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Abstract

In this work, main properties of a two-dimensional electrongas formed in GaAs/AlGaAs

heterostructures were studied. The electron density ofn = 7 :1 � 1010cm� 2 obtained

by classical Hall measurements is consistent with Shubnikov de Haas (SdH) oscillation

analysis. Temperature dependence of the SdH amplitude was used to extract the Land�e g-

factor g� and the e�ective massm� . The measured e�ective massm� = (0 :067� 0:004)me

is in agreement with literature. g� showed strong dependence on magnetic �eld and

electron density. New split-pair magnets were put into operation which made it possible

to have a crossed magnetic �eld together with the existing solenoid. Applying an in-plane

magnetic �eld the beating of the oscillatory component was visible. This feature can be

used to directly extract the spin-susceptibility from magnetoconductance measurements

at low temperatures.

Recent theory predicts ferromagnetic order of the nuclear-spin system mediated by an

interacting electron gas, with a strongly enhanced Curie temperature in the low milli-

Kelvin temperature range. However, the electronic spin-susceptibility � s / g� m� in the

strongly interacting electron regime plays an important role in this enhancement and is

currently not well understood.
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1 Introduction

A qubit is a quantum mechanical two-level systemj 	 i = � j 0i + � j 1i where � 2 +

� 2 = 1 which can be used to do quantum computation [1]. It conists of an arbitrary

superposition of two basis statesj 0i and j 1i . The two states of single electron spins

(j"i = j 0i and j#i = j 1i ) con�ned in semiconductor quantum dots are possible candidates

for technological implementations of quantum computation [2].

In real systems, the con�ned electron spins can couple in di�erent ways to the sur-

rounding host material. This can destroy the superpositionof the two basis states. The

spin qubit can be destroyed by two ways: (i) the spin relaxes due to the environment in a

time-scaleT1, also referred to as relaxation time. In this process the spin 
ips from state

j#i to j"i . (ii) the lifetime of a qubit is limited by the host material w hich can destroy

the well-de�ned phase of spin-up and spin-down superposition, e.g. j#i + j"i �!j#i� j"i .

The corresponding time-scale is the decoherence timeT2. Spin relaxation can be treated

as a special case of decoherence as well.

The two dominant processes for decoherence are spin-orbit coupling and hyper�ne-

interaction. The main mechanism for spin-relaxation is spin-orbit coupling where the

electron spin interacts with the electric �eld of the surrounding nucleus through which it

moves. TheT1-time was measured to be� 1s for a low magnetic �eld of B=1T [ 3]. The

T2-time is shorter and therefore leads to much faster decoherence. In this process the

magnetic moment of the electron interacts with the magneticmoment of a nucleus. This

is well known in atomic physics as hyper�ne-structure. In quantum dots, also referred to

as arti�cial atoms, materials are used to arti�cially con�n e electrons. Therefore, con�ned
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1 Introduction

electrons can interact with many nuclear spins at the same time.

For the successful implementation of a quantum computer it is crucial to have a long

enough decoherence time. Thus, increasingT2 is very important. Di�erent approaches

exist to lift the source of decoherence, e.g. suppressing ordynamically polarize the

nuclear pins. However, to increase the decoherence time by 1order of magnitude a

polarization of > 99% is required [4]. The best results so far are about 60% [5].

In GaAs/AlGaAs heterostructures containing a two-dimensional electron gas (2DEG)

the nuclear spins mainly interact via the Rudermann-Kittel -Kasuya-Yosida (RKKY)

interaction mediated by the conducting electrons. The long-range nature of the 2D-

RKKY interaction is modi�ed by the electron-electron inter action which can directly be

described by the electron-spin susceptibility� s [6].

For low enough temperatures nuclear spins start ordering and �nally become fully

polarized below a certainTc which is the nuclear-Curie temperature. Theory predicts a

ferromagnetic phase transition with Tc in the low milli-Kelvin range for large r s in the

order of 5-10 [6] [7]. Nevertheless it is still a challenge to reach temperatures in the high

micro-, low milli-Kelvin range.

The goal of this work was to characterize the electron-electron interaction in a low-

density 2DEG using GaAs/AlGaAs heterostructures. For that purpose the e�ective mass

m� and the Land�e g-factor g� was extracted using the low-temperature dependence of

Shubnikov de Haas oscillations. Additionally, the e�ect of crossed magnetic �elds on the

2DEG properties were studied and it was tried to directly measure the spin-susceptibility

� s / g� m� using magnetotransport measurements.
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2 Theory

For the comprehension of the characteristics of a2-dimensional electron gas(2DEG)

and the mesoscopic transport measurements performed in this work it is important to

understand the basic principles of the system. In this chapter mainly the 2DEG-system

and its properties are discussed.

2.1 Semiconductor Heterointerfaces

The probably best known semiconductor interface is the p-n junction where a p-doped

region forms an interface with a n-doped region of the same semiconducting material.

But in contrast to such a system, the structure used in this work contains two di�erent

semiconductor crystals, i.e. GaAs and AlGaAs, thus forminga heterointerface. Gallium

(Ga) and Aluminium (Al) are elements from column III where Ar senide (As) is a column

V element in the periodic table. III-V semiconductor compounds often form zinc-blende

crystal structures. GaAs and AlGaAs have quite similar latt ice constants allowing a

very sharp interface without disturbing lattice errors due to crystal strain.

GaAs has a band-gap of 1.42eV and AlAs has a larger gap of 2.16eV. For Al x Ga1� xAs

alloy the band-gap is larger than 1.42 and smaller than 2.16eV depending on the con-

centration x. The Fermi energy (E f ) in the widegap AlGaAs layer is higher than of the

narrowgap GaAs. Bringing together the two crystals electrons start to spill over from the

negatively doped n-AlGaAs leaving behind positively charged donors. The electrostatic

potential will bend the bands as shown in Figure2.1. At equilibrium the Fermi energy

is constant everywhere. At the GaAs-AlGaAs interface the conduction band forms a
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2 Theory

triangular quantum well crossing the Fermi energy, thus forming a very thin conduct-

ing layer. Because the conducting electrons are constricted only perpendicular to the

interface, a two-dimensional electron gas is formed.

