
Chapter 2

Semiconductor Surfaces and
Interfaces

The experiments that we will focus on here are using nanoscale devices formed in 2D
electron gases in GaAs/AlGaAs heterostructures, consisting of several layers that are
brought into contact at interfaces. Surfaces and interfaces therefore play a very important
role and are the topic of this chapter.

At the surface of a semiconductor crystal to vacuum, the bands of the solid get related
to the vacuum energy level. It takes a finite amount of energy to remove electrons from
the crystal to the vacuum, since formation of the crystal from far separated atoms lowered
the energy. The work function ΦA is the energy to transfer one electron at the chemical
potential from the crystal into the vacuum. In pure semiconductors and in insulators,
there are no states at the chemical potential. Hence, the electron affinity is introduced
as the energy difference from the bottom of the conduction band to the vacuum energy
level. Both the affinity and the work function are dependent on the bulk crystal/material
properties.

2.1 Electronic Surface States

The periodic pattern of chemical bonds in the crystal is interrupted at the surface, resulting
in unsaturated (dangling) bonds, which can rearrange themselves (surface reconstruction)
and/or which might be saturated by a (mono)layer of adatoms (sometimes oxygen). This
results in a change of both the surface crystal structure and the allowed energies that
depend sensitively on the materials and bulk crystal structures involved. Often, the elec-
tronic surface structure has little to do with the bulk structure. The surface states can
be probed, for example with scanning tunneling techniques or with photo emission spec-
troscopy. For simplicity, we consider here the case without surface reconstruction and
without passivation, assuming essentially the perfect periodic crystal is simply cut off in
a plane. This will give a qualitatively correct picture.

While not giving a derivation here, a simple motivation for formation of electronic
surface states goes as follows: Bloch’s theorem in principle allows the wave vector in the
wave function ψk(r) = eik·ruk(r) to be a complex number. An imaginary wave vector cor-
responds to an exponentially damped wave function, an “evanescent wave”. In an infinite,
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perfect crystal, that is not physical, since it would specify a special location in the crys-
tal, violating periodicity or translational symmetry. But the surface breaks translational
symmetry, therefore allowing wave vectors with nonzero imaginary component. It can be
shown that the resulting states are localized at the surface, with a wave function amplitude
that decays exponentially over a few lattice constants when going from the surface into
the bulk. It turns out that the energies of these states are usually located inside the band
gap, forming a separate band of surface states (see figure 2.1) that coexists at the surface
with the usual semiconductor conduction and valence bands.
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Figure 2.1: Band structure at the surface of an n-doped semiconductor before (A, left) and after (B,
right) equilibration. Gray indicates occupied states. To match chemical potentials at the surface and in
the bulk, charge builds up on the surface depleting the donor charges a depth into the bulk and bending
the bands accordingly.

The number of surface states per area is essentially given by the number of atoms per
area at the surface. These states can be comprised of states that in the infinite, boundary
less crystal would have contributed to either the conduction or the valence bands and
can be an admixture of both types of bands. Due to charge neutrality, in the case of
the intrinsic semiconductor the number of filled surface states is equal to the number of
electrons that were removed from the bulk valence band due to surface formation, resulting
in a neutral, uncharged surface. The remaining surface states are empty. Filled surface
states have electrons that in principle could be given into empty available states and can
therefore be considered donor-like states. Vice-versa: empty surface band states are called
acceptor-like. The energy up to which the surface states (within the surface band) are filled
in the intrinsic, un-doped semiconductor is dictated by charge neutrality and is sometimes
referred to as the charge neutrality level or charge neutrality chemical potential µCN .
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2.2 The Semiconductor-Vacuum interface

For a surface of a doped semiconductor, electrons occupying the conduction band (orig-
inating from the dopants) can lower their energy by filling empty surface band states (if
available, which is often the case). This gives a net surface charge nS (charge per area, in
this case negative) which is balanced to maintain charge neutrality by a region inside the
crystal of equal total charge of opposite sign (positive)—referred to as depletion region.
The charge in the depletion region is due to holes left behind from conduction band elec-
trons that dropped into the surface band. The surface charge nS is located within a few
lattice constants around the surface, forming a 2D electron gas. The dopant density is to
some extent arbitrary and can be externally controlled. It is often chosen by various other
considerations, see the heterostructure section, usually resulting in a dopant density that
is much lower than the available surface states, typically of the order of one dopant atom
for every 10’000 crystal atoms. Therefore, this results a depletion region that can reach
many lattice constants into the bulk.

