- 1. Open Dot Experiments
- 2. Kondo effect
- 3. Few Electron Dots

4. Double Quantum Dots

van der Wiel et al., RMP75, 1 (2003) A. C. Johnson, Ph. D. Thesis (2005)

Double Quantum Dots

mutual charging energy

$$E_m = \frac{e^2}{C_m} \left(\frac{C_1 C_2}{C_m^2} - 1\right)^{-1}$$

interdot tunneling t $G_m = 4\pi \tfrac{e^2}{h} (\tfrac{t}{\Delta})^2$

 $t < \Delta_{\rm c}$ well localized electrons

Double Quantum Dots: Quadruple Points

Double Quantum Dots: Triple Points and Honeycombs

Double Quantum Dots: Single Dot Limit

 $0 < C_m \sim C_{1,2}$

 $E_m \sim E_{C_1,C_2}$

double dot behaves like a single dot with two plunger gates

Double Quantum Dots

Double Dot Experiment

van der Wiel et al., RMP75, 1 (2003)

individual
charging electrostatic quantum
confinement

$$H_{DQD} = \frac{E_{c1}}{2}N(N-1) - \frac{NE_{c1} + ME_m}{e}(C_{g1}V_{g1} + C_sV_s) + \sum_{i,\sigma} N_{i\sigma}\epsilon_{i\sigma}$$

$$+ \frac{E_{c2}}{2}M(M-1) - \frac{ME_{c2} + NE_m}{e}(C_{g2}V_{g2} + C_dV_d) + \sum_{j,\sigma} M_{j\sigma}\epsilon_{j\sigma}$$

$$+ E_mNM + \sum_{i,j,\sigma} t_{ij\sigma}(c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.). + \text{lead tunneling} \qquad (3.11)$$
mutual
charging inter-dot
charging tunneling

$$\int_{V_s} \int_{V_{g1}} \int_{V_{g1}} \int_{V_{g2}} \int_{V_s} \int_{V_s} \frac{\text{electrons well localized}}{G_m < e^2/h}$$

Double Dot Capacitances in the Honeycombs

Double Dot Transport

Double Dot Experiment

finite bias: nonlinear transport

van der Wiel et al., RMP75, 1 (2003)

Double Dot at finite bias: Excited State Spectroscopy

triple points expans into triangles obeying $0 \leq \mu_1 \leq \mu_2 \leq eV$

Double Dot Experiment: Finite Bias

van der Wiel et al., RMP75, 1 (2003)

Interdot Tunneling: Anticrossing