Figure 2.1: A 2-dimensional electron gas is formed at the interface between
intrinsic GaAs and n-doped AlGaAs. Silicon atoms act as a electron-dopant.
After giving away an electron, the Si-atoms are positively charged.

2.2 Basic Properties

In GaAs/AlGaAs the crystal periodicity is not disrupted at t he heterointerface1 and

(ionized) dopants are well separated from the 2DEG-plane, therefore very large mobilities

(� 3 � 107Vs=cm2) and long mean free paths (� 300� m) can be obtained easily in this

materials.

The 2DEG in GaAs is very special because of the very low scattering rate. The

mobility at low temperatures gives a direct measurement of the momentum relaxation

time where the main contributions to scattering are impurit ies and defects at the crystal

interface.

1 lattice constants match within 0.5 % [ 8]
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2 Theory

2.2.1 Electron Density

The energy dispersion relation of a single subband n in a 2DEGis given by

En (k) = E n +
~2k2

2m� (2.1)

as a function of momentum~k. Due to lateral con�nement a 2D subband is again split

into 1-dimensional (1D) subbands with energies En = ( n � 1=2)~! 0 when the con�nement

is modeled with a parabolic potential (V(x) = 1=2m� ! 2
0x2). The electron e�ective mass

m� is much smaller than the free electron massme due to interactions with the lattice

potential2(i.e. m�
GaAs = 0 :067me). The density of states (DOS) � (E) = dn(E )=dE for a

single subband in a 2DEG is given by3

� (E ) =
m�

� ~2 (2.2)

using n(E) = gsgv m � E=2� ~2 with spin degeneracygs = 2 and valley degeneracygv = 1.

The spin degeneracy is lifted when a magnetic �eld is applied. Note that the 2D-DOS

is independent of the energy. At zero temperature, all states are �lled up to the Fermi

energyE f . This remains a good approximation4 at �nite temperature where kB T � E f .

The sheet carrier densityns is linearly related to E f by

ns = E f
m�

� ~2 (2.3)

because of the constant DOS.

If E f exceeds the energy bottom of a subband, the next higher subband gets �lled. Only

2m � is an approximation incorporating the lattice potential wh ich is justi�ed for this system [ 9].
3 If there are many occupied 1D subbands the DOS can be approximated by the 2D result.
4Using Fermi energy f (E ) � T (E f � E ) and density ns =

R
� (E )T (E f � E )dE .
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if solely the �rst subband is occupied a real 2DEG exists. Otherwise it is referred to as

quasi-two-dimensional. With increasing number of occupied states the DOS can change

to a
p

E dependence as it is true for the three-dimensional case. Usually, only one single

subband is occupied.

Figure 2.2: DOS as a function of energy. (a) Due to the con�nement potential
(inset) discrete energy levels exists where only the lowestsubband is occupied.
(b) Quasi-1D DOS because of lateral con�nement where the lowest four states
are �lled. From [ 10].

2.2.2 Low-�eld Magnetoresistance

For the 2DEG important experimental information can be obtained from magnetotrans-

port measurements with weak perpendicular magnetic �elds (also referred to as Hall
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2 Theory

measurements). This allows to separately measure the mobility � and carrier density ns

since in zero �eld the conductivity is the product of the two.

When a electric �eld E is applied at randomly moving conducting electrons they will

have a drift velocity vd in the direction of the force eE. A magnetic �eld B causes the

electrons to bend their trajectories due to the Lorentz force. At steady-state the rate

which the electrons receive momentum from the external �elds is equal to the rate at

which they lose momentum due to scattering

�
dp
dt

�

scat:
=

�
dp
dt

�

f ield
(2.4)

therefore,
mvd

� r
= e[E + vd � B ] (2.5)

where � r is the transport lifetime.

Rewriting equation 2.5 by using the current density J = evdns

0

B
@

Ex

Ey

1

C
A = � � 1

2

6
4

1 � �B

�B 1

3

7
5

0

B
@

Jx

Jy

1

C
A (2.6)

where � = jejns� and � = jej� r=m .

The resistivity tensor is de�ned by

0

B
@

Ex

Ey

1

C
A =

2

6
4

� xx � xy

� yx � yy

3

7
5

0

B
@

Jx

Jy

1

C
A (2.7)

hence, from equation2.6 one gets

� xx = � � 1 (2.8)
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� yx = � � xy =
�B
�

=
B

jejns
(2.9)

Using this simple Drude model it can be seen that the longitudinal resistance is con-

stant while the transverse resistance is linearly depending on perpendicular magnetic

�eld.

Experimentaly the resistivity tensor is measured using a Hallbar geometry. A uniform

current 
ow is applied through a rectangular sample while probing the longitudinal and

transverse voltage drop (see �gure2.6). Hence the resistivities are

� xx =
Vx

I
W
L

= � � (2.10)

� xy =
VH

I
(2.11)

where � � is the sheet resistivity (resistivity per square) and � xy is the Hall resistivity.

Using equation 2.10 and 2.11 the density ns and mobility � can be written as

ns =
1

jej� xy
B (2.12)

� =
1

jejns� �
(2.13)

However, these results are only valid for low magnetic �eldsbut represent a very useful

tool for simple characterization. The Hall e�ect was �rst di scovered 1879 by Edwin Hall

[11].

2.3 Quantum Hall E�ect

At higher magnetic �elds and low enough temperatures the Hall resistance is not linear

in B any more but shows distinct plateaus. This can not be explained by the Drude
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model (see �gure2.3).

Figure 2.3: Longitudinal and transverse resistivity as a function of magnetic
�eld. Distinct plateaus for the Hall resistance and an oscillatory behaviour
of the longitudinal magnetoresistivity can be obeserved for high enough �elds.
From [10].

As the magnetic �eld is su�ciently high, such that ! c� ' 1 where � is the total

scattering rate, electrons are forced to circulate in cyclotron orbits due to the strong

Lorentz force. In Bohr's atomic model discrete states are obtained from interferences of

the electronic waves. For constructive interference, the circumference of the trajectory
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must be an integer multiple of the electronic wavelength

2�r = n� f (2.14)

with � f as the Fermi wavelength.