2.2.1 Band bending

For a bit more quantitative consideration, let zdep denote the extent of the depletion region
into the bulk starting from the surface at z = 0 (see figure 2.1) and ND the dopant density
(per m3). All donors are ionized in the depletion region giving a space charge density of
ρ = eND. The Poisson equation for the z-dependence of the potential V (z) within the
depletion region 0 ≤ z ≤ zdep is

d2V

dz2
= −e

2ND

εε0
⇒ V (z) = −e

2ND

2εε0
(z − zdep)2, (2.1)

where the normalization of V was chosen as V = 0 in the bulk (for z > zdep) and the
constant of integration was chosen to match V (zdep) = 0 accordingly. According to
Eq. 2.1, the bands are therefore bending quadratically, with a total shift of V (z → 0+) =
−e2NDz

2
dep/(2εε0). More generally, the local curvature of a band is proportional to the

local space charge density, according to Eq. 2.1. At the surface z = 0, V(z) will jump
(over the narrow extent of the surface charge accumulation layer), due to the charge nS

accumulated strongly localized at the surface. This is not indicated in figure 2.1 since
it is very narrow compared to the depth zdep of the depletion region. The surface accu-
mulation charge is of equal size but opposite sign as the total depletion region charge:
nS = −NDzdep (charge neutrality) and creates a further change in V that we neglect. In
this approximation, the bands have bent by a total amount of ∆V = V (0).

At the surface, the chemical potential is in the surface band (since that band is partly
filled for sufficiently low doping density), and the surface band energy and width depends
on material properties. In the bulk, the chemical potential is in the gap, usually closer to
the conduction band (again, depending of the doping density). However, in equilibrium,
the chemical potential has to be the same everywhere, and in particular needs to be the
same at the surface and in the bulk. This condition therefore dictates the value of ∆V , i.e.
the amount by which the bands need to bend, originating from the material dependent
surface properties, and therefore determines the depletion depth zdep.
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2.2.2 Fermi Level pinning

To make an example, let’s assume that the surface band is centered in the middle of the
gap, with a width of a fraction of the gap size, and is half filled in the intrinsic material.
Doping will fill the surface band slightly more. Let’s take the case of GaAs with gap
Eg = 1.4 eV, a typical doping of ND = 1024m−3 (corresponding to about 1 dopant for
every 104 crystal atoms, or about 1 dopant for every 20 atoms along a crystal axis). Then,
∆V ∼ Eg/2, and with ε ∼ 13 and using

zdep =
√

2εε0∆V
e2ND

(2.2)

it follows that zdep ∼ 30 nm, or about 60 lattice constants. This results in a surface charge
of nS = zdepND ∼ 3 × 1016m−2, much smaller than the total surface density of states
∼ 2/a2

0 ∼ 6× 1018m−3, with lattice constant a0 ∼ 5.5Å. Therefore, the chemical potential
µS at the surface is essentially independent of the doping level (at least for typical doping
densities as above). One says that the Fermi level is pinned at the surface. Particularly
considering that the surface atoms make up a very small fraction of the total number
of atoms in the crystal, the role of the surface is quite important. Also, note that the
depletion depth zdep can be changed with the dopant density as formulated in Eq. 2.2.

2.3 Metal-Semiconductor Interface: Schottky Barrier

One important type of interface is the one between a metal and a semiconductor. Among
various possible scenarios depending on the respective alignment of the bands and chemical
potentials, two important cases are the Schottky barrier and Ohmic contacts. If a Schottky
barrier forms, charge can move from the metal into the semiconductor only by tunneling
through a barrier; we first discuss this situation. The most relevant case is the situation
when the chemical potential in the conduction band of the metal lies inside the gap of
the semiconductor. At the interface, it can be shown that presence of the metal creates
induced gap states (IGS) within the gap of the semiconductor, as shown in figure 2.2A,
displaying the interface before before charge transfer occurred.

