Computing”, V. Cerletti, W. A. Coish, O. Gywat and D. Loss, Nanotechnology 16, R27 (2005). pdf

“Spins in few-electron quantum dots”, R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. Vandersypen, Rev. Mod. Phys. 79, 1217-1265 (2007) pdf

“Coherent manipulation of single spins in semiconductors”, R. Hanson and D. Awschalom, Nature 453, 1043 (June 2008, Insight Review) pdf