Using this semi-classical approach one �nds a quantizationof the energy referred to as

Landau-quantization forming equidistant Landau-levels (LL). Solving the Schroedinger

equation will give a LL energy of

En =
�

n +
1
2

�
~! c (2.15)

where ! c = eB=m � is the cyclotron frequency. The density of states (per unit area) can

now be written as a sum of� -functions separated by~! c

� (E; B ) = N0

1X

n=1

�
�

E �
�

n +
1
2

�
~! c

�
(2.16)

with

N0 =
gvgseB

h
(2.17)

denoting the number of states per area for each LL.

The spin degeneracygs can be resolved in strong magnetic �elds as an additional splitting

of the LLs (Zeeman e�ect).

In real samples however, LLs are broadened due to potential 
uctuations mainly

caused by disorder (see �gure2.4). Besides the Landau quantization, disorder is es-

sential for the understanding of the Quantum Hall E�ect (QHE ). Equation 2.16 shows

that the spacing between LLs gets larger when the perpendicular magnetic �eld is in-

creased and therefore LLs get shifted above the Fermi energy. Furthermore the energy
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and density of states get changed which leads to the de�nition of the Landau �lling

factor �

� =
ns

N0
=

nsh
2eB

(2.18)

giving the number of (fully or partially) �lled Landau level s at a given energy and density

ns.

Figure 2.4: Landau Quantization without and with broadenin g due to potential

uctuations. From [ 12]
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Figure 2.5: 1D-edge channels are formed if Landau levels cross the Fermi energy
when they get bend at the 2DEG edges. From [13]

Figure 2.6: Edge channels are formed at the edge of the 2DEG. On each side,
charge carriers move in the opposite direction due to the magnetic �eld.

At the edge of a 2DEG the conduction band bottom increases sharply, therefore each

Landau level gets shifted to higher energies and �nally crosses the Fermi energy at some

point forming an edge channel(Figure 2.5). Therefore the DOS at the Fermi energy is

always larger than zero. Due to the magnetic �eld and spatialconstriction these channels

are 1-dimensional. All electrons on one edge move in the sameand on the opposite edge

they move in the opposite direction because of the magnetic �eld which bends their
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trajectories towards the edge where they get re
ected. The fact that backscattering in

edge states is greatly reduced and that they are 1-dimensional a 2DEG in the quantum

Hall regime comes close to a ballistic quantum wire [14]. In a ballistic waveguide every

1D-subband contributes 2e2=h to the conductance and since the numberN of occupied

subbands has to be an integer the conductance is quantized [15]

G =
gse2

h
N (2.19)

For the quantized Hall resistance distinct plateaus exist at

RH =
h

gse2

1
N

(2.20)

where N is the number of fully occupied Landau levels withE < E f . The quantization

is extremely precise (< ppm, [10] [15]) due to the spatial separation of the forward and

backward propagating states (Figure 2.6). For the complete picture of plateau forma-

tion one has to take disorder into account too, but this will get beyond the scope of this

introduction 5.

The longitudinal part of the magnetoresistivity shows oscillations as the perpendicular

magnetic �eld is changed, calledShubnikov-De Haas(SdH) oscillations (see �gure 2.3).

The onset of this feature can be seen at magnetic �elds where the Hall resistance starts

to deviate from a linear behaviour and the system can not be treated in a classical way

anymore. Using the Einstein relation the conductivity tensor � can be related to the

di�usion tensor D via

� = e2� (E f )D (2.21)

5For a more detailed description of the QHE see e.g. Beenakkeret al. (1991) [10]
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Taking the 2DEG in the x-y plane one then obtains for the resistivity tensor � = � � 1

� =
m

nse2� r

2

6
4

1 ! c� r

� ! c� r 1

3

7
5 (2.22)

The o�-diagonal element � xy simply is the classical Hall resistivity (see equation2.9)

and the diagonal element� xx = ( m=e2ns � � 1
r ) / � (E f ) using a Born approximation of the

transport scattering rate � � 1
r [10]. Therefore oscillations in the DOS at the Fermi energy

result in an oscillatory magnetoresistivity. A minimum in t he oscillations is expected to

be at the point where the Fermi energy lies between two Landaulevels because there

are no available states for electrons to scatter into. This occurs when the Landau �lling

factor (see equation2.18) equals an integer N=1,2,... (spin-degenerate).

SdH oscillations are periodic in1=B with a spacing

� � = �
�

1
B

�
=

e
h

gsgv

ns
(2.23)

This allows to measure the 2DEG electron densityns using frequency (1=� � ) analysis of

the oscillatory part via e.g. Fourier methods.

2.4 Temperature Dependence of SdH Oscillations

Oscillations in the longitudinal resistance can only be resolved when the energy spacing

� E between two Landau levels is larger than the broadening due to disorder, given by

the Heisenberg uncertainty principle, and thermal energy [16]

~
� q

� � E � kB T (2.24)
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where � q is the mean time between two scattering events. Note that thescattering rate

� � 1
r used for the classical approach in the previous chapter is di�erent from the quantum

(total) scattering rate (average time between elastic scattering events) � � 1
q . This is due

to the wave nature of scattering particles which can not be explained semiclassically.

Experimentally � r can be extracted from the conductivity while � q is obtained from the

damping of SdH oscillations. The ratio � = � r=� q characterises the spatial structure of

disorder [17]. E.g. for long-range disorder, like GaAs heterostructures with modulation

doping, � � 1 [9].

At high magnetic �elds the spin degeneracy is lifted due to the Zeemann e�ect. The

two spin subbands di�er in energy by � E = g� � B B (� 290mK=T , using jg� j = 0 :44),

where the Land�e g-factor g� is the proportionality constant of the magnetic moment to

the total magnetic moment of an electron and� B = e~=2me is the Bohr magneton. If the

thermal energy is increased more states are available for electrons to scatter into. This

causes a suppression of the spin-split minima in the SdH oscillation.

Rxx;min � exp
�

�
� E
kB T

�
(2.25)

Assuming a constant g� this exponential behaviour can be used to measure the upper

limit of the 2DEG electron temperature. It also allows to determine g� if the relative

change in temperature is known [16].