Let’s start with this situation and let’s further assume an intrinsic (undoped) semi-
conductor. The common energy scale is clearly the vacuum energy level. In general, the
chemical potential in the metal µM is not aligned with either the surface chemical poten-
tial µS nor the bulk semiconductor chemical potential µSC , but often one finds µM ≥ µS.
Now we allow charge transfer. Electrons from the metal can lower their energy by filling
empty surface states, thereby leaving behind holes in the metal. A charge dipole located
at the interface results and aligns µM and µS, via the dipole potential obeying the Poisson
equation, similar to Eq. 2.1, and corresponding band bending in the semiconductor by
an amount ∆µ = µM − µS . This dipole and band bending is strongly localized at the
surface since the surface states decay exponentially over a few lattice constants into the
bulk semiconductor. The chemical potential µM of the metal is essentially unchanged,
since the number of available electrons in the bulk metal is very large compared to the
necessary number of electrons to fill the surface states up to µM . The resulting situation
is depicted in figure 2.2B.

To transfer electrons from the metal into the bulk semiconductor, a barrier of energy
(see figure 2.2) VS = ΦM − χe + ∆µ—the Schottky barrier—has to be overcome, which
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Figure 2.2: Band structure of a metal-semiconductor interface before (left, A) and after (partial) charge
transfer (right, B). Shown here is case where the chemical potential of the metal is situated inside the
semiconductor gap, which results in a Schottky barrier VS increased by ∆µ = µM − µS due to surface
charge accumulation when the bands bend to match µM = µS . IGS denotes induced gap states. For
an intrinsic semiconductor, µSC = µS , and B represents thermodynamic equilibrium. For the doped
semiconductor µSC �= µS and further charge is transferred, as detailed in Figure 2.3.

just became larger by ∆µ due to the surface charge accumulation. In an intrinsic semi-
conductor, the entire system is then in a thermodynamic equilibrium, since in the intrinsic
case µSC = µS. In a doped semiconductor, however, there is still a missmatch µS �= µSC .
By a further charge transfer of donor electrons onto the surface and corresponding band
bending, µS = µSC will be achieved, directly analogous to the situation described before
for the semiconductor-vacuum interface, resulting in the band diagram in figure 2.3.
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Figure 2.3: Band structure of a metal-semiconductor interface where the semiconductor is doped and
the system in in thermodynamic equilibrium (left, A). The right panel shows a simplified view omitting
the semiconductor surface. VS denotes the Schottky barrier.

2.3.1 Schottky model

As derived the expression for the Schottky barrier VS = ΦM − χe + ∆µ depends on the
(often complicated and difficult to calculate) surface properties via the surface chemical
potential µS in ∆µ = µM −µS, while the metal work function ΦM and the electron affinity
in the semiconductor χe are bulk parameters. The Schottky model neglects the surface
effects and takes VS = ΦM −χe. This is equivalent to arguing that removing electrons with
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affinity χe from the semiconductor and adding them to the metal with work function ΦM

will lead to a depletion region in the semiconductor establishing equilibrium and forming
a barrier of height VS = ΦM − χe. A corresponding band diagram is shown in Figure 2.4
together with some measured barrier heights for metals on GaAs and Si.

Figure 2.4: (left) Band diagram in the Schottky model. (right) Schottky barrier height of Si and GaAs
in contact with different metals as a function of the metal work function. From Sze, 1985.

2.3.2 Schottky diode

The metal-semiconductor interface with a Schottky barrier acts as a diode, the Schottky
diode, which has been discussed at length in the literature. Suffice it here to state that
conduction through this diode depends on the tunneling current through the barrier, which
varies exponentially with barrier width and height. Applying a voltage V to the metal
with respect to the grounded semiconductor changes the chemical potential of the metal
and therefore can be used to control the barrier, resulting in an the exponential I-V curve
of a diode. A positive Voltage will reduce the barrier height (and therefore also the barrier
width) via VS = ΦM − eV − χe. When a Voltage of V ∼ VS is applied, large currents
will flow. Typical Schottky barrier heights for metals on GaAs are about 0.8 eV. On the
other hand, the currents can be extremely small for negative voltages, corresponding to
the diodes reverse bias direction, and the resulting current is called leakage current.

