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Abstract

In this work, main properties of a two-dimensional electrongas formed in GaAs/AlGaAs
heterostructures were studied. The electron density ofn = 7:1 10*%m 2 obtained
by classical Hall measurements is consistent with Shubnikode Haas (SdH) oscillation
analysis. Temperature dependence of the SdH amplitude wased to extract the Lanc g-
factor g and the e ective massm . The measured e ective massn = (0:067 0:004)m¢
is in agreement with literature. g showed strong dependence on magnetic eld and
electron density. New split-pair magnets were put into opetion which made it possible
to have a crossed magnetic eld together with the existing $&noid. Applying an in-plane
magnetic eld the beating of the oscillatory component wasisible. This feature can be
used to directly extract the spin-susceptibility from magetoconductance measurements
at low temperatures.

Recent theory predicts ferromagnetic order of the nucleaispin system mediated by an
interacting electron gas, with a strongly enhanced Curie tmperature in the low milli-
Kelvin temperature range. However, the electronic spin-ssceptibility s/ g m in the
strongly interacting electron regime plays an important rde in this enhancement and is

currently not well understood.



Contents

1 Introduction

2 Theory

2.1 Semiconductor Heterointerfaces. . . . . . ... ... ... . ... .. ...
2.2 Basic Properties . . . . . . . . e e

221 ElectronDensity . . . . . .. .. e

2.2.2 Low-eld Magnetoresistance. . . . . .. ... ... ... ...
23 QuantumHallEect . ... ... .. . . ... .. e
2.4 Temperature Dependence of SdH Oscillations. . . . . . . ... ... ...
2.5 Direct Measurement of ¢ . . . . . . . . . e

3 Materials and Methods
3.1 Sample Design and Fabrication. . . . . . ... ... ... .........
3.1.1 Wafer Material . . . ... ... ... . ... ...
3.1.2 HallbarDesign . . . . . . . . e
3.1.3 Fabrication Process . . . . . . . ... ...
3.2 Experimental Techniques . . . . . . . . .. ...

4 Results and Discussion
4.1 Sample. . . . e
4.2 Basic Characterization . . . . . . . . . . ... ...
4.3 Temperature Dependence of SdH Oscillations. . . . .. ... ... . ...
4.3.1 Electrong-factor . . .. ... . ... .. .. . e
432 Eective massS. . . . . . . i i i i e e e
4.4 SdH Oscillations with in-plane Magnetic Fields . . . . . . ... ... ...

5 Conclusion
Bibliography
A Oscillatory part of magnetoconductivity

B Additional Figures

20
20
20
21
22
25

27
27
27
29
30
32
33

38

41

43

45



1 Introduction

A qubit is a quantum mechanical two-level systemj i = jOi+ | 1li where 2+
2 = 1 which can be used to do quantum computation [l]. It conists of an arbitrary
superposition of two basis statesj Oi and j 1i. The two states of single electron spins
(ji =j0i andj#i =j 1i) con ned in semiconductor quantum dots are possible candidtes

for technological implementations of quantum computation [2].

In real systems, the con ned electron spins can couple in dierent ways to the sur-
rounding host material. This can destroy the superpositionof the two basis states. The
spin qubit can be destroyed by two ways: (i) the spin relaxes de to the environment in a
time-scale Ty, also referred to as relaxation time. In this process the spi ips from state
j#i to j'i . (ii) the lifetime of a qubit is limited by the host material w hich can destroy
the well-de ned phase of spin-up and spin-down superpositin, e.g. j#i+ j"i lj#i j"i
The corresponding time-scale is the decoherence timE,. Spin relaxation can be treated
as a special case of decoherence as well.

The two dominant processes for decoherence are spin-orbibapling and hyper ne-
interaction. The main mechanism for spin-relaxation is spn-orbit coupling where the
electron spin interacts with the electric eld of the surrounding nucleus through which it
moves. TheT;-time was measured to be 1s for a low magnetic eld of B=1T [3]. The
T,-time is shorter and therefore leads to much faster decohenee. In this process the
magnetic moment of the electron interacts with the magneticmoment of a nucleus. This
is well known in atomic physics as hyper ne-structure. In quantum dots, also referred to

as arti cial atoms, materials are used to arti cially con n e electrons. Therefore, con ned
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electrons can interact with many nuclear spins at the same tine.

For the successful implementation of a quantum computer it § crucial to have a long
enough decoherence time. Thus, increasing, is very important. Di erent approaches
exist to lift the source of decoherence, e.g. suppressing atynamically polarize the
nuclear pins. However, to increase the decoherence time by drder of magnitude a
polarization of > 99% is required []. The best results so far are about 60%"-].

In GaAs/AlGaAs heterostructures containing a two-dimensional electron gas (2DEG)
the nuclear spins mainly interact via the Rudermann-Kittel -Kasuya-Yosida (RKKY)
interaction mediated by the conducting electrons. The longrange nature of the 2D-
RKKY interaction is modi ed by the electron-electron inter action which can directly be
described by the electron-spin susceptibility s [6].

For low enough temperatures nuclear spins start ordering ad nally become fully
polarized below a certain T, which is the nuclear-Curie temperature. Theory predicts a
ferromagnetic phase transition with T; in the low milli-Kelvin range for large rg in the
order of 5-10 [] [7]. Nevertheless it is still a challenge to reach temperaturs in the high
micro-, low milli-Kelvin range.

The goal of this work was to characterize the electron-eleecbn interaction in a low-
density 2DEG using GaAs/AlGaAs heterostructures. For that purpose the e ective mass
m and the Lande g-factor g was extracted using the low-temperature dependence of
Shubnikov de Haas oscillations. Additionally, the e ect of crossed magnetic elds on the
2DEG properties were studied and it was tried to directly measure the spin-susceptibility

s/ g m using magnetotransport measurements.



2 Theory

For the comprehension of the characteristics of a2-dimensional electron gas(2DEG)
and the mesoscopic transport measurements performed in teiwork it is important to
understand the basic principles of the system. In this chapér mainly the 2DEG-system

and its properties are discussed.