In small and intermediate magnetic �elds ! c� < 1 the QHE is very weak. But in this

regime there is still a small modulation of the DOS at the Fermi level. Therefore the

longitudinal resistivity shows weak SdH oscillations but does not reach zero value. For

the low magnetic �eld limit ! c� � 1 Ando [18] has derived an expression for� xx (B )
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which reads

� xx (B ) = � xx (0)
�
1 � 4 cos

E f

~! c
� D (m� ; T) � E (m� ; � q)

�
(2.26)

The low-�eld oscillation amplitude � � xx (B; T ) is proportional to the Dingle-Term D(m� ; T)

and also depends on the quantum scattering time� q via the exponential term E(m� ; � q) =

exp(� � =! c � q). In the low �eld limit, the Dingle term contains the tempera ture dependence

and depends on the e�ective mass via

D(m� ; T) =
x

sinhx
; x =

2� 2kB

~eB
m� T (2.27)

At su�ciently high temperatures where x > 1 and small magnetic �elds one can use

ln(sinh x) � x and write

ln
�

� � xx

T

�
= C �

2� 2kB

~eB
m� T (2.28)

Here, C denotes a constant which is of no further interest. Equation 2.28 provides a

powerful tool to obtain the e�ective mass. However, Ando's analytic expression for

� xx (B ) includes that short-range scattering is weak compared to the Fermi energy and

! c� � 1. This means that an electron can not �nish a full rotation in a magnetic �eld

because it scatters before. Based on this2.26 is only useful at low magnetic �elds and

relatively high temperatures where still states between Landau levels exist, meaning

� xx (B ) does not reach zero value.

2.5 Direct Measurement of � s

In a magnetic �eld the energy of electrons is raised or lowered depending on the spin.

This leads to a splitting of the electron band into sub-bandsseparated by the Zeeman

16



2 Theory

energyg� � B B and a partial spin polarization of the electron gas (see Figure 2.7). Every

electron has a magnetic moment of� B . A redistribution of electrons between two spin

orientations gives rise to a net magnetic momentM = � B (n " � n #) and a paramagnetic

susceptibility of the electron gas known as Pauli paramagnetism [19].

The magnetic susceptibility � is de�ned as

M = � � B (2.29)

where M is the magnetization and B the total external magnetic �eld.

For kB T � E f the magnetization can be written as

M = � B (n " � n #) = � B (g� � B B tot � (E )) = g� m� � 2
B

2� ~2 B tot (2.30)

with B tot =
q

B 2
? + B 2

k and � (E) = m � =2� ~2 the density of states where the spin degen-

eracy is lifted due to the magnetic �eld.

This leads to the spin-susceptibility

� s = g� m� � 2
B

2� ~2 (2.31)
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Figure 2.7: Pauli paramagnetism at zero temperature. All states up to the
Fermi-level are occupied but due to the magnetic �eld an excess of spins aligned
parallel to the magnetic �eld exists leading to a net magnetization of the electron
gas.

The electron-spin susceptibility � s / g� m� gives information about magnetic proper-

ties of the 2DEG electrons and is heavily a�ected by electron-electron interactions [7].

Therefore, measurements ofg� m� are able to give informations about these interactions.

Besides full polarization methods for high magnetic �elds [20] [21] tilted magnetic

�elds are the most conventional way to measureg� m� [22] [23] [24] at low �elds. This

approach is only useful where the Zeemann energy is smaller or equal the half of the

cyclotron energy [25]. To remove this restriction a practical way is to use crossed mag-

netic �elds. This allows to tune the Landau level spacing which only depends on the

perpendicular �eld independently of the Zeemann energy which depends on the total

�eld.

The electron density ns is related to the period of SdH oscillations (see equation2.23).
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In other words: for a given electron density one gets a speci�c SdH oscillation frequency.

In the case of two di�erent sub-densities the measured longitudinal resistivity � xx is a sum

of two SdH pattern with slightly di�erent frequencies depending on the sub-densities.

This leads to a beating which can be observed in the resultingSdH pattern.

For two di�erent electron sub-densities, at �nite temperat ures and low magnetic �elds,

expression2.26 can be written as (see appendixA) [26]

�� xx

� 0
=

X

s

As cos
�
�s

�
~�n
eB?

� 1
��

Zs (2.32)

where

As = 4 exp
�

� 2� 2s
kB TD

~! c

�
2� 2skB T=~! c

sinh (2� 2skB T=~! c)
(2.33)

Here � 0 = � xx (B? = 0) and TD is the Dingle temperature6.

The Zeemann termZs which is a �eld independent constant for Bk = 0 is given by

Zs = cos
�

� 2s~
n " � n #

eB?

�
(2.34)

By �tting equation 2.32 to the experimental data one is able to directly extract the

two spin-subpopulation densitiesn " and n #, thus giving a possibility to measureg� m�

using equation 2.30. To disentangle m� one can use the temperature dependence and

extract m� from (T + TD )m� when measured at di�erent temperaturesT, assumingTD

is constant.

6The Dingle temperature correspond to the low temperature co llision broadening of electron states at
the Fermi level.
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3 Materials and Methods

3.1 Sample Design and Fabrication

3.1.1 Wafer Material

The sample consists of GaAs=Al 0:106Ga0:894As heterostructures. The semiconducting

material was deposited by molecular beam epitaxy while spinning the substrate1. This

allows very clean layers and interfaces in the wafer crystal. Si � -doping (density 6:4 �

1011cm2) was used to have additional electrons for the electron gas.A 80nm spacer

layer of GaAlAs separates the Si atoms from the interface where the 2DEG is formed.

The complete growth-pro�le is shown in �gure 3.1. Before cutting the wafer for sample

fabrication, density n and mobility � was measured2 to be n = 0 :71 � 1011cm� 2 and

� = 12:8 � 106cm2=Vs after illumination with a GaAs LED.

1The wafer was grown by L. N. Pfei�er, Bell Laboratories, Luce nt Technologies, Murray Hill, New
Jersey 07974, USA

2Consistent with measurements of L. N. Pfei�er
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3 Materials and Methods

Figure 3.1: Complete growth-pro�le of the wafer used in this work. A spacing
layer of 80nm separates the Si-atoms from the 2DEG plane. GaAs was used as
a cap layer to protect the layers containing Al from fast oxidation.

