
Chapter 3

Concepts in Mesoscopic Physics

3.1 Drude Conductivity, Einstein Relation

When an electric field E is applied on a diffusive conductor, scattering randomizes the
momenta of electrons on a length scale of the mean free path `, but a drift velocity vd

results as well. Electrons are accelerated for a time τm, the momentum relaxation time.
Then they are scattered and are assumed to lose their momentum. In equilibrium, the
rate at which electrons receive momentum from the external field is exactly equal to the
rate at which they loose momentum:

[
dp

dt

]

scattering

=
[
dp

dt

]

field

, (3.1)

giving for the drift velocity:

m∗vd

τm
= eE, ⇒ vd =

eτm

m∗ E. (3.2)

The mobility µ is defined via:

vd = µE, ⇒ µ =
eτm

m∗ (3.3)

Via the current density j = nevd = σE one obtains the Drude conductivity,

σ = enµ =
ne2τm

m∗ (3.4)

the classical expression for conductivity in a diffusive metal. Here, current is carried by
drift of all the electrons. However, for a degenerate Fermi-gas kT ¿ EF , we have seen
that the Fermi sea is filled up to Fermi wave-vector kF and Fermi energy EF :

kF =
√

4πn

gsgv

∣∣∣∣
gs=2,gv=1

=
√

2πn, EF =
~2k2

F

2m∗ =
π~2

m∗ n (3.5)

with gs the spin degeneracy (in GaAs, at B = 0, gs = 2), and gv the valley degeneracy (in
GaAs, gv = 1). One finds that nonzero current is carried only by electrons within some
kT around the Fermi energy, since at lower energies into the filled Fermi sea, right moving
states +k exactly cancel left moving states −k. To understand the conduction properties,
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one does not need to worry about the dynamics of all the electrons in the Fermi see, it is
sufficient to consider electrons close to the Fermi surface, where electrons move with the
Fermi velocity

vF =
~kF

m∗ . (3.6)

Current is then carried by only a small fraction of electrons: j = e(nvd/vF )vF . Scattering
still occurs with an average time τm, giving a mean free path

` = vF τm (3.7)

Using Eq. 3.5 and the above expression for `, the conductivity can then be written in the
following convenient form:

σ = gsgv
e2

h

kF `

2
=

2e2

h

kF `

2
, (3.8)

i.e. the conductivity is expressed by the ratio of mean free path ` and the Fermi wavelength
λF = 2π/kF . In metals, kF ` is much greater than one, and e2/h ∼ 25.812 kΩ. Recalling
our expression for the 2D density of states

ρDOS =
gsgvm

∗

2π~2
=

m∗

π~2
(3.9)

and introducing the diffusion constant

D =
1
2
v2
F τm =

1
2
vF ` (3.10)

the conductivity can also be written as

σ = e2ρDOS(E)D, (3.11)

expressing the conductivity in terms of density of states at the Fermi level (Einstein
relation), which in 2D is independent of energy since the density of states is independent
of energy. It is worth noting that in 2D—unlike in 3D or 1D—the resistivity ρ, a material
parameter independent of sample shape and size, and the resistance R of a given sample
have the same units (Ohms, Ω) and are related via a dimensionless quantity L/W , the
number of length L and width W of a sample:

R = ρ
L

W
= ρ¤

L

W
, (3.12)

where we introduced the resistance or resistivity per square ρ¤ = ρ. The resistance of a
sample can therefore conveniently be calculated by counting the number of squares that
fit into the sample region since the resistance R of a square is independent of the size of
the square (again, this is only applicable in 2D).
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3.2 Mesoscopic Time and Length Scales

There are several important length and time scales that commonly appear in mesoscopic
physics. Here is a short description:

3.2.1 Femi wavelength λF

As we have seen, at low temperatures kT ¿ EF , current is carried by electrons a few kT
around EF . The relevant length associated with these electrons is the Fermi wavelength

λF = 2π/kF =
√

2π/n (3.13)

which depends only on the carrier density n. Typically, n ∼ 2×1011 cm−2 = 2×1015 m−2,
giving a Fermi energy EF ∼ 7meV (using the effective mass m∗ = 0.067me) and λF ∼
56 nm. Electrons below the Fermi energy have correspondingly longer wavelengths. Typ-
ical Fermi velocities are vF = ~kF /m∗ = 195′000m/s.

