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The spin-orbit interaction in spin qubits enables spin-flip transitions, resulting in Rabi oscillations
when an external microwave field is resonant with the qubit frequency. Here, we introduce an
alternative driving mechanism of hole spin qubits, where a far-detuned oscillating field couples to
the qubit phase. Phase driving at radio frequencies, orders of magnitude slower than the microwave
qubit frequency, induces highly non-trivial spin dynamics, violating the Rabi resonance condition.
By using a qubit integrated in a silicon fin field-effect transistor (Si FinFET), we demonstrate a
controllable suppression of resonant Rabi oscillations, and their revivals at tunable sidebands. These
sidebands enable alternative qubit control schemes using global fields and local far-detuned pulses,
facilitating the design of dense large-scale qubit architectures with local qubit addressability. Phase
driving also decouples Rabi oscillations from noise, an effect due to a gapped Floquet spectrum and
can enable Floquet engineering high-fidelity gates in future quantum processors.

Introduction.— Spin qubits in hole quantum dots are
emerging as top candidates to build large-scale quan-
tum processors [1–4]. A key advantage of hole spins
is their large and tunable spin-orbit interaction (SOI)
enabling ultrafast all-electrical qubit operations [5–11],
on-demand coupling to microwave photons [12–14], even
without bulky micromagnets [15–17]. The large SOI of
holes leads to interesting physical phenomena, such as
electrically tunable Zeeman [6, 18–22] and hyperfine in-
teractions [23–25], or exchange anisotropies at finite [26]
and zero magnetic fields [27, 28]. These effects can be
leveraged for quantum information processing, e.g., to
define operational sweet spots against noise [29–34]; to
date their potential remains largely unexplored.

Single qubit operations rely on flipping spin states on
demand. A microwave pulse drives spin rotations, re-
sulting in the well-known Rabi oscillations. For confined
holes, these oscillations are fast and rely on either an elec-
trically tunable and anisotropic g tensor [35–37] or peri-
odic spin motion in a SOI field [38–41]. To date, however,
these oscillations are qualitatively similar to competing
qubit architectures [42–46], and they occur at fixed mi-
crowave GHz frequencies determined by the qubit energy.
Qubit responses to detuned frequencies are associated to
non-linearities in the coupling to the driving field [47, 48].

In this work, we investigate the dynamics of a hole
spin qubit hosted in a Si FinFET under simultaneous ap-
plication of longitudinal (phase) and transverse (Rabi)
drives at radio frequency ωz and microwave frequency
ωx, respectively, see Fig. S1(a). We demonstrate that
the rich microscopic physics of hole nanostructures leads
to a non-trivial response of the qubit state to these os-
cillating fields even at frequencies far detuned from the
qubit energy. This anomalous response arises from a
strong interplay between the phase and Rabi electrical
drives in the linear regime. More specifically, we show
that by driving the qubit phase at radio frequencies ωz
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Figure 1. (a) Schematic of our phase driven qubit. A hole spin
qubit in a Si FinFET with Zeeman field b is simultaneously
driven by a microwave Rabi drive (blue) with amplitude λx

and frequency ωx ≈ ωq = |b|/~, and a radio-frequency phase
drive (red) with amplitude λz and frequency ωz � ωq. (b)-(c)
Phase-driving-induced slow down of Rabi oscillations in qubit
1 (Q1). The Rabi frequency is suppressed as ωR = λxJ0(2Z),
with Z = λz/ωz, and vanishes at Z = 1.2. This prediction
is experimentally confirmed in (b) by sweeping ωz and mea-
suring the Pauli-spin-blockaded current Inorm normalized by
the maximal current, proportional to the spin flip probability,
for different burst times tb. Regular oscillations are observed
for Z . 0.5. For Z & 0.5 phase driving causes non-trivial
features that are captured by the simulation in (c) obtained
from Eq. (1) with λx/2π = 29 MHz, λz/2π = 30 MHz and
ωq/2π = ωx/2π = 4.5 GHz.

in the MHz range, i.e., three orders of magnitude lower
than the microwave GHz-range Larmor frequency of the
qubit ωq, we can controllably (i) suppress the resonant
Rabi oscillations at ωx = ωq and (ii) revive them at
sideband frequencies ωx = ωq ± mωz, with m ∈ N+.
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We observe this behaviour reproducibly on two different
devices. The suppression of Rabi frequency can be ex-
ploited to detect longitudinal interactions between spins
and microwave resonators [13]. In future qubit proces-
sors using a global high-frequency driving field, sideband
oscillations can provide ways to selectively address indi-
vidual qubits by radio-frequency MHz signals, relieving
demanding technological challenges for designing large-
scale high-frequency circuits. We also predict that our
two-tone drive protects Rabi oscillations from noise as
the periodic phase driving gaps the Floquet spectrum of
the system similar to the Bloch bands in periodic lattices.
This noise suppression is a valuable tool for dressed spin
qubit architectures [49–52] and for Floquet engineering
high-fidelity quantum gates [53–58].