Figure 2.5: I-V characteristic of the Schottky diode. (from Heinzel)
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Figure 2.6: left: Schottky barriers under a) no bias, b) forward bias (V > 0) and c) reverse bias
(V < 0). Also indicated are various electron currents components in a Schottky barrier: j1e and j3e are
injection currents, which are thermally driven/excited, j2e is the tunneling current. At low temperatures,
the termionic currents can be neglected. [Look 1988]
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2.4 GaAs Heterostructures and 2D electron gas

- To determine the band structure of the heterostructure, a self consistent solution of
Poisson and Schrödinger equation has to be found, usually numerically and itera-
tively

- A triangular quantum well forms at the AlGaAs/GaAs interface, referred to as the
heterointerface. Often, only the quantum mechanical ground state in the triangular
well is populated (at low temperatures, T � 100K), making this one of the best
experimental realizations of a 2D system in nature that we know. This 2D elec-
tron gas s often abbreviated 2DEG. Typical widths of the wave function are about
10 nm, which means there are still some observable finite size effects, particularly in
large magnetic fields. It is also possible to grow another AlGaAs layer below the
heterointerface shown here, resulting in a square well.

- Two structures can be distinguished: one where doping over an extended z region
is used, see Figure 2.8, left. The other where the doping is localized in just a few
atomic layers, called δ-doping, see Figure 2.8, right.

- As long as the dopants are removed from the lower GaAs/AlGaAs interface, it is
referred to as modulation doping, a technique first demonstrated by Dingle in 1978.

- Choosing the right Si-doping density is an issue of fine-tuning and very sensitive.
Possible problems: parallel conduction (in the dopant layer), second subband popu-
lation, no electrons in well, too high or too low carrier density in well.

- Typical Al concentration is x ∼ 0.3, putting the conduction band of Al0.3Ga0.7As
about 300meV above the conduction band of GaAs and the top of the Al0.3Ga0.7As
valence band 160meV below the GaAs valence band.

- Usually, Si is used as the dopant. It only goes into the doping region (either into
the δ layer or into a larger width band within the AlGaAs), all the other regions are
intrinsic semiconductors

- Only a fraction of the donor atoms are ionized. Part of that fraction goes into surface
states, and part into the quantum/triangular well

Figure 2.7: Growth profile and bandstructure of typical GaAs heterostructures.
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- Two charge dipoles build up: one between surface and doping layers, and one be-
tween heterointerface and dopant layer, both resulting in electric fields between the
respective layers, giving a finite but constant slope to the bands between dipoles in
regions without extra charge.

- The last GaAs layer making interface with vacuum is called cap layer and prevents
oxidation that would occur was the AlGaAs layer exposed to air/oxygen.

- Very large mobilities reaching ∼ 33 × 106cm2/(V s) corresponding to a mean free
backscattering path of about ∼ 300µm have been achieved.

Figure 2.8: left: progress made over the years in mobility µ of electrons in a 2DEG in modulation
doped GaAs/AlGaAs as a function of temperature. At high temperatures, µ is limited by scattering with
phonons of the bulk. At the lowest temperatures, µ is limited by impurities and defects. [Stormer 1989]
right: energy gaps as a function of the lattice constant for III-V semiconductors. [Alferov 2001]

- These very large mobilities/clean samples/long mean free paths are possible because:

1. the heterointerface quality is excellent, not disrupting the crystal periodicity
across the interface, with lattice constants ofAlGaAs andGaAsmatched within
0.5% (AlGaAs condenses also into a Zinc-blende crystal). This is in stark
contrast to the Si/SiO2 interface, where the SiO2 condenses into a highly
disordered, glassy phase that is not at all matching the Si crystal, which results
in severe interface scattering, reducing mobility of electrons.