2.1 Semiconductor Heterointerfaces

The probably best known semiconductor interface is the p-n yinction where a p-doped
region forms an interface with a n-doped region of the same s@iconducting material.
But in contrast to such a system, the structure used in this wak contains two di erent
semiconductor crystals, i.e. GaAs and AlGaAs, thus forminga heterointerface. Gallium
(Ga) and Aluminium (Al) are elements from column Il where Ar senide (As) is a column
V element in the periodic table. 11I-V semiconductor compounds often form zinc-blende
crystal structures. GaAs and AlGaAs have quite similar lattice constants allowing a
very sharp interface without disturbing lattice errors due to crystal strain.

GaAs has a band-gap of 1.42eV and AlAs has a larger gap of 2.0MeFor Al yGa; xAs
alloy the band-gap is larger than 1.42 and smaller than 2.16¢ depending on the con-
centration x. The Fermi energy (E¢) in the widegap AlGaAs layer is higher than of the
narrowgap GaAs. Bringing together the two crystals electrans start to spill over from the
negatively doped n-AlGaAs leaving behind positively chargd donors. The electrostatic
potential will bend the bands as shown in Figure2.1. At equilibrium the Fermi energy

is constant everywhere. At the GaAs-AlGaAs interface the cmduction band forms a
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triangular quantum well crossing the Fermi energy, thus forming a very thin conduct-
ing layer. Because the conducting electrons are constricteonly perpendicular to the

interface, a two-dimensional electron gas is formed.

.

A rheterointerface

+

1. : Er
: E
V4 i v
2DEG

Figure 2.1: A 2-dimensional electron gas is formed at the ir¢rface between
intrinsic GaAs and n-doped AlGaAs. Silicon atoms act as a eletron-dopant.
After giving away an electron, the Si-atoms are positively darged.

2.2 Basic Properties

In GaAs/AlGaAs the crystal periodicity is not disrupted at t he heterointerfacé and
(ionized) dopants are well separated from the 2DEG-plane, lherefore very large mobilities
(3 10’Vs=m?) and long mean free paths ( 300 m) can be obtained easily in this
materials.

The 2DEG in GaAs is very special because of the very low scattang rate. The
mobility at low temperatures gives a direct measurement of he momentum relaxation
time where the main contributions to scattering are impurities and defects at the crystal

interface.

Hattice constants match within 0.5 % [ 8]
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2.2.1 Electron Density
The energy dispersion relation of a single subband n in a 2DEGs given by

~2k2
En(k)=En + om (2.1)

as a function of momentum~k. Due to lateral con nement a 2D subband is again split
into 1-dimensional (1D) subbands with energies E = (n 1=)~! 3 when the con nement
is modeled with a parabolic potential (V(x) = =m ! 3x?). The electron e ective mass
m is much smaller than the free electron massne due to interactions with the lattice
potential?(i.e. Mgaas = 0:067Me). The density of states (DOS) (E) = dn(E)=ie for a

single subband in a 2DEG is given by
m
(E)= - (2.2)

using n(E) = gwm E= -2 with spin degeneracygs = 2 and valley degeneracyg, = 1.
The spin degeneracy is lifted when a magnetic eld is applied Note that the 2D-DOS
is independent of the energy. At zero temperature, all state are lled up to the Fermi
energyE; . This remains a good approximatiorf at nite temperature where kg T Es.

The sheet carrier densityng is linearly related to E; by

m
ng = E¢ 5 (23)

because of the constant DOS.

If E+ exceeds the energy bottom of a subband, the next higher sublpa gets lled. Only

2m is an approximation incorporating the lattice potential wh ich is justi ed for this system [ 9].
3|f there are many occupied 1D subbands the DOS can bgapproximated by the 2D result.
4Using Fermi energy f (E) T(E¢ E) and density ns = (E)T(Er E)dE.
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if solely the rst subband is occupied a real 2DEG exists. Otlerwise it is referred to as
quasi-two-dimensional. With increasing number of occupied staes the DOS can change
toa P E dependence as it is true for the three-dimensional case. Ually, only one single

subband is occupied.

2
E
p(E) 1
7 !
YR
E E, E,
b
E 4
3
p(E) 2
W
E,E, Eg Er

Figure 2.2: DOS as a function of energy. (a) Due to the con nenent potential
(inset) discrete energy levels exists where only the lowestubband is occupied.
(b) Quasi-1D DOS because of lateral con nement where the lowst four states
are lled. From [ 10].

2.2.2 Low- eld Magnetoresistance

For the 2DEG important experimental information can be obtained from magnetotrans-

port measurements with weak perpendicular magnetic elds @lso referred to as Hall
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measurements). This allows to separately measure the molity and carrier density ng
since in zero eld the conductivity is the product of the two.

When a electric eld E is applied at randomly moving conducting electrons they wil
have a drift velocity vq4 in the direction of the force eE. A magnetic eld B causes the
electrons to bend their trajectories due to the Lorentz fore. At steady-state the rate
which the electrons receive momentum from the external eld is equal to the rate at

which they lose momentum due to scattering

o _ )
dt scat: dt field
therefore,
MVd ~ o[E + vq B] (2.5)

r
where ; is the transport lifetime.
Rewriting equation 2.5 by using the current density J = evgnsg
0 1 2 30 1
B G- 1§t PIRg 2.6)
Ey B 1 Jy
where = jeing and = jg r=m.

The resistivity tensor is de ned by

0 1 2 30 1
E J
o k=3 YLBHTK @2.7)
Ey yx oy oy
hence, from equation2.6 one gets
XX = ! (2.8)
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B _ B
jeins

yx = xy =

(2.9)

Using this simple Drude model it can be seen that the longitudhal resistance is con-
stant while the transverse resistance is linearly dependig on perpendicular magnetic
eld.

Experimentaly the resistivity tensor is measured using a Hiibar geometry. A uniform
current ow is applied through a rectangular sample while probing the longitudinal and
transverse voltage drop (see gure2.6). Hence the resistivities are

Vy W
L

XX — T
|

= (2.10)

Vi
W= (2.11)

where s the sheet resistivity (resistivity per square) and y is the Hall resistivity.

Using equation 2.10 and 2.11 the density ns and mobility = can be written as

ne= = (2.12)
J€ xy
1
= — 2.13
J€INs ( )

However, these results are only valid for low magnetic eldsbut represent a very useful
tool for simple characterization. The Hall e ect was rst di scovered 1879 by Edwin Hall

[11].