3.2.2 Mean free path `

As we have seen, electrons get scattered due to phonons, impurities, interface effects etc,
resulting in a mean free path

` = vF τm = vF µ
m∗

e
(3.14)

using µ = τme/m∗. Since the mobility is defined via the resistivity, it is a measure of
backscattering, rather than small angle scattering. For a mobility of µ = 100 m2/(Vs) =
1′000′000 cm2/(Vs), a backscattering time of τm = 38 ps, a mean free path of ` = 7.4µm
and a diffusion constant of D = 0.72m2/s result. A device of size L is called ballistic if
` À L and diffusive if ` ¿ L.

3.2.3 Phase coherence time τϕ

In a quantum mechanical (or at least semi-classical) description, electrons carry not only
momentum, energy and spin but also a phase. For example, for a plane wave eikF x+iϕ

the phase ϕ is some well defined value (often chosen ϕ = 0 for convenience). When
waves are interfered, for example in the paradigmatic double slit experiment, the resulting
interference pattern is |A1 + A2|2 ∼ Re exp (ikF (L1 − L2) + i(ϕ1 − ϕ2)), i.e. the relative
phase ϕ1 − ϕ2 becomes relevant. If in some way ϕ1,2 are randomized efficiently, then the
time-averaged interference will be zero, due to the loss of phase coherence. The phase
coherence time τϕ is the average time by which any such interference term is suppressed
by e−1, and by exp(−t/τϕ) after a time t. In mesoscopic physics, quantum interference
effects are often of central importance, making τϕ an essential time scale of the system.

Scattering on rigid impurities might add an additional phase to an electron in, say,
one arm of an interferometer, but, since it is static, it will always be the same phase
throughout the experment, still leading to a stationary, unsuppressed interference pattern
(though shifted). Therefore, rigid scatterers do not cause decoherence. On the other hand,
dynamic or fluctuating scatterers lead to a time dependent ϕ(t). If the timescale of the
measurement is much longer than the coherence time τϕ over which ϕ(t) is randomized:
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〈ϕ〉t =
∫ t
0 ϕ(τ)dτ ∼ 0, the interference term 〈exp(iϕ(τ))〉t ∼ exp(−t/τϕ) is exponentially

suppressed due to loss of phase coherence.

The nature of decoherence can be complicated, involving various dynamic scattering
mechanisms with different effectiveness that might depend on parameters such as tem-
perature and magnetic field: lattice vibrations (electron-phonon scattering), scattering
off the Coulomb potential created by other electrons (electron-electron interactions) and
impurities with an internal degree of freedom (for example spin), to name just a few. At
low temperatures (T < 1K), often phonons are frozen out (though they might still be
emitted) and electron-electron interactions are are the dominant decoherence mechanism
(assuming negligible impurity scattering). Within electron-electron scattering, one distin-
guishes between scattering with large energy exchange, where phase coherence can be lost
in one event (often weak at low temperature due to lack of phase space), and the Nyquist
mechanism, where phase coherence is lost only after many quasi-elastic scattering events.

In ballistic samples, the associated coherence length is trivially given by

Lϕ = vF τϕ, (3.15)

while in diffusive samples

Lϕ =
√

Dτϕ. (3.16)

A quasi one-dimensional sample has one dimension L much smaller than the relevant
coherence length: L ¿ Lϕ.

3.2.4 Thermal length LT

At finite temperature, electrons within a few kT around EF contribute to transport.
Starting at a common location with momentum in the same direction, an electron at
Fermi energy EF will get out of phase by one radian with an electron at EF + kT after
traveling the thermal length LT (because the two wavelengths are slightly different). In a
ballistic sample, this length is easily calculated using (k(EF + kT )− k(EF ))x = 1 and the
dispersion relation k(E) =

√
2m∗E/~. Assuming EF À kT , one finds

LT =
~vF

kT
, (3.17)

corresponding to a thermal time τT = ~/(kT ), which we could have also guessed from a
consideration using the time-domain Heisenberg uncertainty relation ∆t · ∆E ≥ ~ with
∆E = kT . With similar sample parameters as before at T = 0.1 K, one obtains LT ∼
15µm, which is larger than the calculated mean free path, rendering the ballistic approach
incorrect. Maybe a diffusive approach would be more appropriate. In a diffusive sample,
the thermal time τT will be used to diffuse through the sample, giving a diffusive thermal
length