2. the ionized donors—a significant source of scattering—are spatially well sep-
arated from the 2DEG, usually between 20 nm − 120 nm. Consequently, the
screened Coulomb potentials the electrons see are much weaker and create pre-
dominantly small angle scattering, not very efficient at backscattering (full 180◦

scattering).

- By controlling the Al content the z-dependence of the band gap/band structure can
be custom engineered, if desired. For example, quantum wells can be grown with
a Al content quadratic in z, going from, say, 30% Al content to zero back to 30%,
a so called parabolic well, resulting in a harmonic oscillator in the z-direction. By
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top and bottom gating, the center of mass/maximum of the wave function can be
shifted in the z-direction, changing the average Al content the electrons feel. Because
the Lande g-factor depends on the Al concentration (it can even change sign), the
g-factor can be controlled with a gate. Basically any desired potential can be grown
in this way.

- By shining light on the waver, additional donors can be ionized, giving an increased
density and also increased mobility, which persists over long periods of time while
the sample is kept cold (� 50K), often referred to as persistent photoconductivity.

2.5 Screening

Conduction electrons populate all states up to the Fermi energy, but the bottom of the
potential is varying in a disordered manner, due to the Coulomb potentials of the ionized
donor atoms and other defects and impurities. These potentials create a complicated po-
tential mountain-valley landscape. In high mobility samples, most maxima lie below the
Fermi energy, screening is efficient, and only a sparse few peaks reaching above EF . If
the density in the 2DEG is lowered, say with a top gate, then the Fermi energy corre-
spondingly is reduced, and more peaks may appear piercing the Fermi level, giving more
backscattering and a reduction in mobility. (Sometimes the analogy to the “Bath-tub
potential” is made, where the water represents the electrons.)

A detailed theory of screening is left to the proper condensed matter theory lecture.
Here, it be mentioned that screening can be expressed by a dielectric function ε(ω, �q).
In Thomas-Fermi approximation, a screening length scale appears, the Thomas-Fermi
screening length, which is usually of the order of the Fermi-wavelength. An external
potential (here a Coulomb scatterer) in 3D

Vext(r) =
−Ze
r

=
−Ze2
(2π)3

∫
4π
q2
eı�q�rd�q (2.3)

will be screened to an effective potential electrons in the semiconductor will see:

Veff (�q) =
Vext(�q)
ε(�q)

, Veff (r) =
−Ze2
(2π)3

∫
1
ε(�q)

4π
q2
eı�q�rd�q (2.4)

via a induced charge density variation that can be calculated to be:

ρind(�r) =
Ze

π

k2
TF

k2
F (4 + k2

TF /2k
2
F )

cos(2kF r)
r3

(2.5)

This charge density is periodically modulated with a period of half the fermi wavelength
(known as Friedel oscillations) and decays as r−3 in distance (in 3D) from the scatterer.
This can be understood in terms of a standing wave due to a superposition of the incoming
and from the scatterer reflected waves. This is a result that depends on the dimensionality
considered, indeed in 2D, as applicable for a 2DEG, one obtains:

Veff (�r) =
Ze

εε0

4kTFk
2
F

(2kF + kTF )2
sin(2kF r)

2kF r2
(2.6)

where the oscillations now have a longer range, decaying only as r−2.
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2.6 Scattering GaAs

2.6.1 Bulk GaAs scattering

Various scattering mechanisms contribute, which according to the Mathiesen rule can be
added up as scattering rates to give the total scattering rate: 1/µ =

∑
i 1/µi. Here, some

scattering types are listed, first discussed for the bulk 3D GaAs case:

- impurity scattering: neutral impurities usually give very small scattering cross sec-
tions. Charged or ionized impurities represent (screened) Coulomb scatterers with
peak potentials that can be comparable to the Fermi energy. At higher temperatures,
electrons have larger kinetic energy and will be deflected by a smaller angle, giving
larger mobility at higher temperatures. Calculations give a temperature dependence
of the mobility ∝ T 3/2 log(T ) in 3D.

- electron-phonon (lattice vibrations) scattering: the only scattering mechanism in
perfect, pure crystals.