2.3 Quantum Hall E ect

At higher magnetic elds and low enough temperatures the Hal resistance is not linear

in B any more but shows distinct plateaus. This can not be exphined by the Drude



2 Theory

model (see gure?2.3).

95 = 2 J{ 18
o / >
— &
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2eB/hng ——

Figure 2.3: Longitudinal and transverse resistivity as a function of magnetic
eld. Distinct plateaus for the Hall resistance and an oscilatory behaviour
of the longitudinal magnetoresistivity can be obeserved fo high enough elds.
From [10].

As the magnetic eld is su ciently high, such that ! 1 where is the total
scattering rate, electrons are forced to circulate in cycltron orbits due to the strong
Lorentz force. In Bohr's atomic model discrete states are otained from interferences of

the electronic waves. For constructive interference, the iccumference of the trajectory
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must be an integer multiple of the electronic wavelength
2r =n (2.14)

with ¢ as the Fermi wavelength.
Using this semi-classical approach one nds a quantizatiorof the energy referred to as
Landau-quantization forming equidistant Landau-levels (LL). Solving the Schroedinger

equation will give a LL energy of
1

where! . = eB=m s the cyclotron frequency. The density of states (per unit aea) can

now be written as a sum of -functions separated by~! .

R 1
(E:B) = No E n+; o (2.16)
n=1
with
N = gvgﬁeB (2.17)

denoting the number of states per area for each LL.
The spin degeneracygs can be resolved in strong magnetic elds as an additional sjitting
of the LLs (Zeeman e ect).

In real samples however, LLs are broadened due to potential uctuations mainly
caused by disorder (see gure2.4). Besides the Landau quantization, disorder is es-
sential for the understanding of the Quantum Hall E ect (QHE ). Equation 2.16 shows
that the spacing between LLs gets larger when the perpendidar magnetic eld is in-

creased and therefore LLs get shifted above the Fermi energyFurthermore the energy

10
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and density of states get changed which leads to the de nitim of the Landau Iling

factor

Ns nsh
=~ = 2.18
No 2eB ( )

giving the number of (fully or partially) lled Landau level s at a given energy and density
Ns.

Die) DIEY
[H=0] (H#0]

Energy —

(@) Regular system

Energy —»

’\—EIV

(b} Disordered system

Figure 2.4: Landau Quantization without and with broadenin g due to potential
uctuations. From [ 17]

11
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Edge states

Landau levels

Energy

Position Potential

Figure 2.5: 1D-edge channels are formed if Landau levels s the Fermi energy
when they get bend at the 2DEG edges. From 13]

= /\-/\ RXX Ohmic

o/ 3 Contacts
Q/ \
Ry \
™ O 2DEG ®B ©

[—— [——

Source Drain
Edge Channels

Figure 2.6: Edge channels are formed at the edge of the 2DEG. rDeach side,
charge carriers move in the opposite direction due to the magetic eld.

At the edge of a 2DEG the conduction band bottom increases shaly, therefore each

Landau level gets shifted to higher energies and nally croses the Fermi energy at some

point forming an edge channel(Figure 2.5). Therefore the DOS at the Fermi energy is

always larger than zero. Due to the magnetic eld and spatialconstriction these channels

are 1-dimensional. All electrons on one edge move in the sanaad on the opposite edge

they move in the opposite direction because of the magnetic eld which bends their

12
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trajectories towards the edge where they get re ected. The &ct that backscattering in
edge states is greatly reduced and that they are 1-dimensi@ a 2DEG in the quantum
Hall regime comes close to a ballistic quantum wire 14]. In a ballistic waveguide every
1D-subband contributes 2¢*= to the conductance and since the numbeN of occupied

subbands has to be an integer the conductance is quantized ]

0s€?
h

G= N (2.19)

For the quantized Hall resistance distinct plateaus exist &

Ry (2.20)

- h1
0s€2 N
where N is the number of fully occupied Landau levels withE < E ;. The quantization
is extremely precise € ppm, [10] [15]) due to the spatial separation of the forward and
backward propagating states (Figure 2.6). For the complete picture of plateau forma-
tion one has to take disorder into account too, but this will get beyond the scope of this

introduction °.

The longitudinal part of the magnetoresistivity shows oscllations as the perpendicular
magnetic eld is changed, calledShubnikov-De Haas(SdH) oscillations (see gure 2.3).
The onset of this feature can be seen at magnetic elds wherehie Hall resistance starts
to deviate from a linear behaviour and the system can not be teated in a classical way
anymore. Using the Einstein relation the conductivity tensor can be related to the
di usion tensor D via

= e (Ef)D (2.21)

SFor a more detailed description of the QHE see e.g. Beenakkeret al. (1991) [10]

13
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Taking the 2DEG in the x-y plane one then obtains for the residivity tensor = 1
2 3
1 !
-_m 9 °rL 2.22)
Ns€ I 1
rCr

The o -diagonal element , simply is the classical Hall resistivity (see equation2.9)
and the diagonal element y, = (m=e?ns , 1)/ (E¢) using a Born approximation of the
transport scattering rate , ! [10]. Therefore oscillations in the DOS at the Fermi energy
result in an oscillatory magnetoresistivity. A minimum in t he oscillations is expected to
be at the point where the Fermi energy lies between two Landauevels because there
are no available states for electrons to scatter into. This acurs when the Landau lling
factor (see equation2.18) equals an integer N=1,2,... (spin-degenerate).

SdH oscillations are periodic in1=s with a spacing

1 _ego
B h ns

(2.23)

This allows to measure the 2DEG electron densityng using frequency (= ) analysis of
the oscillatory part via e.g. Fourier methods.
2.4 Temperature Dependence of SdH Oscillations

Oscillations in the longitudinal resistance can only be reslved when the energy spacing
E between two Landau levels is larger than the broadening dued disorder, given by

the Heisenberg uncertainty principle, and thermal energy 6]

— E kgT (2.24)

fe]

14
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where ¢ is the mean time between two scattering events. Note that thescattering rate
. 1 used for the classical approach in the previous chapter is dirent from the quantum
(total) scattering rate (average time between elastic scatering events) 1 This is due
to the wave nature of scattering particles which can not be eplained semiclassically.
Experimentally , can be extracted from the conductivity while ¢ is obtained from the
damping of SdH oscillations. The ratio = r=4 characterises the spatial structure of
disorder [17]. E.g. for long-range disorder, like GaAs heterostructurs with modulation

doping, 119

At high magnetic elds the spin degeneracy is lifted due to the Zeemann e ect. The
two spin subbands dier in energy by E = g gB ( 2907K=r, using jg j = 0:44),
where the Lande g-factor g is the proportionality constant of the magnetic moment to
the total magnetic moment of an electron and g = e=m. is the Bohr magneton. If the
thermal energy is increased more states are available forestrons to scatter into. This

causes a suppression of the spin-split minima in the SdH odltion.
Ryxx:min exp T (2.25)

Assuming a constantg this exponential behaviour can be used to measure the upper
limit of the 2DEG electron temperature. It also allows to determine g if the relative
change in temperature is known [6].