3.1.2 Hallbar Design

CleWin 3.2.1 layout editor was used to design the sample geometry. It consists of three

di�erent layers: hallbar, ohmics and gates. Figure 3.2 shows the geometry which was

used for the measurements presented in this work. The main hallbar has a length of

1240� m and a width of 100� m. Two adjacent ohmic contacts are 300� m apart. From

this it can easily be seen that one can think of three squares between two ohmic contacts

to cover the hallbar in between completely. This is important for later measurements of

the 2DEG sheet resistance.
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3 Materials and Methods

Figure 3.2: Hallbar design for later use in the fabrication. The 2DEG is located
at the white regions. The hallbar has a dimension of 1240x100�m 2. For the
measurements in this work, the Gate structure was not produced. The spacing
between to adjacent ohmic contacts is 300�m . Therefore, the measured� xx

between this two nearby contacts has to be divided by three toget � � .

3.1.3 Fabrication Process

The fabrication process was done under clean-room conditions to prevent contamination

of the sample surface. In a �rst step, the wafer piece (5� 5mm2) was sonicated using

TCE (Trichloroethylene), Aceton and Methanol to get rid of t he main contaminants.

After dehydration at 115 � C negative-resist3 was spun onto the wafer piece (4000rpm,

40s) and baked for 90s at 93� C. The �nal thickness of the resist layer was 1:6� m. The

spin-coated sample then was aligned with a prefabricated hallbar mask and exposed 14s

to UV-light. The unexposed portion of the photo-resist was removed by putting it into a

developer solution for about 100s and rinsing it with deionized H2O to stop the reaction.

An etch-reagent of H2O:H2SO4:H2O2 (480:2:16) was used to remove about 270nm wafer-

material. Therefore the sample was put into the solution for 47s and was rinsed with

deionized H2O. The etch-rate of the sample was relatively fast (6nm=s) compared to the

3MaN-415
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3 Materials and Methods

etch-rate of the test-samples (4nm=s). This could be due to the addition of aluminium

to the real sample which was not present in the pure GaAs test-material. In any case

it was important to etch below 190nm (see Figure3.1) to remove the underlying 2DEG

completely. The remaining resist on the sample was removed with NMP (N-Methyl-2-

Pyrrolidone). Figure 3.3 shows the photo-lithography process used for this sample.

Figure 3.3: Fabrication process with a negative photo-resist where the exposed
parts stay. After deposition of the ohmic material the sample was annealed at
550� C which let the ohmic metals di�use into the wafer. In (a) the r egions con-
taining the 2DEG are de�ned. (b) shows the fabrication of the ohmic contacts.

In a second fabrication step, the ohmic contacts were de�nedand put onto the sam-

ple piece. In order to do so, the same steps for photo-lithography were done as for
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3 Materials and Methods

the mesa using a di�erent mask for the ohmics. For the underlying mesa-structure a

meander-like geometry and for the ohmics a zig-zag pattern was chosen in order to have

good contact. Because of the strong magnetic �elds which areapplied during the meso-

scopic transport measurements, it is important to extend the ohmic contacts across the

mesa edge. Otherwise, due to the cyclotron movement in strong magnetic �elds, the

electron gas localizes in a small area around the the contactand will lead to a sharp in-

crease of the contact resistance. Hence, 20% of the ohmic metal was deposited o�-mesa.

After developing the sample, it was cleaned and etched with O2-plasma for 30s (16% O2,

91V bias, 0.25torr) followed by HCl dip and �nally got rinsed with H 2O. This ensures to

have a very clean and rather rough surface where the metals for the ohmic contact get de-

posited.

In general, metal-semiconductor interfaces form Schottkybarriers for most of the ma-

terial combinations. To form a Ohmic contact suitable metal �lms are deposited and

afterwards alloyed into the semiconductor. This leads to a very low Schottky barrier.

Nevertheless at annealing it is important to stay below the critical temperatures for

other processes like the migration of Si-dopants.

For the Ohmics (Au/Ge/Pt) 2 (200,100,70,80,40,40)nm was evaporated under high-vacuum

conditions while cooling the sample down to 7� C. After lift-o� (NMP, 50 � C) and cleaning

with IPA (Isopropanole) the Ohmics were annealed at 550� C. Figure 3.4 shows the �nal

product of the fabrication process.
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3 Materials and Methods

Figure 3.4: Sample with hallbar structures (highlighted in red) after evaporating
the Ohmic materials (light yellow) and lift-o�.

3.2 Experimental Techniques

All measurements were performed at cryogenic temperaturesusing a 3He=4He dilution

refrigerator (Microkelvin MCK-50) obtaining a base temperature of 20mK4. The sample

was glued on a chip-carrier and bond with Aluminium-wires.

AC input bias current between 9nA and 40nA at a frequency of 176Hz was applied. In

order to �nd the maximum current which did not heat up the elec trons signi�cantly, max-

ima of SdH oscillations were monitored while the current wasincreased until a change in

the corresponding value could be detected. The e�ective bias current through the sample

was recorded. To eliminate wire and contact resistances a four-probe con�guration was

chosen to measure the transverse and longitudinal voltage drop using lock-in techniques.

4 the temperature in the mixing chamber which can signi�cantl y di�er from the actual electron temper-
ature
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The sample was positioned in a high-�eld superconducting magnet solenoid (Cryogen-

ics Ltd) which produces a maximum central �eld of 9T. In addit ion two perpendicular

superconducting split-pair magnets5 producing a maximum operating �eld of 1T were

mounted perpendicular to the solenoid �eld. This con�gurat ion allowed to apply a strong

in-plane magnetic �eld and independently control the perpendicular �eld. Although the

solenoid �eld have a large in
uence on the split-pair coils it was possible to have up to

0.5T perpendicular �eld while the in-plane �eld was about 4T . For all magnetic �eld

sweeps a ramp-rate� B=� t � 0:1mT=s was used.

For data acquiring and processing, the temperature-control and control of the magnet

power-supplies, special procedures were used inIgor Pro (Wavemetrics).

5Split-pair magnets made by Peta Jurcevic during a semester project in the group of D. Zumb•uhl,
University of Basel
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4 Results and Discussion

4.1 Sample

The fabricated sample consists of a mesa 100�m � 1240�m with 10 ohmic contacts used

to apply a current-bias and measure the voltage drop.