Electrical manipulation of hole spins.— A hole spin
qubit in an external magnetic field B is described by the
Zeeman Hamiltonian Hq = b · σσσ/2, where b = µBB · ĝ
is the Zeeman vector, ĝ is the electrically-tunable g ten-
sor of the system, and σσσ is the vector of Pauli matri-
ces. Quite generally, an electrical pulse with frequency
ω applied to the system gives rise to an oscillating vec-
tor field λλλ cos(ωt) that directly couples to the qubit via
Hd = ~λλλ ·σσσ cos(ωt) due to the SOI. The vector λλλ cos(ωt)
models the drive as a time-dependent Zeeman field acting
on the qubit. Its direction depends on the microscopic
details of the nanostructure, and includes processes such
as g tensor modulation and electric dipole spin reso-
nance [38, 40, 41], while its amplitude scales linearly with
the applied microwave field. These processes enable elec-
trical manipulation of qubits with multiple driving fre-
quencies and amplitudes. Transitions between spin up

and down states occur for λλλ ⊥ b (Rabi driving), while
only the phase of the qubit is addressed [13, 59–63] for
λλλ ‖ b (phase driving). Interestingly, while phase driving
alone cannot induce Rabi oscillations, a radio-frequency
phase pulse can significantly alter the dynamics of the
qubit when acting together with a Rabi driving field.

We stress that all of our findings lie within the scope of
linear response in the driving field. Variations from this
linear regime were detected at large driving powers [6,
64, 65]. Non-linearities in the driving field ∝ λλλ2 cos(ωt)2

induced by excited states were also proposed as a source
of higher-harmonic response in spin qubits [47, 48].

Phase driven qubits.— We consider a spin qubit with
GHz-range frequency ωq = |b|/~. A transverse Rabi
drive λx cos(ωxt) with amplitude λx and frequency ωx =
ωq−∆ induces Rabi oscillations when the MHz-range de-
tuning ∆ is small. This system exhibits Rabi oscillations
with frequency ωR =

√
∆2 + λ2x and maximal spin-flip

probability Pmax
R = λ2x/(∆

2 +λ2x). We add an additional
simultaneous longitudinal phase drive λz cos(ωzt), with
amplitude λz and frequency ωz ∼ MHz, that is far de-
tuned from ωq. The two-tone Hamiltonian reads

H =
~ωq
2
σz + ~λxσx cos(ωxt) + ~λzσz cos(ωzt) . (1)

The direction ẑ (x̂) is parallel (perpendicular) to b,
Fig. S1(a).

By moving to the rotating frame defined by the trans-
formation Ur(t) = e−iσz [ωxt+2Z sin(ωzt)]/2 [13], which ex-
actly accounts for the phase driving, and neglecting terms
rotating at frequencies ∼ 2ωx, we obtain

H̃ =
~∆

2
σz +

~λx
2
J0(2Z)σx + ~λx

∞∑
n=1

(
J2n(2Z) cos[2nωzt]σx − J2n−1(2Z) sin[(2n− 1)ωzt]σy

)
, (2)

with dimensionless parameter Z = λz/ωz and Bessel
functions Jn. Note that without phase drive, i.e., λz =
0⇒ Z = 0, and since J0(0) = 1 and Jn 6=0(0) = 0, Eq. (2)

reduces to H̃ = ~(∆σz+λxσx)/2, i.e., the rotating frame
Hamiltonian for Rabi driven qubits in the rotating wave
approximation (RWA).

Close to resonance ∆ . ωz, λx, we obtain J0(2Z) =
1 − Z2 + O(Z4) and the first correction to the qubit
dynamics caused by the phase driving is ∝ Z2. Con-
sequently, at moderate values of λz and when ωz ∼ ωq,
then Z � 1, and the phase driving has no effect. More-
over, Rabi pulses with ωx � ωq are off-resonant and do
not affect the qubit. These considerations justify using
the Hamiltonian H in Eq. (1) also in general cases where
λx [λz] has an additional component parallel [perpendic-
ular] to b. Finally, a relative phase difference ϕ between

the two driving signals is relevant at comparable values
of ωx and ωz [13], but can be neglected when ωz � ωx.
Finite ϕ’s become relevant in the presence of noise, as
discussed later.

Sideband Rabi oscillations.— We study the influence
of the phase drive on the oscillations for resonant (∆ =
ωq − ωx = 0) and non-resonant (∆ 6= 0) Rabi drives.
In the resonant case and when ωz & λx, one can sim-
plify H̃ in Eq. (2) by the RWA. The dominant contribu-
tion to H̃ is the static n = 0 component, yielding fully
developed oscillations with frequency ωR = λxJ0(2Z),
Fig. S1(b), (c).