In small and intermediate magnetic elds ! . < 1 the QHE is very weak. But in this
regime there is still a small modulation of the DOS at the Fermi level. Therefore the
longitudinal resistivity shows weak SdH oscillations but does not reach zero value. For

the low magnetic eld limit ! 1 Ando [18] has derived an expression for x (B)

15
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which reads

x(B)= x(0) 1 4(:035—f D(m;T) E(m; g (2.26)

The low- eld oscillation amplitude  xx (B; T) is proportional to the Dingle-Term D(m ;T)
and also depends on the quantum scattering timeq via the exponential term E(m ; o) =
exp( = . q). Inthe low eld limit, the Dingle term contains the tempera ture dependence

and depends on the e ective mass via

. _ X _ 2 ZkB
D(m T)= =i X= —gmT (2.27)

At su ciently high temperatures where x > 1 and small magnetic elds one can use

In(sinhx) x and write

| *  =C 2 *ke T 2.28
A B (2.28)

Here, C denotes a constant which is of no further interest. Egation 2.28 provides a
powerful tool to obtain the e ective mass. However, Ando's analytic expression for
xx (B) includes that short-range scattering is weak compared to he Fermi energy and
¢ 1. This means that an electron can not nish a full rotation in a magnetic eld
because it scatters before. Based on thi&.26 is only useful at low magnetic elds and
relatively high temperatures where still states between Ladau levels exist, meaning

<« (B) does not reach zero value.

2.5 Direct Measurement of

In a magnetic eld the energy of electrons is raised or lowere depending on the spin.

This leads to a splitting of the electron band into sub-bandsseparated by the Zeeman

16
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energyg B and a partial spin polarization of the electron gas (see Figte 2.7). Every
electron has a magnetic moment of g. A redistribution of electrons between two spin
orientations gives rise to a net magnetic momenM = g(n" n#) and a paramagnetic
susceptibility of the electron gas known as Pauli paramagnism [19].

The magnetic susceptibility is de ned as
M= B (2.29)

where M is the magnetization and B the total external magnetic eld.

For ks T  E; the magnetization can be written as

2
M= g(h" n# = g(9 BBt (E)) =gm Z—Iithot (2.30)

q__
with Bt = B3 + B2 and (E)= m = -2 the density of states where the spin degen-
eracy is lifted due to the magnetic eld.

This leads to the spin-susceptibility

2
s=gm 2—52 (2.31)

17



2 Theory

Total, kinetic and magnetic,
energy of electrons

b

paralell antiparallel
to magnetic__|to magneti

<— Fermi level

Orbital density

Figure 2.7: Pauli paramagnetism at zero temperature. All sates up to the
Fermi-level are occupied but due to the magnetic eld an excss of spins aligned
parallel to the magnetic eld exists leading to a net magnetization of the electron
gas.

The electron-spin susceptibility s/ g m gives information about magnetic proper-
ties of the 2DEG electrons and is heavily a ected by electronelectron interactions [/].
Therefore, measurements off m are able to give informations about these interactions.

Besides full polarization methods for high magnetic elds p0] [21] tilted magnetic
elds are the most conventional way to measureg m [22] [23] [24] at low elds. This
approach is only useful where the Zeemann energy is smaller equal the half of the
cyclotron energy [25]. To remove this restriction a practical way is to use crossd mag-
netic elds. This allows to tune the Landau level spacing which only depends on the
perpendicular eld independently of the Zeemann energy whth depends on the total

eld.

The electron density ng is related to the period of SdH oscillations (see equatior2.23).

18
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In other words: for a given electron density one gets a spect SdH oscillation frequency.
In the case of two di erent sub-densities the measured londgudinal resistivity 44 isasum
of two SdH pattern with slightly di erent frequencies depending on the sub-densities.
This leads to a beating which can be observed in the resultingsdH pattern.

For two di erent electron sub-densities, at nite temperat ures and low magnetic elds,

expression2.26 can be written as (see appendixA) [26]

X ~n

XX
= Ascos s
s eB-

Zs (2.32)

where

ke T 2 2skg T=
— 2.8B ID c
AS - 4eXp 2 S ~| . Slnh (2 ZSkB T:~I c)

(2.33)

Here 9= x(B» =0)and Tp is the Dingle temperature®.

The Zeemann termZg which is a eld independent constant for B, = 0 is given by

n" n#
Zs = COS 23~T (2.34)

By tting equation 2.32 to the experimental data one is able to directly extract the
two spin-subpopulation densitiesn " and n #, thus giving a possibility to measureg m

using equation 2.30. To disentangle m one can use the temperature dependence and
extract m from (T + Tp)m when measured at di erent temperatures T, assumingTp

is constant.

5The Dingle temperature correspond to the low temperature co llision broadening of electron states at
the Fermi level.

19



3 Materials and Methods

3.1 Sample Design and Fabrication

3.1.1 Wafer Material

The sample consists of GaAsAlg.106Gag.s94AS heterostructures. The semiconducting
material was deposited by molecular beam epitaxy while spining the substrate'. This
allows very clean layers and interfaces in the wafer crystal Si -doping (density 6:4

10'1cm?) was used to have additional electrons for the electron gas.A 80nm spacer
layer of GaAlAs separates the Si atoms from the interface whe the 2DEG is formed.
The complete growth-pro le is shown in gure 3.1. Before cutting the wafer for sample
fabrication, density n and mobility ~ was measured to be n = 0:71 10'cm 2 and

=12:8 10Pcm’zys after illumination with a GaAs LED.