After fabrication 3 out of 6 hallbars had working ohmic contacts and were not damaged

during the process. Structures at the edges of the chip showed defects because of the

edge-bead formed as the photoresist was spun. After evaporation of the ohmic metals

(Au/Ge/Pt) 2 and annealing at 550� C the ohmic contacts all showed resistances of about

250
, measured at temperatures smaller than 4K . It was necessary to illuminate the

sample with a LED to get a populated 2DEG.

4.2 Basic Characterization

The basic 2DEG properties of the sample were obtained by low-�eld magnetoresistance

measurements (see chapter2.2.2). At a base temperature of Tb = 23mK the Hall and

longitudinal resistances were measured while changing theperpendicular magnetic �eld.

The sample was current biased (9nA, AC, 126Hz). Figure4.1 shows the two resistances

plotted against the magnetic �eld. Using equation 2.12the electron density of the 2DEG

was obtained via the Hall slopedRH =dB

ns =
�

dRH

dB
� jej

� � 1

(4.1)
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4 Results and Discussion

giving a density of ns = 0 :71 � 1011cm� 2. This result was reproduced in two di�erent

cool-downs and is consistent with density-measurements done by L. N. Pfei�er. By re-

ducing the LED illumination power, it was possible to have a 2DEG with a lower electron

density of ns = 0 :47�1011cm� 2. With the higher density the electron-electron interaction

parameter r s = e2m � =�� 0h2p
ns equals 1:16 usingm� = 0 :067 of bulk GaAs.

The mobility � = 4 :0 � 106cm2=Vs can easily be calculated using equation2.13 and the

2DEG sheet resistivity � � = 22 
 =� . The mobility is about three times smaller than

measured by the wafer growers. This can be due to the fabrication steps where contam-

ination occurred that can increase the inhomogeneity of thewafer and also the 2DEG

resistivity.

Figure 4.1: Density and mobility of 2DEG electrons can be obtained via Hall
measurements. The Hall resistanceRxy starts to form plateaus at a magnetic
�eld of � 100mT. Clear spin-splitting is visible in Rxx for magnetic �elds larger
than 130mT. The Hall slope is obtained by a linear �t of Rxy at low �elds where
no plateaus are visible.

The average distance between two peaks of the longitudinal resistance when plotting
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against the inverse magnetic �eld (Figure 4.2(a)) is �( 1=B ) = 0 :639T � 1 which equals an

electron density of ns = 0 :75 � 1011cm� 2 (Equation 2.23). This is in agreement with the

Hall measurement (Figure 4.1).

The density can also be extracted from fast fourier transformation (FFT) of the SdH

oscillations. Figure 4.2(b) shows the FFT result for a magnetic �eld range of 30-200mT.

A second peak at 2ns is visible in the FFT spectrum which is due to the spin-splitt ing

at higher �elds. It shows that only one subband is occupied because there are no other

peaks visible than these two, with one having doubled frequency.

(a) Rxx plottet against inverse magnetic �eld. (b) FFT spectrum of the SdH oscillations.

Figure 4.2: Electron density from � 1=B and FFT analysis of the Shubnikov de
Haas oscillations. (a) shows constant peak-peak distance which doubles when
the spin-splitting is resolved. (b) Only one subband is occupied because only
two peaks atns and 2ns are visible in the FFT spectrum of the SdH oscillations.

4.3 Temperature Dependence of SdH Oscillations

The temperature dependence of the longitudinal resistancecan be used to extract the

Land�e g-factor g� and the e�ective massm� . Considering the band structure of con�ned

2DEG electrons in a magnetic �eld, it is useful to look at low- and intermediate magnetic

�elds where the spin-split minima still have a small but �nit e resistance at the lowest
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4 Results and Discussion

temperature used in the experiment. To extract the e�ective mass its even better to

look at the regions where no spin-splitting is visible and the oscillations do not go to

zero value, otherwise one is not able to see a change in resistance for small temperatures

if the gap between to energy levels is too large.

Experimentally, at di�erent temperatures the longitudina l resistance of a 2DEG was

recorded while the magnetic �eld was increased slowly. Before every �eld sweep the

temperature was equilibrated at a given value starting at base temperature up to 300mK..

Figure B.1 shows the temperature dependence ofRxx at perpendicular magnetic �elds

from 0-1T.

4.3.1 Electron g-factor

At magnetic �elds B > 80mT (Tb = 23mK ), the spin-splitting is visible in the SdH

pattern. The Zeemann energy � Z = � g� � B B can be extracted from the exponen-

tial temperature dependence of spin-split minimaRmin;xx in the longitudinal resistance

oscillations (Figure 4.3(a)):

Rmin;xx = exp
�

�
� Z

kB T

�
(4.2)

Note that B =
q

B 2
k + B 2

? is the total magnetic �eld. The g-factor is proportional to

the slope of the Arrhenius plot shown in Figure4.3(b) ln( Rxx;min ) versus 1=T
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4 Results and Discussion

(a) Spin-split minima in Rxx (b) Arrhenius plot

Figure 4.3: (a) Temperature dependence of the spin-split minima. (b) g* is
extracted from a linear �t for temperatures where equation 4.2 is applicable.

g* was extracted for two di�erent cool-downs and two di�eren t magnetic �elds: (1)

no in-plane magnetic �eld and ns = 0 :47� 1011cm� 2; (2) 1 Tesla in-plane �eld and ns =

0:71 � 1011cm� 2. Figure 4.4 shows g* normalized to the GaAs band g-factorjgbj = 0 :44

[27] for di�erent perpendicular magnetic �elds where a spin-split minima was visible.

The measured g*-factors show strong dependence on the perpendicular magnetic �eld

and on the total electron density. In Figure 4.4(a) the maximum values are about 5.4

times higher (� Z = 27:9�eV , B tot = 0 :203T) than the GaAs band value. These high

values were also measured by ref. [20] for a similar system but are in contradiction

with measurements done on GaAs/AlGaAs and Si-MOS systems in[25] and [24] where

no large increase ing� was seen for the same range ofr s. Although its known that

g� depends on the electron density in such a way that it will increase going to lower

densities (increasingr s), this does not explain the di�erence with the values measured

in �gure 4.5(b) where the maximum values of about 0.9 (� Z = 23:6�eV , B tot = 1 :03T)

are near the band value of GaAs.
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(a) (b)

Figure 4.4: g� -factor for di�erent total magnetic �elds. (a) At low electr on
density g� is about 5.4 times higher than the band value. (b) The maximum
value ofg� approaches nearly the band value but decreases very strongly towards
smaller perpendicular magnetic �elds.