LT =

√
~D
kT

, (3.18)

corresponding to LT ∼ 7.4µm (for T = 0.1K). This is equal to the mean free path, so
neither a purely diffusive nor purely ballistic treatment appears appropriate here.
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3.2.5 Interaction parameter rS

We have treated the 2D electron gas so far as am ideal, non-interacting Fermi gas. One
way to quantify whether this is an appropriate approximation is the ratio between average
(unscreened) Coulomb energy and kinetic energy of electrons in the gas.

rS =
e2

4πε0εr
÷ EF =

e2m∗

εε0h2

1√
n
∼ 0.7 (3.19)

where the average spacing between electrons is taken as r =
√

1/n ∼ 22 nm and EF =
~2k2

F /(2m∗). The non-interacting approximation is exact in the limit rs → 0 and is not
valid for rs & 1, called the strongly interacting regime. The above expression might be
corrected somewhat towards smaller rs due to screening, but it is obvious that particularly
for low carrier densities the strongly interacting regime is reached in GaAs 2D electron
gases.
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3.2.6 Magnetic Length `B

In many instances involving magnetic fields, the area A = ~/(eB) through which one flux
quantum is threaded is of relevance, giving a corresponding length scale

`B =

√
~

eB
. (3.20)

This is also the spatial extent of wavefunctions in a magnetic field, of importance in the
quantum Hall effect.

3.3 Classical Hall Effect

It is easy to include a magnetic field B perpendicular to the 2DEG in the classical resistivity
consideration, using the equilibrium relaxation condition:

[
dp

dt

]

scattering

=
[
dp

dt

]

field

, (3.21)

which can be written out as
m∗vd

τm
= e [E + vd ∧B] , (3.22)

or, using a matrix notation:
(

m∗
eτm

−B

+B m∗
eτm

)(
vx

vy

)
=

(
Ex

Ey

)
, (3.23)

where vx and vy are the x- and y- components of the drift velocity and Ex and Ey are the
x- and y- components of the electric field. Using j = evdn, σ = enµ and µ = eτm/m∗, one
obtains the resistivity tensor:

(
Ex

Ey

)
= σ−1

(
1 −µB

+µB 1

)(
jx

jy

)
=

(
ρxx ρxy

ρyx ρyy

)(
jx

jy

)
. (3.24)

One then finds for the longitudinal resistivity ρxx and transverse resistivity ρxy:

ρxx = σ−1, ρxy = −ρyx = − B

en
. (3.25)

In a Hall bar geometry of width W and length L, with a current Ix = Wjx driven in the x-
direction (jy = 0), Ex = ρxxjx and Ey = ρyxjx results. Using Vx = LEx, Vy = VH = EyW
one gets:

Vx = RxxIx, with Rxx =
L

W
ρxx (3.26)

VH = Vy = ρyxIx =
B

en
Ix = RHIx. (3.27)

Here, we introduced the Hall resistance RH = B/(en). The carrier density n can therefore
be measured from a transverse measurement alone via the Hall slope dRH/dB = 1/(en),
which scales as inverse density. Once the density is know, the mobility µ follows from an
additional measurement of the longitudinal resistance via µ = (neRxxW/L)−1. Note that
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LW

Vxx

Vxy

I

the sample dimensions do not enter the expressions for density or Hall-Voltage VH , RH ,
again only true in 2D (in 3D, a thickness would appear). The Hall effect is comparatively
large in typical 2D electron gases due to low carrier densities compared to bulk 3D mate-
rials: RH ∼ 3.1 kΩ/Tesla for n ∼ 2 × 10−11 cm−2. The classical Hall effect is very useful
for determining carrier concentration and mobility of a given sample.