1The wafer was grown by L. N. Pfeier, Bell Laboratories, Luce nt Technologies, Murray Hill, New
Jersey 07974, USA
2Consistent with measurements of L. N. Pfei er

20
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100 |GaAs cap layer

1000 | Aly 19652y ggaAs
6.4x101! cm-2 Si-doping | [~ 190nm

800 |Aly 106Gag ggaAs

Y2DEG

10000 |GaAs

200 period superlattice
30A GaAs,
100A Aly 106G gogAs

GaAs substrate

Figure 3.1: Complete growth-pro le of the wafer used in this work. A spacing
layer of 80nm separates the Si-atoms from the 2DEG plane. Ga#\was used as
a cap layer to protect the layers containing Al from fast oxidation.

3.1.2 Hallbar Design

CleWin 3.2.1 layout editor was used to design the sample geometry. It consts of three
di erent layers: hallbar, ohmics and gates. Figure 3.2 shows the geometry which was
used for the measurements presented in this work. The main Hbépar has a length of
1240 m and a width of 100 m. Two adjacent ohmic contacts are 300m apart. From

this it can easily be seen that one can think of three squaresdtween two ohmic contacts
to cover the hallbar in between completely. This is importart for later measurements of

the 2DEG sheet resistance.

21
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300pm T
1
A

Hallbar (Mesa)
1240pm

Figure 3.2: Hallbar design for later use in the fabrication. The 2DEG is located
at the white regions. The hallbar has a dimension of 1240x10f 2. For the

measurements in this work, the Gate structure was not produed. The spacing
between to adjacent ohmic contacts is 300n . Therefore, the measured x4

between this two nearby contacts has to be divided by three toget

00um

3.1.3 Fabrication Process

The fabrication process was done under clean-room conditits to prevent contamination
of the sample surface. In a rst step, the wafer piece (5 5mm?) was sonicated using
TCE (Trichloroethylene), Aceton and Methanol to get rid of t he main contaminants.
After dehydration at 115 C negative-resist was spun onto the wafer piece (4000rpm,
40s) and baked for 90s at 93C. The nal thickness of the resist layer was 16 m. The
spin-coated sample then was aligned with a prefabricated Hibar mask and exposed 14s
to UV-light. The unexposed portion of the photo-resist was removed by putting it into a
developer solution for about 100s and rinsing it with deionzed H,O to stop the reaction.
An etch-reagent of HbO:H,S0O4:H,0, (480:2:16) was used to remove about 270nm wafer-
material. Therefore the sample was put into the solution for 47s and was rinsed with

deionized H,O. The etch-rate of the sample was relatively fast (6m=) compared to the

3MaN-415
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3 Materials and Methods

etch-rate of the test-samples (4m=s). This could be due to the addition of aluminium

to the real sample which was not present in the pure GaAs testnaterial. In any case

it was important to etch below 190nm (see Figure3.1) to remove the underlying 2DEG

completely. The remaining resist on the sample was removed ith NMP (N-Methyl-2-

Pyrrolidone). Figure 3.3 shows the photo-lithography process used for this sample.

a)

b)

P erepare Wafer e s

P Coat with Photoresist st s S s

L Prebake e

ARARAREA. REARERRAR

P Alignment and Exposure st S

] Develop el e

VVYVYVV VY

0 00 S Etch  Metal Deposition“

Mesa Ohmics

— WS .. Strip Resist

Annealing —-—-—

Figure 3.3: Fabrication process with a negative photo-rest where the exposed
parts stay. After deposition of the ohmic material the sample was annealed at
550 C which let the ohmic metals di use into the wafer. In (a) the r egions con-
taining the 2DEG are de ned. (b) shows the fabrication of the ohmic contacts.

In a second fabrication step, the ohmic contacts were de nedand put onto the sam-

ple piece.

In order to do so, the same steps for photo-lithogiphy were done as for
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3 Materials and Methods

the mesa using a di erent mask for the ohmics. For the underlyng mesa-structure a
meander-like geometry and for the ohmics a zig-zag pattern as chosen in order to have
good contact. Because of the strong magnetic elds which arepplied during the meso-
scopic transport measurements, it is important to extend the ohmic contacts across the
mesa edge. Otherwise, due to the cyclotron movement in strap magnetic elds, the
electron gas localizes in a small area around the the conta@nd will lead to a sharp in-
crease of the contact resistance. Hence, 20% of the ohmic na¢étwas deposited o -mesa.
After developing the sample, it was cleaned and etched with @plasma for 30s (16% Q,
91V bias, 0.25torr) followed by HCI dip and nally got rinsed with H ,O. This ensures to
have a very clean and rather rough surface where the metals féhe ohmic contact get de-
posited.

In general, metal-semiconductor interfaces form Schottkybarriers for most of the ma-
terial combinations. To form a Ohmic contact suitable metal Ims are deposited and
afterwards alloyed into the semiconductor. This leads to a ery low Schottky barrier.
Nevertheless at annealing it is important to stay below the citical temperatures for
other processes like the migration of Si-dopants.

For the Ohmics (Au/Ge/Pt) , (200,100,70,80,40,40)nm was evaporated under high-vacou
conditions while cooling the sample down to 7C. After lift-o (NMP, 50 C) and cleaning
with IPA (Isopropanole) the Ohmics were annealed at 550C. Figure 3.4 shows the nal

product of the fabrication process.
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Figure 3.4: Sample with hallbar structures (highlighted in red) after evaporating
the Ohmic materials (light yellow) and lift-o .

3.2 Experimental Techniques

All measurements were performed at cryogenic temperaturessing a*He=*He dilution
refrigerator (Microkelvin MCK-50) obtaining a base temperature of 20mK*. The sample
was glued on a chip-carrier and bond with Aluminium-wires.

AC input bias current between 9nA and 40nA at a frequency of 1B8Hz was applied. In
order to nd the maximum current which did not heat up the elec trons signi cantly, max-
ima of SdH oscillations were monitored while the current wasncreased until a change in
the corresponding value could be detected. The e ective bia current through the sample
was recorded. To eliminate wire and contact resistances a fw-probe con guration was

chosen to measure the transverse and longitudinal voltagerdp using lock-in techniques.

