Physik IV

1. Measurements on qubits.

A three qubit system is in the state:

$$
\begin{equation*}
|\Psi\rangle=\frac{i}{2}|000\rangle+\frac{12+5 i}{26}|001\rangle-\frac{1}{2}|101\rangle+\frac{3}{10}|110\rangle-\frac{4 i}{10}|111\rangle \tag{1}
\end{equation*}
$$

a) Verify that $|\Psi\rangle$ is normalized.
b) Compute the probability of the following outcomes: (i) measurement on the first qubit returns 0 ; (ii) measurement on the first two qubits gives 00 ; (iii) measurement on the last two qubits gives 11 .
c) Following an H transformation of the third qubit, what is the probability that a measurement on all three qubits gives $111 ?$
d) After the H transformation mentioned above, what is the state of the system if the second qubit is measured to be 1 ?

2. Bell's inequality.

Two spins can be described by the product of their individual states, $|\Psi\rangle=\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ $=\left|x_{1} x_{2}\right\rangle$. Entangled states can be written in the Bell basis:

$$
\begin{aligned}
\left|\beta_{00}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\left|\beta_{01}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\left|\beta_{10}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
\left|\beta_{11}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Let $|\Psi\rangle=\left|\beta_{11}\right\rangle$. Show that $\langle Q S\rangle=\langle R S\rangle=\langle R T\rangle=1 / \sqrt{2}$ and $\langle Q T\rangle=-1 / \sqrt{2}$, such that $\langle Q S\rangle+\langle R S\rangle+\langle R T\rangle-\langle Q T\rangle=2 \sqrt{2}>2![Q, R, S$ and T are defined in the lecture notes.]

3. Practice at reading circuit diagrams.

A three qubit system can be written in the basis: $|000\rangle,|001\rangle$, etc.
a) How many basis states are there?

Abbildung 1: Three qubits are passed through the circuit depicted here, which consists of both two-qubit (C-NOT) and single-qubit (Z and H) gates. The incoming state can be any $\left|\Psi_{i n}\right\rangle=\left|x_{1} x_{2} x_{3}\right\rangle$. The output is $\left|\Psi_{\text {out }}\right\rangle$.
b) Consider the transformation performed on $\left|\Psi_{i n}\right\rangle=\left|x_{1} x_{2} x_{3}\right\rangle$ by the circuit shown in figure 1 . Write down the effective operator O_{123} in terms of the gates operations that have been presented in the lecture.
c) What is $\left|\Psi_{\text {out }}\right\rangle$ if $\left|\Psi_{\text {in }}\right\rangle=|110\rangle$?
d) What is $\left\langle O_{123}\right\rangle$ when $\left|\Psi_{i n}\right\rangle=|011\rangle$?