- electron-phonon scattering, deformation potential : scattering at the lattice defor-
mation caused by phonons. Acoustic phonons are usually most relevant, which can
be treated as quasi-elastic since the energy transfers are small. The temperature
dependence of the corresponding mobility (scattering rate) is given by nac/v, where
nac is the density of acoustic phonons and v is the average electron velocity. nac is
proportional to the Bose-Einstein distribution, scaling as 1/T at for temperatures
large compared to the phonon energy and v ∝ √

T , giving a mobility contribution
∝ T−3/2.

- electron-phonon scattering, polar scattering : GaAs is a polar crystal, lattice vibra-
tions are accompanied by oscillating electric fields, particularly strong for optical
phonons. For kT 	 �ωop where ωop ∼ 5meV denotes the optical phonon energy,
the resulting mobility varies as T−1/2

- electron-phonon scattering, piezo-electric scattering : GaAs is also piezoelectric,
meaning that a polarization field develops in response to a crystal deformation,
also with a T−1/2 contribution.

Figure 2.9: Various scattering mechanisms in bulk showing measured (circles) and calculated (curves)
mobilities as a function of temperature. The bulk sample had a donor density nD = 4.8 × 1019 m−3 and
an acceptor density nA = 2.1 × 1010 m−3 [Stillman 1976].
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2.6.2 GaAs 2DEG scattering

Scattering in a 2D electron gas is different from the bulk case because the screening and
phase space properties of the electrons are now 2D, while the scattering potentials are
still three-dimensional. Decay of the Friedel oscillations in 2D is weaker than in 3D, as
mentioned before. Also, new scattering mechanisms arise due to the interface and remote
impurities. Relevant mechanisms include:

Figure 2.10: Various scattering mechanisms in a GaAs 2DEG showing measured (circles) and calculated
(curves) mobilities as a function of temperature. The used 2DEG had was measured both in the dark
(open circles, n = 2.2 × 1011 cm−2) and after illumination (filled circles, n = 3.8 × 1011 cm−2), with a
spacer thickness d = 23nm and a modulation doping density of 8.6× 1022 m−3 distributed evenly within a
20 nm layer between spacer and surface. A homogeneous density of backgroun impurities of 9 × 1019 m−3

was assumed, a typical number for high quality bulk GaAs. [Walukiewicz, 1984]

- impurities divided into remote, ionized donors that are now spatially separated
from the 2DEG by a spacer layer. A small residual donor density remains inside
the electron gas (and everywhere in the crystal), and can be improved by simply
obtaining cleaner materials. Both of these mechanisms can be quite important.
Intuitively, one would guess that the farther away the donors are, the lower the
scattering they induce is. That is correct, but as the donor layer is further removed
from the heteroinferface, the density and thereby mobility in the 2DEG is reduced,
unless other parameters are also changed, making further separation of donors from
the interface a complicated undertaking.

- interface roughness interface imperfections and roughness represents deviation from
the perfect crystal and can therefore create scattering. Due to crystal matching, in
GaAs/AlGaAs heterostructures this type of scattering is usually very small, unlike
the case of the Si−MOSFET .

- alloy scattering In AlxGa1−xAs, 30% of the Ga atoms are replaced by Al, but this
occurs in a random, disordered fashion, resulting in a non-periodic potential. For
GaAs 2DEG’s, the electron wave function almost entirely resides in the crystalline
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GaAs and only an exponentially small tail protrudes into the AlGaAs, making alloy
scattering also irrelevant.

- inherent limit the mobility that would result in a sample without the background
impurities but including the remote donors

2.7 Ohmic Contacts

Despite 40 years of electrical measurements in GaAs and 20 years of 2DEG experiments,
making contacts is still not always trivial and the the exact contact mechanism is not
completely understood. There are standard recipes that usually work, but depending on
the exact structure and application some modifications or fine tuning is often necessary.
We define a good ohmic contact to be a source of carriers with a non-zero internal resistance
Rc which obeys Ohm’s law for all current densities of interest. As discussed previously, a
metal on the surface of a GaAs/AlGaAs results normally in a Schottky barrier behaving as
a diode, highly non-linear, and certainly not suited as an Ohmic contact. The contact needs
to work at the lowest temperatures reached in experiments. In this regime, thermionic
currents are negligible, but tunnel currents remain a possibility.