4.3.2 E�ective mass

At su�ciently high temperatures and low magnetic �elds the e �ective electron mass

m� can be extracted from the temperature dependence of the SdH oscillations. At

this temperatures and magnetic �elds a simpli�ed form of the Dingle term (Equation

2.28) can be used to derivem� . We de�ne the "strength" of the feature in � xx as

1=2(2P1 � V1� V2) which is simply the mean amplitude � � xx of one single SdH oscillation

(see Figure4.5(a)). Figure 4.5(b) shows � � xx =T as a function of temperatureT with m�

given by the slope2� 2kB m � =~eB . This was evaluated for three di�erent single oscillations

giving a mean e�ective mass1 m� = 0 :067� 0:004 which is consistent with the expected

value of m�
GaAs = 0 :067. For too low temperatures the linear behaviour is no more

observable and the simpli�ed form of the Dingle term is not valid any more. However,

there is a slight dependence on magnetic �eld visible in Figure 4.5(b). The previous

1Note that the e�ective mass m � is normalized by the electron mass me .
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mentioned result of m� is a mean value of all three measurements, supposing that these

small di�erences in m� is not an actual behaviour of the 2DEG electrons but rather from

the overall sample behaviour and measurement setup.

(a) (b)

Figure 4.5: (a) Shows a low-�eld SdH oscillation which was used to extract the
amplitude. (b) The e�ective mass m� was obtained by �tting the linear regions
in ln(� Rxx ) vs. T.

4.4 SdH Oscillations with in-plane Magnetic Fields

A magnetic �eld applied parallel to the 2DEG plane has no in
u ence on the Landau level

spacing but increases the Zeemann energy which depends on the total �eld. This leads

to a net spin-polarization with spin-subband densities n " and n #. Each sub-density

has a characteristic SdH frequency and therefore, during anexperiment the longitudinal

resistivity is the sum of two frequencies depending on the spin polarization or total

magnetic �eld respectively.

Crossed magnetic �elds were used to apply a constant in-plane �eld onto the 2DEG

while the perpendicular �eld was ramped (ramp-rate 0:01mT=s) independently. The newly

installed split-pair magnets are capable of producing �elds up to one Tesla, depending
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on the solenoid �eld. The sample was mounted in such a way thatthe solenoid �eld was

in the plane and the split-pair �eld perpendicular to the 2DE G plane. The longitudinal

and transverse voltage drops were recorded at base temperature (23mK ).

Figure 4.6(a) shows the normalized longitudinal resistance with substracted back-

ground for zero in-plane �eld. SdH oscillations start to appear for perpendicular �elds

larger than 20mT . There is only one dominating frequency visible. In Figure4.6(b) a in-

plane �eld of one Tesla was applied. Oscillations can be seenstarting at about the same

perpendicular �eld as for the zero-�eld measurement. At larger �elds the spin-splitting

appears as an additional dip in a single oscillation. But most important, a beating of

the oscillatory component is clearly visible. This indicates that due to the large in-plane

�eld a net spin-polarization was generated and the oscillations are a sum of two di�erent

frequencies leading to the a beating pattern.

(a) (b)

Figure 4.6: (a) SdH oscillation without in-plane �eld. (b) A beating of the
oscillatory component is visible for a in-plane �eld B=1T.

To describe the longitudinal resistanceRxx Ando's formula (Equation 2.26) can be

used which depends on temperatureT, the quantum scattering time � q, total electron

density ns and the e�ective mass m� . This formula only describes oscillations without
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spin-polarization. To include these sub-densities expression 2.32 was used including a

term which describes the additional beating pattern.

In �gure 4.7(a) expression2.32 is plotted against inverse magnetic �eld. Following

parameter values were used:m� = 0 :067, g� = 1 :5, ns = 7 � 1014cm� 2 and � q = 6 :8ps.

For zero in-plane �eld, oscillations in the longitudinal resistance are visible with a single

frequency as expected. Introducing spin-polarization, a well-pronounced beating pattern

can be seen with a node at 50mT perpendicular �eld. This plot also shows, that the

phase of the SdH oscillations remains the same between adjacent nodes and changes by

� when it is going through a node. The position of the node is solely controlled by the

di�erence of the two spin-subdensities. In �gure 4.7(b) the experimental data shows a

node at � 37mT perpendicular �eld for 1T in-plane �eld. The envelope function As

in equation 2.32 depends on the quantum scattering time, electron temperature and

e�ective mass. Therefore, these parameters control the amplitude of the oscillations

with a frequency de�ned by the total electron density.

Sometimes it is not easy to see a node of the beating pattern inthe experimental

results. Plotting the resistance against inverse magnetic�eld as done in �gure 4.7(b)

helps to �nd the exact position. As the results show, the phase-change happens exactly

at the position of the node.
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(a) (b)

Figure 4.7: (a) Shows a simulation of SdH oscillations for zero and one Tesla
in-plane �eld. The phase-change by� at the position of the node is clearly
visible. (b) Plotting experimental data against inverse �e ld can help to �nd the
nodes. Equidistant lines help to distinguish minimum or maximum in the SdH
oscillations even when spin-splitting is present.