3.4 Quantum Hall Effect

3.4.1 Phenomenological Treatment

Due to the (classical) Lorentz-Force F = ev×B in a magnetic field B perpendicular to the
2D electron gas, electrons traveling with velocity v will move in circles. First we assume
that the motion is ballistic, without any scattering. On the circle, the zentrifugal force is
equal to the Lorentz force, evB = mω2r, and using v = ωr, one easily finds the angular
frequency ωc, the so-called cyclotron Frequency and the radius rc of the circle of electron
motion, the cyclotron radius

ωc =
eB

m∗ , rc =
v

ωc
. (3.28)

Note that this corresponds to an energy ~ωc = (1.73 meV/Tesla) · B which very eas-
ily is larger than kT in many experiments (remember that 1 meV/kB = 11.6K). The
relevant velocity here is again the Fermi velocity vF , giving a cyclotron radius of rc ∼
(74 nm Tesla)/B. Classically, any radius rc would be allowed. Quantum mechanically,
however, the circumference must be an integer number n of Fermi wavelengths λF to
result in a standing wave:

2πrc

λF
= n. (3.29)

Using rc = vm∗/(eB), v = ~k/m∗, k =
√

2m∗E/~ and λF = 2π/kF one easily finds
En = n1

2~ωc, in other words, the energy will be quantized in units of the cyclotron
frequency. These energy levels En are referred to as Landau levels. The correct quantum
mechanical treatment will result in a slightly modified quantization condition

En = (n + 1/2)~ωc, (3.30)

but this simple argument is giving a qualitatively correct picture. Instead of having a
constant density of states as at B = 0, now the allowed energies are quantized, and the
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Figure 3.1: left: density of states in a 2DEG in a perpendicular magnetic field. The filled Landau
levels are filled bars, empty Landau levels are white bars. Disorder may broaden the Landau levels
leading to a nonzero density of states between the peaks (from Beenakker and van Houten (1991)). right:
schematic dependence of the normalized longitudinal resistivity ρxx/ρ(0) and the Hall Resistance RH = ρxy

(normalized to h/(2e2)) on the reciprocal filling factor ν−1 = 2eB/(hn) for the case of a single valley with
twofold spin degeneracy. Deviations from the classical result are visible at large fields in the form of
Shubnikov-deHaas oscillations in ρxx and quantized plateaus in ρxy. (from Beenakker and van Houten
(1991)).

density of states is a series of delta functions spaced by ~ωc:

ρDOS(E, B) = N0

∞∑

n=0

δ (E − (n + 1/2)~ωc) (3.31)

with a prefactor N0 that denotes the number of states per area in each Landau level. From
the observation that all zero field states within a range in energy of ~ωc are condensed
into a single Landau level at B 6= 0 one obtains N0 = ~ωc × (m/(π~2)) = 2eB/h. As we
change magnetic field, the energy and density of states in the Landau levels change. The
Landau level filling factor at a given field is defined as

ν =
n

2eB/h
. (3.32)

The filling factor does not have to be an integer, whereas the number N of Landau levels
with En ≤ EF is an integer. As the field is changed, the filling factor will change, and
number of occupied Landau may change, too. When the Fermi energy is in the middle
of a Landau level (ν = N), states are available for scattering and a maximum in ρxx

results. When the Fermi energy lies between Landau levels, all Landau levels below EF

are completely full and above EF completely empty. If temperature is small enough
to suppress thermal excitation to the next empty Landau level, ~ωc À kT , then the
longitudinal resistance ρxx is zero because there is absolutely no phase-space for electron
scattering that could cause resistance.

Hence, as the field is ramped up from B = 0 to ~ωc À kT , oscillations in ρxx will
occur, with peaks in ρxx whenever the Fermi energy is located in a Landau level: the
Shubnikov-deHaas oscillations. Between two successive peaks at B1 and B2 > B1, the
number of Landau levels has changed by one, yielding

n

2eB1/h
− n

2eB2/h
= 1, → n =

2e

h

1
(1/B1)− (1/B2)

(3.33)
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Note that the number of occupied Landau levels scales as 1/B, i.e. if we choose
β = (1/B) as our variable to plot ρxx against, then then peaks will be spaced equidistant
with a period ∆β = β1 − β2 and the density will be given by

n =
2e

h

1
∆β

(3.34)

Shubnikov-deHaas oscillations can be a very useful tool to determine sample properties
such as effective masses, small angle scattering times and subband populations.