The probability of an electron to tunnel from the semiconductor into the metal depends
exponentially on height Vbi and width wd of the barrier and can be estimated in WKB
approximation:

T (wd) = exp

[
−2

∫ 0

wd

{
2m∗

�2
V (z)

}1/2

dz

]
, (2.7)

where V (z) describes the shape of the barrier, with V (wd) = 0. Solving the Poisson
equation, we previously found a quadratic dependence on z, see Equation 2.1, which we
substitute here into the integral. Further, we determined the width of the barrier, Eq. 2.2.
Here we use ∆V = e(V − Vbi), with Vbi the bias independent barrier height and V an
external applied Voltage. The integral is then trivial to compute:

T = exp
e(V − Vbi)

E0
, (2.8)

where we introduced the energy

E0 =
�

2

(
e2N

εε0m∗

)1/2

(2.9)

characterizing the barrier. E0 depends on the doping density, and for an achievable doping
density N ∼ 1025m−3 one obtains E0 ∼ 60meV ∼ 700K×k. As before, large doping gives
small barrier diameter. The tunneling current density j is then

j ∝
{

1 − exp
(
eV

E0

)}
≈ eV

E0
+O(V 2) (2.10)

where the expansion of the exponent is valid for small Voltages eV � E0. We therefore
find ohmic behavior in the small bias range. The factor exp(−eVbi/E0) still multiplies the
entire expression, suppressing the current. Unfortunately, the barrier height cannot be
made smaller by a proper choice of metal (surface state density is large). Further, this
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Figure 2.11: upper: doping density N1, lower: much higher doping N2 � N1. The reduction of the
depletion width wd and consequent increase of the electron tunneling current j2e. [Look 1988]

simple model cannot explain experimentally fabricated ohmic contacts in a satisfactory
way.

Many (older) experiments investigating quantum Hall effects have simply used a cleaved
square as a sample, without any further processing, and ohmic contacts are made by sol-
dering In onto sample in several places around the perimeter, sometimes followed by a
425 ◦C anneal, but often without further annealing. Still the most popular metallization
for an ohmic contact is composed of Ni, Au and Ge. (Ge is column IV, just below Si).
After deposition, the contact is alloyed/thermally annealed by heating up the sample to
typically ∼ 400 ◦C for a few minutes (in order to minimize heating damage, some people
use a rapid thermal annealer, where pre-heating and cooling occurs quickly). The metal el-
ements have been seen to mix with the Ga and As in a complicated way, see Figure 2.7 and
form new compounds in the process. Sometimes, it appears that spikes of highly doped
material are protruding into the GaAs, and that the current mainly transfers through
these spikes, as illustrated in Figure 2.12. It is thought that the Ni, which wets GaAs
very well, acts to prevent “balling up” of the AuGe. Variants exist that use nonmagnetic
Pt instead of Ni.

Figure 2.12: left: Various metal phases are present after annealing a NiAuGe contact at 440 ◦440 for 2
min. right: A model for ohmic contacts in which conduction takes place trough a parallel array of Ge-rich
protrusions [Look 1988]
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2.8 Schottky gates

When quantum dots and other nanostructures formed in a 2DEG are defined using lateral
metal gates (often T iAu or CrAu on the GaAs surface (T i and Cr act as adhesion layers)),
one commonly applies sufficiently negative voltages to deplete electrons underneath gates.
Controlling the voltage on the gate controls size of the depletion region and therefore
the confinement potential of the device in situ. Since this is done in reverse bias of
the Schottky diode, the currents flowing through the gates are exceedingly small, which is
very important. Appreciable currents flowing from gates (i.e. gate leakage) can completely
obliterate the small currents that one would like to measure through the device (in absence
of gate leakage), and can also cause heating, decoherence, noise and other undesired effects.
This is occasionally an issue due to various problems, but usually, metals make excellent
Schottky barriers on the GaAs surfaces or 2DEG materials. GaAs is said to be gateable.
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