Comparison of two different ohmic contact fabrication recipes

Project Thesis Presentation

Lukas Greuter

Zumbühl Group

Project Goal

- Fabrication of ohmic contacts
- Wafers are slightly etched prior to evaporation of ohmics
 - \rightarrow Increase roughness of the surface
 - \rightarrow Influence on the annealing mechanism?

 \rightarrow Does the pre-etching have an influence on the ohmic contact resistance?

Characteristics of ohmic contacts

- Ohmic contacts: A source of carriers with internal resistance R_c
- R_c obeys Ohm's Law
- Metals used for ohmic contacts:

- Ge: dopant (column IV below Si)
- Pt: prevents "balling up" of AuGe

Characteristics of Ohmic contacts

• Ge – rich portrusions: current through these spikes

- Metall n-doped semiconductor: Schottky barrier
- Increase doping density → decrease barrier width → increase tunnel probability → ohmic contact

- Pinto 16: Low Density (LD) (without dots) & High density (HD) with dots
- Pinto 15: High Density (with dots)

Band – diagram of Pinto 16

Fabrication: Overview

Fabrication

- UV Lithography: Hall bar
- Hard contact 1.4 bar
- 7.0s (Intensity: 63 mW/cm²)
- Developed in developer ^{12 nm} GaAs

300nm

- → Etching 300 nm
 - H₂SO₄:H₂O₂:H₂O 2 : 16 : 480
 - UV Lithography: ohmic contacts

٠

Pinto 16

Fabrication

- Clean resist in O₂ Plasma

, HCI dip

Etch 5 nm $H_2SO_4:H_2O_2:H_2O_1:8:1000$

- Evaporation:
 120 nm
 60 nm
 120 nm
 Au
 60 nm
 60 nm
 60 nm
 60 nm
 60 nm
 70 nm
 90 nm
 91 Pt
- Lift off: 30 min warm NMP
- Annealing at different temperatures:

melting Au/Ge:	1min:	420°C
2 min. 370 °C		450°C
		480°C
		510°C

 \rightarrow Wire bonding with AI wire

$\mathsf{Lift}-\mathsf{off}$

Pinto 16 LD treated with HCI

Pinto 16 LD etched prior to evaporation

Measurement Setup

- Dipstick
- Helium Dewar: ~ 4 Kelvin
- Battery measurement: Applying known DC Voltage \rightarrow Measure current
- Lock in measurement: Applying known AC Current → Measure Voltage
- Illumination to increase charge carrier density of the 2DEG

Results

- Annealing temperature of 480°C and 510°C show lowest resistance for Pinto 16 LD
- Illumination decreases resistance

Results II

 \rightarrow Resistance increased when pre-etching the sample

Roughness

Roughness

Zoom in on pre etched area

Zoom in on mesa

Conclusion

- Lift off is generally more sensitive when etching the sample before evaporation
- Resistance is strongly dependent on annealing temperature: 480 °C and 510 °C show low ohmic resistances
- pre etched areas show larger surface roughness
- Pre-etching of wafer yields larger resistances compared to HCl dip → Not expected!

Thanks to

Florian Dettwiler

Dominik Zumbühl

& Everyone else in the group