The quantization into Landau levels also affects the Hall voltage measurement and
results in the quantum Hall effect, namely the occurrence of plateaux in RH as a function
of magnetic field B at precisely

RH =
1

gsgv

h

e2

1
N

=
h

2e2

1
N

(3.35)

where N is an integer denoting the number of Landau levels with En < EF , which changes
abruptly as the field is changed. The quantization of the resistance is a more subtle effect
that one cannot derive in a few lines.

So far we have neglected disorder causing scattering that can kick electrons off their
circular orbits, thus causing broadening of the Landau peaks in the density of states. At a
magnetic field where the disorder broadening—given via Heisenberg relation as ~/τm—is
much smaller than the Landau level spacing,

~ωÀc ~/τm, (3.36)

the Shubnikov-deHaas oscillations can be resolved. Another way to put this: an electron
should be able to go around it’s circle at least a few times before scattering, i.e. ω−1

c ¿ τm.
Using ωc = eB/m∗ and µ = eτm/m∗, one obtains:

B À µ−1 (3.37)

The cleaner the sample is, the less disorder broadened are the Landau peaks, an intuitive
result. For some of the cleanest samples today (µ ∼ 30×106 cm2/(Vs)), Shubnikov-deHaas
oscillations can are visible at B ∼ 50mT.

Observation of two distinct periods ∆β1 and ∆β2 can be an indication of several things:

- two different populated subbands (e. g. in the z direction) with corresponding partial
densities n1 = (2e/h)(1/∆β1) and n2 = (2e/h)(1/∆β2). Often the density of the
lower energy subband is significantly larger than the higher energy subband carrier
density, giving a fast oscillating component (lower subband, high carrier density,
small period in 1/B) modulated with a much slower envelope (higher subband, low
carrier density, large period in 1/B). However, the mobility in the higher subband
might be lower compared to the lower subband, and it might be hard to observe the
oscillations from the higher subband.

- spin effects. When the Zeeman energy reaches gµBB & kT , each Landau level will
be spin-polarized, giving a doubling of the frequency of the ρxx oscillations. (The
factor 2 in N0 = 2eB/h is due to spin degeneracy). Note that the Zeeman energy
(g ∼ 0.44, giving EZ ∼ 25µeV/Tesla) is much weaker than the Landau quantization
energy (1.7meVT/B)
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- spin-orbit coupling can cause a (in GaAs small) spin splitting of the conduction band,
equivalent to two carrier populations with slightly different carrier concentrations.
This might appear as the beating of similar frequencies in the Shubnikov-deHaas
oscillations.

3.4.2 Quantum Mechanical Treatment

We consider electrons in the 2DEG in a constant magnetic field in the z-direction perpen-
dicular to the plane of the 2DEG in a potential U(y) in the y-direction which is uniform
in the x-direction. The Schrödinger equation in the effective mass approximation is

[
(i~∇+ eA)2

2m∗ + U(y)
]

ψ(x, y) = Eψ(x, y), (3.38)

where we employ the following gauge for the vector potential

A = −x̂By → Ax = −By and Ay = 0. (3.39)

Obviously this gauge is not unique, and the solutions we might find in another gauge
might look very different, though the physics of course must remain the same. This gauge
will result in plane waves in the x-direction. We can rewrite the Schrödinger equation

[
(px + eBy)2

2m∗ +
p2

y

2m∗ + U(y)

]
ψ(x, y) = Eψ(x, y) (3.40)

where we have used

px = −i~
∂

∂x
and py = i~

∂

∂y
. (3.41)

The solutions for Eq. 3.40 can be expressed in the form of plane waves which we normalize
over the length L of the conductor,

ψ(x, y) =
1√
L

exp(ikx)χ(y). (3.42)

The transverse function χ(y) satisfies the equation

[
(~k + eBy)2

2m∗ +
p2

y

2m∗ + U(y)

]
χ(y) = Eχ(y) (3.43)

We will be interested in the resulting energy spectrum and the transverse eigenfunctions
for some combinations of the confining potential U and the magnetic field B. A general
analytical solution is of course futile, but for a harmonic potential

U(y) =
1
2
m∗ω2

0y
2 (3.44)

we can write down the solutions. We start with
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3.4.3 Free electrons in a magnetic field

We set U ≡ 0 and obtain[
p2

y

2m∗ +
1
2
m∗ω2

c (y + yk)2
]

