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Reversible heat-work transformation
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Carnot cycle
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@ guasi-static, isothermal absorption of heat from a hot reservoir
@ guasi-static, adiabatic expansion to a lower temperature
@ guasi-static, isothermal release of heat to a cold reservoir

@ guasi-static, adiabatic compression back to the original state

Trautwein, Tipler



2"d [aw of thermodynamics

A process whose only net result is to absorb heat from a cold reservoir
and release the same amount of heat to a hot reservoir is impossible.

Clausius statement

It is impossible for a heat engine working in a cycle to produce only the
effect of absorbing heat from a single reservoir and performing an
equivalent amount of work.

Heat-Engine statement
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Laws of thermodynamics

The laws of Thermodynamics

l: You can’t win, you can only break even.
2: You can only break even at T=0.

3: You can’t reach T=0....




real gas law: van der Waals
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FIGURE 20-5 I[sotherms on the PV diagram for a substance. For
temperatures above the critical temperature T, the substance remains a gas
an® at all pressures. Except for the region where the liquid and vapor coexist,
P f V2 (V — bn) = nRT these curves are described quite well by the van der Waals equation. The

pressure for the horizontal portions of the curves in the shaded region is
the vapor pressure, which is the pressure at which the vapor and liquid are

Van der Waals equation of state in equilibrium. In the region shaded yellow, to the left of the region shaded
pink, the substance is a liquid and is nearly incompressible.
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Pressure

PV & PT phase diagrams
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phase transitions

Phase changes of matter

freezing

© 2011 Encyclopaedia Britannica, Inc.
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phase transitions...
a general class of phenomenon

For instance, percolation:
phenomenon of a liquid passing
through a porous material.

Below a certain critical porosity,
the material would be unable to
allow the liquid to pass - phase
transition.
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phase transitions... more

For instance, percolation:
phenomenon of a liquid passing
through a porous material.

Below a certain critical porosity,
the material would be unable to

allow the liquid to pass - phase g0ol of water
transition.
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phase transitions... more

The boiling of a liquid to a gas exhibits a decrease in order as the molecules are no longer bound

and are only weakly interacting

The freezing of a liquid to a solid exhibits an increase in order as the atoms occupy locations on a

regular crystal lattice

The alignment of liquid crystals shows an increase in directional order (although not necessarily
spatial order) as the long liquid crystal molecules align and point in the same direction
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phase transitions... more

The boiling of a liquid to a gas exhibits a decrease in order as the molecules are no longer bound
and are only weakly interacting

The freezing of a liquid to a solid exhibits an increase in order as the atoms occupy locations on a
regular crystal lattice

The alignment of liquid crystals shows an increase in directional order (although not necessarily
spatial order) as the long liquid crystal molecules align and point in the same direction

The appearance of a permanent magnetic moment in a ferromagnet is an example of an increase
in order as the individual magnetic spins point together in the same direction (Curie temperature)

The segregation of block copolymers in a polymer melt demonstrates an increase in order as the
individual monomer chains separate and aggregate

The format
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Supercond

Phase transitions occur in a variety of materials & systems
Phase transition <> change in constituents' order (order parameter)

Different phases < variety of properties, technological applications

rently
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entropy during phase transitions
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vapor pressure
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Boiling point of water vs pressure
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PV diagram
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PVT phase diagram
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Pressure

PT phase diagrams
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melting curve
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surface vs bulk
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at the nanoscale..., the surface becomes more important

Oberflache/Volumen
micro

10 N“
_ nb. surface atoms
M total nb. atoms
1 atom ~ (0.2nm)x(0.1nm)x(0.1nm)

100 micrometers (um)

10 um

R (micro) = 0.004 %

nano
/‘V‘;;
= I R (nano) =40% !
T < >
10 nanometers (nm) = important surface effects

e.g.. lower melting temperature, higher chemical reactivity




example: melting temperature of nanoparticles

Au nanoparticles Sn nanoparticles
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FIG. 5. Experimental and theoretical values of the
melting-point temperature of gold particles : circles,
present work; squares, Sambles (Ref. 28); the solid line
results from a least-squares fit to the second-order
relations of the first model, Eq. (13), using all the ex-
perimental data of the present work and an estimated
value of the Debye-Waller factor.

Buffat et al., Phys. A (1976)
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phase diagram: mixing substances
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diffusion

X Ortskoordinate
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OSMOSIS

a
semipermeable mebrane
osmotic
small
flow load
motion of
‘ 3 pistons
decrease of sugar
concentration
b sugar
reverse
0SMmosis
big
load

solution & heat
generation
Biological physics, P. Nelson



osmosis: electrical power generation

Motion of ions
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Radenovic et al., Nature (2016)



osmosis: electrical power generation
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Merry Christmas
and
a happy new year!



Merry Christmas
and
a happy new year!

Is the 2"9 law of thermodynamics ("law of increasing entropy")
driving the origin and evolution of life ?

see the article by Natalie Wolchover, Scientific American, Jan. 28, 2014