To extract the susceptibility � � / g� m� / n " � n # one has to �t equation 2.32

to the experimental data where a beating pattern is visible. For this it is crucial that

at least two nodes are known in the SdH oscillations. Otherwise it is very hard to get

the correct di�erence of the spin-subdensities out of the �t. In this work, only one

node was found. Therefore no satisfying �t could be done which allowed to extract the

susceptibility directly from the beating pattern. The addi tional spin-splitting is also not

included in the �tting formula. When no in-plane magnetic �e ld exists, this problem

is no longer hindering the �tting of the SdH oscillations for lower magnetic �elds. In

�gure 4.8 equation A.3 was used to �t the zero in-plane �eld result. Although there

are still deviations of the �t compared with the measurement the extracted parameters

are in the expected range. The quantum scattering time was measured to be about

7:2ps which is possible for such a system as well as the electrontemperature Te � 80mK

which can be quite high compared with the base temperature ofthe cryostat. The
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density of ns = 7 :1 � 1014cm� 2 is a reasonable result and is in agreement with previous

measurements on this sample. But these �tting results are just approximate values and

a lot of work has to be done to �nd exact results. It is important to exactly know the

magnetic �elds (which can change when the sample position isnot aligned well with the

magnets) because the �t is sensitive to< 1mT o�set in perpendicular �eld. Possible

shifts in the measured magnetic �eld and the back-ground inRxx can make it very hard

to �nd the right �tting parameters.

Figure 4.8: Fitting low-�eld SdH oscillations using equation A.3 allows to ex-
tract the quantum scattering time, the electron temperatur e and the electron
density.
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5 Conclusion

In this masterthesis the main characteristics of a 2DEG formed in GaAs/AlGaAs het-

erostructures were studied. It was necessary to illuminatethe wafer with a GaAs-LED

after cooldown in order to have a populated 2DEG. Using classical Hall measurements

a relative low electron density of n = 7 :1 � 1010cm� 2 was measured which corresponds

to a interaction parameter of 1.16. This value is in good agreement with the density

obtained by the SdH analysis as well as the values measured byL.N. Pfei�er. By using

low-power LED illumination, a 2DEG with an electron density of n = 4 :7 � 1010cm� 2

could be achieved. The mobility was measured to be� = 4 :0 � 106cm2=Vs. This is about

3 times lower than the mobility measured before fabrication. It is possible that dur-

ing the fabrication process contamination of the sample occured that can increase the

inhomogeneity of the wafer and also the 2DEG resistivity.

The temperature dependence of SdH oscillations was used to extract the e�ective

massm� and the Land�e g-factor g� . The measured value ofm� = (0 :067� 0:004)me is

consistent with literature. g� shows a strong dependence on the perpendicular magnetic

�eld. Towards small �elds, the value decreases very fast. This is probably a property of

the sample which could not be removed before the analysis. For larger �elds the value

for jg� j of the "high"-density experiment ( n = 7 :1 � 1010cm� 2) with 1T in-plane �eld

has a maximum of about 0:4 which is near the band valuejgbj = 0 :44. With g� = 2 :38

the extracted value from the "lower"-density experiment (n = 4 :7 � 1010cm� 2) is about

5.4 higher than jgbj which is expected when going to lower densities. However, the huge

increase ing� could not be explained by the variation of the density or the total magnetic
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�eld.

The split-pair magnets were successfully put into operation making it possible to have

a crossed magnetic �eld. Using this technique, a nice beating pattern in the SdH os-

cillations was measured which has its origin in the formation of two spin-subdensities

due to the Zeemann e�ect. During the time of this work it was not possible to extract

the spin-susceptibility � s directly from beating pattern analysis. The main reason for

this was the lack of a second node which is important for the �tting. However, without

in-plane �eld a �tting of SdH oscillations was possible using Ando's formula.

For future experiments, a new wafer material is necessary which has a populated

low density 2DEG without any requirements of LED illuminati on. This will allow it

to tune the electron density with a top-gate and �nally make i t possible to study the

spin-susceptibility as a function of the interaction parameter r s.

Nevertheless, this experiments are not very easy to do but hopefully will shed more

light into this interesting �eld of basic research towards new implementations of quantum

computing.
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Appendix A

Oscillatory part of magnetoconductivity

For low magnetic �elds where ! c� � 1 and � g � g0 Isihara et al. [26] showed that

the normalized oscillatory component of the magnetoresistivity can be expressed by the

simple expression

� xx = � 0

�
1 + 2

� g(T)
g0

�
(A.1)

whereg0 is the constant and � g(T) the oscillatory part of the density of states per unit

cell. Neglecting the energy variation of the e�ective mass because the energy at the

Fermi level changes only bykB T the density of states at �nite temperatures, similar to

Ando's approach, reads [26] [28]

� g(T)
g0

= 2
X

s

exp
�

� �s
! c� q

�
2� 2skB T=~! c

sinh (2� 2skB T=~! c)
cos

�
�s

�
2E f

~! c
� 1

��
(A.2)

With the cyclotron frequency ! c = eB=m � , the Fermi energy E f = n~2 � =m � and the

quantum scattering time � q = ~=TD 2�k B equation A.1 is given by

�� xx

� 0
=

X

s

As cos
�
�s

�
2~�n
eB?

� 1
��

(A.3)

43



References

As = 4 exp
�

� 2� 2s
kB TD

~! c

�
2� 2skB T=~! c

sinh (2� 2skB T=~! c)
(A.4)

whereAs represents the envelope of the function and the cosine-termcorresponds to the

oscillatory part. As depends on the temperature T, the perpendicular magnetic �eld

B? and the level broadening given by the Dingle temperatureTD . It can easily be seen

that the amplitude depend on these three parameters. Thus, increasing �eld results in

an increasing amplitude where increasing temperature willexponentially decrease the

maximum values of the longitudinal resistivity. The oscillatory part depends on the

perpendicular magnetic �eld and the carrier density n.

If a strong enough parallel magnetic �eld is applied the spindegeneracy is lifted and

n = n " + n #. Therefore, equation A.3 can be written as a sum of two oscillations

depending only onn " and n #1.

�� xx

� 0
=

X

s

As cos
�
�s

�
~�n
eB?

� 1
��

Zs (A.5)

Zs = cos
�

� 2s~
n " � n #

eB?

�
(A.6)

Due to the Zeemann e�ect a beating pattern Zs shows up de�ned by the electron sub-

densities. It is obvious that for Bk = 0 this part reduces to a constant.

1using the simple relation C1(cos(C2 � ) + cos( C2 � )) = 2 C1(cos(C2 � + � =2 + cos(C2 � � � =2)).
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Appendix B

Additional Figures

Figure B.1: Temperature dependence of SdH oscillations measured for perpen-
dicular �elds between 0 and 1T. To see if it is reproducible the resistance was
recorded three times at 300mK.
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