χ(y) = Eχ(y). (3.45)

with
yk =

~k
eB

and ωc =
eB

m∗ . (3.46)

This is basically the Schödinger equation of the one-dimensional harmonic oscillator, with
a shift yk. In an elementary quantum mechanics book, one can look up the solutions

χn,k(y) = un(q + qk) where q(k) =
√

m∗ωc/~ y(k) (3.47)

un(q) = exp(−q2/2)Hn(q) (3.48)

E(n, k) =
(

n +
1
2

)
~ωc, n = 0, 1, 2, . . . . (3.49)

i.e. we just got the Landau-levels, or magnetic subbands. The Hn(q) are the Hermite-
polynomials. The first few are:

H0(q) =
1

π1/4
(3.50)

H1(q) =
√

2q

π1/4
(3.51)

H2(q) =
2q2 − 1√

2π1/4
(3.52)

The velocity with which electrons in these states move is given by:

v(n, k) =
1
~

∂E(n, k)
∂k

= 0. (3.53)

Even though the eigenfunctions are plane waves, the group velocity is zero, since the bands
have no k-dependence. This is consistent with our classical picture of electrons moving in
circles that don’t move in any particular direction. The spatial extent of the wavefunction
is approximately √

~
m∗ωc

=

√
~ωc/m∗

ωc
=

v

ωc
, (3.54)

i.e. the same as the radius of the classical orbit (see Eq. 3.28). (One obtains this by setting
the ground state (n = 0) cyclotron energy 1/2~ωc equal to a kinetic energy (1/2)m∗v2,
obtaining v =

√
~ωc/m∗). As we change the wavevector k in the longitudinal direction,

the wavefunctions shift in the transverse coordinate as given in Eq. 3.47. The wavevector
k is quantized, spaced by 2π/L, where L is the longitudinal size. The corresponding
wavefunctions are then spaced by

∆yk =
~∆k

eB
=

2π~
eBL

(3.55)

along the y-coordinate. Hence, the total number of states is given by

N = 2 (for spin) × W

∆yk
=

2eBS

h
(3.56)

where S = WL is the area. Thus, the quantum mechanical result is in agreement with
our heuristic result for the density of states. It can also be seen as one spin degenerate
state for each flux quantum through the device area S.
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3.5 Electrons Confined in a Constriction

Next, we consider the case of a parabolic confinement potential in the y-direction U =
1/2m∗ω2

0y
2 at zero magnetic field. This is the situation of a quantum point contact (QPC).

The Schrödinger equation then reads
[
~2k2

2m∗ +
p2

y

2m∗ +
1
2
m∗ω2

0y
2

]
χ(y) = χ(y) (3.57)

and the solutions are:

χn,k(y) = un(q) where q =
√

m∗ω0/~ y (3.58)

E(n, k) =
~2k2

2m∗ +
(

n +
1
2

)
~ωc, n = 0, 1, 2, . . . (3.59)

i.e. we get bands parabolic in k just as for free electrons, with a second quantization
index n and an energy spacing ~ω0 due to the parabolic confinement, also called one-
dimensional subbands or transverse modes. This is very similar to the subbands due to the
confinement in the z-direction, and analogous to the transverse modes of electromagnetic
waveguides. The tighter the confinement is, the larger the subband spacing ~ω0. The
transverse confinement in a quantum point contact is typically of order of half the Fermi
wavelength, or about ∼ 25 nm, giving subband spacings of order meV. The velocity of an
electron is as in the free electron case given by

v(n, k) =
1
~

∂E(n, k)
∂k

=
~k
m∗ (3.60)

When a voltage Vsd = (µs−µd)/e is applied between the source and drain reservoirs, the

Figure 3.2: Dispersion relation En(k) of one-dimensional subbands formed in a constriction as a function
of the longitudinal wavevector k. Electrons in the source and drain fill the available state up to the chemical
potentials µs and µd, respectively. When a finite source-drain voltage is applied, a net current results from
the uncompensated occupied electron states in the interval between µs and µd. (from S. Cronenwett, thesis
(2001)).

resulting current I through the QPC is carried by the uncompensated states in the energy
interval defined by µs and µd. At zero temperature, the net current is