“the temperature in the mixing chamber which can signi cantl y di er from the actual electron temper-
ature
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3 Materials and Methods

The sample was positioned in a high- eld superconducting mgnet solenoid (Cryogen-
ics Ltd) which produces a maximum central eld of 9T. In addit ion two perpendicular
superconducting split-pair magnets producing a maximum operating eld of 1T were
mounted perpendicular to the solenoid eld. This con gurat ion allowed to apply a strong
in-plane magnetic eld and independently control the perpendicular eld. Although the
solenoid eld have a large in uence on the split-pair coils it was possible to have up to
0.5T perpendicular eld while the in-plane eld was about 4T . For all magnetic eld
sweeps a ramp-rate B=t 0:1mT= was used.

For data acquiring and processing, the temperature-contrband control of the magnet

power-supplies, special procedures were used igor Pro (Wavemetrics).

5Split-pair magnets made by Peta Jurcevic during a semester project in the group of D. Zumhushl,
University of Basel
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4 Results and Discussion

4.1 Sample

The fabricated sample consists of a mesa 1068  1240m with 10 ohmic contacts used
to apply a current-bias and measure the voltage drop.

After fabrication 3 out of 6 hallbars had working ohmic contacts and were not damaged
during the process. Structures at the edges of the chip showledefects because of the
edge-bead formed as the photoresist was spun. After evapdian of the ohmic metals
(Au/Ge/Pt) , and annealing at 550 C the ohmic contacts all showed resistances of about
250, measured at temperatures smaller than 4K . It was necesary to illuminate the

sample with a LED to get a populated 2DEG.

4.2 Basic Characterization

The basic 2DEG properties of the sample were obtained by loweld magnetoresistance
measurements (see chapteR.2.2). At a base temperature of T, = 23mK the Hall and
longitudinal resistances were measured while changing thperpendicular magnetic eld.
The sample was current biased (9nA, AC, 126Hz). Figure4.1 shows the two resistances
plotted against the magnetic eld. Using equation 2.12the electron density of the 2DEG

was obtained via the Hall slopedRu=dB

dry .. !
dBH j€j (4.1)
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4 Results and Discussion

giving a density of ng = 0:71 10Ycm 2. This result was reproduced in two di erent
cool-downs and is consistent with density-measurements d@ by L. N. Pfei er. By re-
ducing the LED illumination power, it was possible to have a DEG with a lower electron
density of ng = 0:47 10" cm 2. With the higher density the electron-electron interaction
parameter rg = €m = (h2P n; equals 116 usingm = 0:067 of bulk GaAs.

The mobility = 4:0 10°cm?=ys can easily be calculated using equatior2.13 and the
2DEG sheet resistivity = 22 = . The mobility is about three times smaller than
measured by the wafer growers. This can be due to the fabricain steps where contam-
ination occurred that can increase the inhomogeneity of thewafer and also the 2DEG

resistivity.

Figure 4.1: Density and mobility of 2DEG electrons can be obained via Hall
measurements. The Hall resistanceR,y starts to form plateaus at a magnetic
eld of 100mT. Clear spin-splitting is visible in Ryx for magnetic elds larger
than 130mT. The Hall slope is obtained by a linear t of Rxy at low elds where
no plateaus are visible.

The average distance between two peaks of the longitudinalasistance when plotting
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4 Results and Discussion

against the inverse magnetic eld (Figure 4.2(a)) is ( =8) = 0:639T ! which equals an
electron density ofng =0:75 10''cm 2 (Equation 2.23). This is in agreement with the
Hall measurement (Figure 4.1).

The density can also be extracted from fast fourier transfomation (FFT) of the SdH
oscillations. Figure 4.2(b) shows the FFT result for a magnetic eld range of 30-200mT.
A second peak at &g is visible in the FFT spectrum which is due to the spin-splitting
at higher elds. It shows that only one subband is occupied beause there are no other

peaks visible than these two, with one having doubled frequecy.

(a) Rxx plottet against inverse magnetic eld. (b) FFT spectrum of the SdH oscillations.

Figure 4.2: Electron density from 1= and FFT analysis of the Shubnikov de
Haas oscillations. (a) shows constant peak-peak distance hich doubles when
the spin-splitting is resolved. (b) Only one subband is occpied because only
two peaks atng and 2ng are visible in the FFT spectrum of the SdH oscillations.

4.3 Temperature Dependence of SdH Oscillations

The temperature dependence of the longitudinal resistance&an be used to extract the
Lance g-factor g and the e ective massm . Considering the band structure of con ned
2DEG electrons in a magnetic eld, it is useful to look at low- and intermediate magnetic

elds where the spin-split minima still have a small but nit e resistance at the lowest
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4 Results and Discussion

temperature used in the experiment. To extract the e ective mass its even better to
look at the regions where no spin-splitting is visible and the oscillations do not go to
zero value, otherwise one is not able to see a change in resiate for small temperatures
if the gap between to energy levels is too large.

Experimentally, at di erent temperatures the longitudina | resistance of a 2DEG was
recorded while the magnetic eld was increased slowly. Bef@ every eld sweep the
temperature was equilibrated at a given value starting at base temperature up to 300mK..
Figure B.1 shows the temperature dependence dRx at perpendicular magnetic elds

from O-1T.

4.3.1 Electron g-factor

At magnetic elds B > 80mT (T, = 23mK), the spin-splitting is visible in the SdH

pattern. The Zeemann energy z = ¢ gB can be extracted from the exponen-
tial temperature dependence of spin-split minimaRmin.xx in the longitudinal resistance
oscillations (Figure 4.3(a)):

Rmin;xx = eXp kB—T (4.2)

q_
Note that B = Blf + B2 is the total magnetic eld. The g-factor is proportional to

the slope of the Arrhenius plot shown in Figure4.3(b) In( Ryx:min ) Versus =t
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4 Results and Discussion

Spin-split minima

(a) Spin-split minima in - Ryx (b) Arrhenius plot

Figure 4.3: (a) Temperature dependence of the spin-split niima. (b) g* is
extracted from a linear t for temperatures where equation 4.2 is applicable.

g* was extracted for two di erent cool-downs and two di erent magnetic elds: (1)
no in-plane magnetic eld and ng = 0:47 10'cm 2; (2) 1 Tesla in-plane eld and ng =
0:71 10Ycm 2. Figure 4.4 shows g* normalized to the GaAs band g-factorjgyj = 0:44
[27] for dierent perpendicular magnetic elds where a spin-split minima was visible.
The measured g*-factors show strong dependence on the penpaicular magnetic eld
and on the total electron density. In Figure 4.4(a) the maximum values are about 5.4
times higher ( z = 27:9eV , Byt = 0:203T) than the GaAs band value. These high
values were also measured by ref. 2[)] for a similar system but are in contradiction
with measurements done on GaAs/AlGaAs and Si-MOS systems if25] and [24] where
no large increase ing was seen for the same range afs. Although its known that
g depends on the electron density in such a way that it will increase going to lower
densities (increasingrs), this does not explain the di erence with the values measued
in gure 4.5(b) where the maximum values of about 0.9 ( z =23:6eV , By = 1:03T)

are near the band value of GaAs.