I = e
N∑

n=1

∫ µs

µd

dE
1
2
ρn(E)vn(E)Tn(E), (3.61)
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where ρn(E) = 2/π(dEn/dkx)−1 is the 1D density of states and Tn(E) is the transmission
probability of the nth subband. The factor of 1/2 in Eq. 3.61 is to take into account
that only half the k states are filled between µs and µd. For small values of Vsd, we
can approximate Tn(E) = Tn(EF ), independent of energy. The sum over n counts the
number of occupied subbands, where the last occupied subband N is determined by the
condition EN (kx = 0) < EF . The key to the conductance quantization is that the energy
dependence of the 1D density of states exactly cancels that of the velocity, giving the same
current for each subband, independent of energy:

I = e
N∑

n=1

∫ µs

µd

dE
1
2

2
π

(
∂En

∂kx

)−1 1
~

∂En

∂kx
Tn(EF )

=
2e

h

N∑

n=1

Tn(EF )
∫ µs

µd

dE

=
2e

h

N∑

n=1

Tn(EF )eVsd. (3.62)

Using I = GVsd one then obtains

G =
2e2

h

N∑

n=1

Tn(EF ) (3.63)

and for the case of fully transmitting modes
∑N

n=1 Tn(EF ) = 1

G =
2e2

h
N, (3.64)

where each occupied subband contributes 2e2/h to the conductance through the constric-
tion. The factor 2 is due to spin degeneracy, which can be lifted with a magnetic field, for

Figure 3.3: Quantized conductance of a QPC at B‖ = 0 and B‖ = 8 T. I a large in-pane magnetic field,
the spin-degenerate conductance plateaus at multiples of 2e2/h split into plateaus quantized in units of
e2/h. (from S. Cronenwett, thesis (2001)).

example with a magnetic field B‖ in the plane of the 2DEG (to get (to first order) only a
Zeeman energy term). Finite temperature smears what would otherwise be sharp steps in
conductance by convolving this zero temperature limit with the derivative of the Fermi-
Dirac distribution, resulting in quantized conductance plateaus like those in figure 3.3.
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When EZ = gµBB‖ & kT , the spin degeneracy is lifted, the subbands then correspond
to spin-polarized modes and conductance is quantized in units of e2/h. Going from zero
conductance onto the first plateau, the transmission probability T1 is going from zero at
g = 0 to one on the first plateau.

3.6 Landau-Büttiker Formalism

Equation 3.63 is also known as the 2-terminal Landauer formula. It can also be written
in the form

G =
2e2

h

N∑

n=1

Tn(EF ) =
2e2

h

N∑

n,m=1

|tmn|2 =
2e2

h
Tr tt† (3.65)

were now the transmission probabilities Tn were expressed in terms of the matrix t of
transmission probability amplitudes from mode n to mode m.

Tn(EF ) =
N∑

m=1

|tmn|2 (3.66)

Equation 3.65 refers to a two-terminal resistance measurement, in which the same two
contacts or reservoirs are used to drive a current through the system and to measure the
voltage drop. More generally, one can consider a multireservoir conductor as in Figure 3.4
to model, for example, four-terminal resistance measurements in which the current source
and drain are distinct from the voltage probes. This generalization is due to Büttiker. Let
Tα→β denote the total transmission probability from reservoir α to reservoir β, then

Tα→β =
Nα∑

n=1

Nβ∑

m=1

|tβα,mn|2. (3.67)

Here, Nα is the number of propagating modes in the channel (or “lead”) connected to
reservoir α, which in general may be different from the number Nβ in lead β, and tβα,mn

is the transmission probability amplitude from mode n in lead α to mode m in lead β.
The leads are modeled by ideal electron waveguides, in the sense discussed before for the

Figure 3.4: Generalized multilead conductor. (from Beenakker and van Houten, thesis (1991)).

case of a quantum point contact, so that the reservoir α at chemical potential µα above
EF injects into lead α a charge current (2e/h)Nαµα . A fraction Tα→β/Nα of that current
is transmitted to reservir β, and a fraction Tα→α/Nα ≡ Rα/Nα is reflected back into
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reservoir α before reaching one of the other reservoirs. The net current in Iα in lead α is
thus given by

h

2e
Iα = (Nα −Rα)µα −

∑

β(β 6=α)

Tβ→αµβ (3.68)

The chemical potentials of the reservoirs are related to the currents via a matrix of trans-
mission and reflection coefficients. Current conservation and the requirement that an
increase of all the chemical potentials by the same amount should have no effect on the
net currents in the leads results in constraints that the set of linear Equations 3.68 has to
fulfill. Given additional constraints in the problem one is considering, one can then solve
for the unknowns and obtain the four-terminal resistance Rαβ,γδ = V/I, in which current
flows from lead α to lead β and a voltage difference V is measured between leads γ and
δ. The four-terminal resistance Rαβ,γδ = (µγ − µδ)/(eI) is then obtained as a rational
function of the transmission and reflection probabilities. This procedure is referred to
as Landauer-Büttiker formalism. It provides a unified description of electrical transport
phenomena in coherent, mesoscopic conductors.

Due to current conservation (unitarity of t and time reversal symmetry, one can show
that the transmission probabilities have the symmetry

tβα,nm(B) = tαβ,mn(−B) ⇒ Tα→β(B) = Tβ→α(−B) (3.69)

As shown by Büttiker, a four terminal reciprocity relation for the four-terminal resistances
follows:

Rαβ,γδ(B) = Rγδ,αβ(−B), (3.70)

i.e. the resistance is unchanged if current and voltage leads are interchanged with simul-
taneous reversal of the magnetic field direction. As a special case, it follows that the
two-terminal resistance Rαβ,αβ is even or symmetric in B, G(B) = G(−B). Reciprocity
holds only in the linear response regime where the conductor is in or very near equilibrium.
In the Landauer-Büttiker formalism, inelastic scattering is assumed to take place only in
the reservoirs, which is reasonable if the size of the conductor is much smaller than the
phase inelastic scattering or coherence length, often the case in mesoscopic devices.
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3.7 Confined electrons in nonzero magnetic field

Finally, we consider the combination of both a confining potential and a magnetic field.
We again write down the Schödinger equation:

[
p2

y

2m∗ +
(eBy + ~k)2

2m∗ +
1
2
mω2

0y
2

]
χ(y) = Eχ(y) (3.71)

It is easy to see that once again, this is basically a one-dimensional Schödinger equation
with a parabolic potential and the eigenenergies and eigenfunctions look very similar to
the results for electric and magnetic subbands:

χn,k(y) = un

(
q +

ω2
c

ω2
co

qk

)
(3.72)

where the electric and magnetic potentials now add in quadrature:

ω2
c0 = ω2

c + ω2
0 (3.73)

q =
√

m∗ωc0/~ y and qk =
√

m∗ωc0/~ yk, yk =
~k
eB

(3.74)

E(n, k) =
(

n +
1
2

)
~ωc0 +

~2k2

2m∗
ω2

0

ω2
c0

. (3.75)

The velocity is then given by

v(n, k) =
1
~

∂E(n, k)
∂k

=
~k
m∗

ω2
0

ω2
c0

, (3.76)

i.e. for large magnetic fields ωc À ω0 the magnetic field quenches the momentum to zero,
while for small magnetic fields ωc ¿ ω0 the dispersion of the confined electron is not

affected, where we recover the purely electric sub-

Figure 3.5: Dispersion relation of con-
fined electrons in a magnetic field. Left-
and right moving states are spatially sep-
arated into chiral edge states.

bands discussed earlier. The wavefunctions corre-
sponding to a state (n, k) are centered around y =
−yk, where

yk =
~k
eB

⇒ yk = v(n, k)
ω2

0 + ω2
c

ωcω2
0

(3.77)

one can write the transverse location of the wavefunc-
tion in terms of it’s velocity. Consider a current carry-
ing state with a given, fixed velocity v. As the field is
increased, it shifts away from the center towards the
edge of the sample. In fact, states carrying current
along the +x direction shift to one side of the sample
while states carrying current in the other direction
shift to the other side of the sample. From a classical
point of view, this seems reasonable, since the Lorentz
force ev × B is opposite for electrons moving in op-
posite directions. Increasing the magnetic field thus
causes a reduction in spatial overlap between forward

and backward propagating states, resulting in a suppression of backscattering that can
be very pronounced. The current carrying states will be so called edge states that keep
bouncing off the same edge and always move towards the same end of the sample, see
Figure 3.5.