31



4 Results and Discussion

(@) (b)

Figure 4.4: g -factor for di erent total magnetic elds. (a) At low electr on
density g is about 5.4 times higher than the band value. (b) The maximum
value ofg approaches nearly the band value but decreases very strongtowards
smaller perpendicular magnetic elds.

4.3.2 E ective mass

At su ciently high temperatures and low magnetic elds the e ective electron mass
m can be extracted from the temperature dependence of the SdHsaillations. At

this temperatures and magnetic elds a simpli ed form of the Dingle term (Equation

2.28) can be used to derivem . We de ne the "strength" of the feature in , as
2(2P1 V1 V2)which is simply the mean amplitude 4 of one single SdH oscillation
(see Figure4.5(a)). Figure 4.5(b) shows x=r as a function of temperature T with m

given by the slope2 *kem =-ep. This was evaluated for three di erent single oscillations
giving a mean e ective mas$ m =0:067 0:004 which is consistent with the expected
value of mg,,s = 0:067. For too low temperatures the linear behaviour is no more
observable and the simpli ed form of the Dingle term is not valid any more. However,

there is a slight dependence on magnetic eld visible in Figue 4.5(b). The previous

!Note that the e ective mass m is normalized by the electron mass me.
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4 Results and Discussion

mentioned result of m is a mean value of all three measurements, supposing that tlse
small di erences in m is not an actual behaviour of the 2DEG electrons but rather from

the overall sample behaviour and measurement setup.

(a) (b)

Figure 4.5: (a) Shows a low- eld SdH oscillation which was ued to extract the
amplitude. (b) The e ective mass m was obtained by tting the linear regions
inIn( Ryx)vs. T.

4.4 SdH Oscillations with in-plane Magnetic Fields

A magnetic eld applied parallel to the 2DEG plane has no in u ence on the Landau level
spacing but increases the Zeemann energy which depends onetliotal eld. This leads
to a net spin-polarization with spin-subband densitiesn " and n #. Each sub-density
has a characteristic SdH frequency and therefore, during aexperiment the longitudinal
resistivity is the sum of two frequencies depending on the Sp polarization or total
magnetic eld respectively.

Crossed magnetic elds were used to apply a constant in-plaa eld onto the 2DEG
while the perpendicular eld was ramped (ramp-rate 0:01mT=s) independently. The newly

installed split-pair magnets are capable of producing elds up to one Tesla, depending
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4 Results and Discussion

on the solenoid eld. The sample was mounted in such a way thathe solenoid eld was
in the plane and the split-pair eld perpendicular to the 2DE G plane. The longitudinal
and transverse voltage drops were recorded at base tempertate (23mK ).

Figure 4.6(a) shows the normalized longitudinal resistance with subtracted back-
ground for zero in-plane eld. SdH oscillations start to appear for perpendicular elds
larger than 20mT . There is only one dominating frequency visible. In Figure4.6(b) a in-
plane eld of one Tesla was applied. Oscillations can be seestarting at about the same
perpendicular eld as for the zero- eld measurement. At larger elds the spin-splitting
appears as an additional dip in a single oscillation. But mosimportant, a beating of
the oscillatory component is clearly visible. This indicates that due to the large in-plane
eld a net spin-polarization was generated and the oscillaions are a sum of two di erent

frequencies leading to the a beating pattern.

Beating of oscillatory component

(a) (b)

Figure 4.6: (a) SdH oscillation without in-plane eld. (b) A beating of the
oscillatory component is visible for a in-plane eld B=1T.

To describe the longitudinal resistanceRy Ando's formula (Equation 2.26) can be
used which depends on temperaturel, the quantum scattering time ¢, total electron

density ng and the e ective massm . This formula only describes oscillations without
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4 Results and Discussion

spin-polarization. To include these sub-densities expreson 2.32 was used including a
term which describes the additional beating pattern.

In gure 4.7(a) expression2.32 is plotted against inverse magnetic eld. Following
parameter values were usedm = 0:067,g =1:5,ns=7 10%m 2 and 4= 6:8ps.
For zero in-plane eld, oscillations in the longitudinal re sistance are visible with a single
frequency as expected. Introducing spin-polarization, a wll-pronounced beating pattern
can be seen with a node at 5®T perpendicular eld. This plot also shows, that the
phase of the SdH oscillations remains the same between adgt nodes and changes by

when it is going through a node. The position of the node is sely controlled by the
di erence of the two spin-subdensities. In gure 4.7(b) the experimental data shows a
node at 37mT perpendicular eld for 1T in-plane eld. The envelope function Ag
in equation 2.32 depends on the quantum scattering time, electron temperatue and
e ective mass. Therefore, these parameters control the amlgude of the oscillations
with a frequency de ned by the total electron density.

Sometimes it is not easy to see a node of the beating pattern ithe experimental
results. Plotting the resistance against inverse magneticeld as done in gure 4.7(b)
helps to nd the exact position. As the results show, the phag-change happens exactly

at the position of the node.
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|

Node

(@) (b)

Figure 4.7: (a) Shows a simulation of SdH oscillations for z@ and one Tesla
in-plane eld. The phase-change by at the position of the node is clearly
visible. (b) Plotting experimental data against inverse eld can help to nd the

nodes. Equidistant lines help to distinguish minimum or maximum in the SdH

oscillations even when spin-splitting is present.

To extract the susceptibility / gm / n" n #one has to t equation 2.32
to the experimental data where a beating pattern is visible. For this it is crucial that
at least two nodes are known in the SdH oscillations. Otherwse it is very hard to get
the correct di erence of the spin-subdensities out of the t. In this work, only one
node was found. Therefore no satisfying t could be done whib allowed to extract the
susceptibility directly from the beating pattern. The addi tional spin-splitting is also not
included in the tting formula. When no in-plane magnetic e Id exists, this problem
is no longer hindering the tting of the SdH oscillations for lower magnetic elds. In
gure 4.8 equation A.3 was used to t the zero in-plane eld result. Although there
are still deviations of the t compared with the measurement the extracted parameters
are in the expected range. The quantum scattering time was masured to be about
7:2ps which is possible for such a system as well as the electre@mperature T  80mK

which can be quite high compared with the base temperature ofthe cryostat. The
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4 Results and Discussion

density of ng = 7:1 10%cm 2 is a reasonable result and is in agreement with previous
measurements on this sample. But these tting results are jist approximate values and
a lot of work has to be done to nd exact results. It is important to exactly know the
magnetic elds (which can change when the sample position isiot aligned well with the
magnets) because the t is sensitive to< 1mT o set in perpendicular eld. Possible
shifts in the measured magnetic eld and the back-ground inRyx can make it very hard

to nd the right tting parameters.

Figure 4.8: Fitting low- eld SdH oscillations using equation A.3 allows to ex-
tract the quantum scattering time, the electron temperature and the electron
density.
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5 Conclusion

In this masterthesis the main characteristics of a 2DEG forned in GaAs/AlGaAs het-
erostructures were studied. It was necessary to illuminatehe wafer with a GaAs-LED
after cooldown in order to have a populated 2DEG. Using classal Hall measurements
a relative low electron density ofn = 7:1 10*°%cm 2 was measured which corresponds
to a interaction parameter of 1.16. This value is in good agrement with the density
obtained by the SdH analysis as well as the values measured lyN. Pfei er. By using
low-power LED illumination, a 2DEG with an electron density of n = 4:7 10'%m 2
could be achieved. The mobility was measured to be = 4:0 10°cm?=ys. This is about
3 times lower than the mobility measured before fabrication It is possible that dur-
ing the fabrication process contamination of the sample oaared that can increase the
inhomogeneity of the wafer and also the 2DEG resistivity.

The temperature dependence of SdH oscillations was used taxteact the e ective
massm and the Lance g-factor g . The measured value ofm = (0:067 0:004)me is
consistent with literature. g shows a strong dependence on the perpendicular magnetic
eld. Towards small elds, the value decreases very fast. Ths is probably a property of
the sample which could not be removed before the analysis. Fdarger elds the value
for jg j of the "high"-density experiment (n = 7:1 10%m 2) with 1T in-plane eld
has a maximum of about 04 which is near the band valuejg,j = 0:44. With g = 2:38
the extracted value from the "lower"-density experiment (n = 4:7 10%m 2) is about
5.4 higher than jgyj which is expected when going to lower densities. However, #hhuge

increase ing could not be explained by the variation of the density or the total magnetic
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eld.

The split-pair magnets were successfully put into operatiom making it possible to have
a crossed magnetic eld. Using this technique, a nice beatig pattern in the SdH os-
cillations was measured which has its origin in the formatia of two spin-subdensities
due to the Zeemann e ect. During the time of this work it was not possible to extract
the spin-susceptibility ¢ directly from beating pattern analysis. The main reason for
this was the lack of a second node which is important for the tting. However, without

in-plane eld a tting of SdH oscillations was possible using Ando's formula.

For future experiments, a new wafer material is necessary wbh has a populated
low density 2DEG without any requirements of LED illuminati on. This will allow it
to tune the electron density with a top-gate and nally make it possible to study the
spin-susceptibility as a function of the interaction parameter rs.

Nevertheless, this experiments are not very easy to do but hmefully will shed more
light into this interesting eld of basic research towards new implementations of quantum

computing.
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Appendix A

Oscillatory part of magnetoconductivity

For low magnetic elds where ! ¢ land ¢ 0o Isihara et al. [26] showed that
the normalized oscillatory component of the magnetoresisvity can be expressed by the
simple expression

xx= 0o 1+2 o(T)

(A1)

where ¢ is the constant and g(T) the oscillatory part of the density of states per unit
cell. Neglecting the energy variation of the e ective mass kecause the energy at the
Fermi level changes only bykg T the density of states at nite temperatures, similar to

Ando's approach, reads €] [2€]

T X s 2 2skg T=1 . 2E
9(™) =2 exp . ZB | cos s !
gO s I cq Slnh (2 SkB T:“' c) ~I C

1 (A.2)

With the cyclotron frequency ! . = eB=m , the Fermi energy Ef = n-* =m and the

quantum scattering time 4= =Tp2k equation A.1 is given by

X 2~-n
XX

= AsCcos S
0 S eB'_)

S

(A.3)

43



References

ke T 2 2skg T=
— 2 "B ID c
As=4exp 2 “s . Snh@E SeT=1) (A.4)

where Ag represents the envelope of the function and the cosine-terraorresponds to the
oscillatory part. As depends on the temperature T, the perpendicular magnetic dd
B, and the level broadening given by the Dingle temperatureTp . It can easily be seen
that the amplitude depend on these three parameters. Thus,ncreasing eld results in
an increasing amplitude where increasing temperature willexponentially decrease the
maximum values of the longitudinal resistivity. The oscillatory part depends on the
perpendicular magnetic eld and the carrier density n.

If a strong enough parallel magnetic eld is applied the spindegeneracy is lifted and
n=n" +n # Therefore, equation A.3 can be written as a sum of two oscillations

depending only onn " and n #.

XX X ~Nn
= Ascos s Zs (A.5)
0 s eB-
n" n#
Zs=cos s~— " A.6
s eB, (A.6)

Due to the Zeemann e ect a beating pattern Z5 shows up de ned by the electron sub-

densities. It is obvious that for B, = 0 this part reduces to a constant.

Lusing the simple relation C1(cos(Cz )+ cos(Cz )) =2 Ci(cos(C, * = +cos(Ca  =)).
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Appendix B

Additional Figures

Figure B.1: Temperature dependence of SdH oscillations meared for perpen-
dicular elds between 0 and 1T. To see if it is reproducible the resistance was
recorded three times at 300mK.
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