We verify this prediction experimentally in a hole spin
qubit in two different Si FinFETs described in detail in
Refs. [11, 26, 66]. Our first (second) qubit Q1 (Q2) is
operated at ωq/2π = 4.5 GHz (ωq/2π = 4.95 GHz) corre-
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Figure 2. Sideband Rabi oscillations in qubit 2 (Q2). (a),(b),(c) Spin precession for simultaneous microwave Rabi driving and
radio-frequency phase driving against burst time tb and detuning ∆. We show results for Z = 0, Z = 0.3, and Z = 1.2. The
typical chevron pattern centred at ∆ = 0 in (a) is modified in (b),(c) by additional sidebands at ∆/2π = ±n·ωz/2π = ±n·40 MHz
and ±n·20 MHz, respectively. The ∆ = 0 oscillations are slower in (b) and completely vanish in (c). (d),(e),(f) Simulations of the
time-evolution governed by Eq. (1), showing excellent agreement with experiments. We use ωq/2π = 4.95 GHz, λx/2π = 10 MHz
for the three Z values and λz = 0, λz/2π = 0.3ωz/2π = 12 MHz, λz/2π = 1.2ωz/2π = 24 MHz for (d),(e),(f), respectively.

sponding to a g factor g = 2.14 for B = 0.15 T (g = 2.72
for B = 0.13 T); g depends on the gate potential V with
sensitivity ∂g/∂V ≈ −0.05 V−1 (∂g/∂V ≈ 0.41 V−1).
Our qubits are initialized and read out via Pauli spin
blockade and direct current integration, see Refs. [11, 26].
Our system enables high-bandwidth phase driving via
the electrically tunable g tensor and Rabi driving via
electric-dipole spin resonance. These contributions are
generated by applying two oscillating electrical signals at
different frequencies, Fig. S1(a). Generally these tones
induce both Rabi and phase driving, however, as dis-
cussed before, we discard the negligible contributions of
far-detuned Rabi driving and nearly-resonant phase driv-
ing.

For the measurements in Fig. S1(b), we apply simul-
taneously a resonant Rabi drive with ωx = ωq and
a phase drive with variable, far-detuned frequency ωz
to Q1. We measure the qubit state after the burst
time tb. The two pulses have comparable amplitudes,
λx/2π ≈ λz/2π ≈ 30 MHz. Rabi oscillations can be ob-
served along the vertical axis of the figure, and by sweep-
ing ωz, we map out the dependence of ωR on Z = λz/ωz.
We find good agreement between our measurement and
the quantum dynamics simulated by using H in Eq. (1).
We consistently reproduce this behaviour in Q2 [see the
Supplemental Material [67]].

Remarkably, Rabi oscillations are suppressed at certain
values of Z = Zj , defined by the roots of the Bessel
function J0(2Zj) = 0, where ωR vanishes. The first root
Z1 ≈ 1.2 corresponds to λz ≈ 1.2ωz and can be observed
in our experiment. At Z = 1.2, the higher harmonic

components in H̃ in Eq. (2) with n ≥ 1 dominate the
dynamics.

These higher harmonics are crucial to understand the
Rabi sidebands appearing in the non-resonant case, com-
prising a finite detuning ∆, shown in Fig. 2(b),(c). At
small values of ∆ � λx, the Rabi frequency increases
as ωR =

√
∆2 + λ2xJ0(2Z)2, resulting in the typical

chevron pattern, and suppressing the oscillations at large
∆. However, when λz ≈ ωz, oscillations are revived at fi-
nite values of ∆. In particular, at ∆ = ±mωz, the system
is resonant with the mth-harmonic in Eq. (2) (m ∈ N+),
and sideband oscillations at frequencies ωmR = λxJm(2Z)
are restored.

In Fig. 2, we show measurements and simulations of
Rabi oscillations against ∆ at different values of Z for Q2.
The Rabi chevron in (a) is modified by phase driving. In
(b), we consider Z = 0.3, and we observe the appear-
ance of sideband resonances at frequencies ±ωz/2π =
±40 MHz. In (c), by reducing ωz to ωz/2π = 20 MHz
and increasing λz, we reach Z = 1.2, where the resonant
oscillations at ∆ = 0 vanish and only sideband oscilla-
tions remain. As shown in (d)-(f), these sidebands are
well explained by our model, which is linear in the driv-
ing field amplitudes. We emphasize that in contrast to
non-linear driving, where the ∆ = 0 resonance does not
disappear and sidebands oscillations appear at fixed fre-
quencies ωx = ωq/m with m ∈ N+, by operating our
qubit at Z = 1.2 we completely remove the ∆ = 0 os-
cillations and still fully control the sideband frequencies
∆ = ±mωz = mλz/1.2 by varying the amplitude λz of
the radio-frequency pulse.
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Figure 3. (a) Simulated phase-driving-induced undamped
Rabi oscillations at ωz = λx. Black (red) dots denote Rabi
probability averaged over N = 103 realizations of the noise
Hamiltonian HN for λz = 0 (λz = 0.3ωz) picked from a
Gaussian distribution with zero mean and standard deviation
σ̄ = 0.1ωz. The results match Eq. (3) with TR

2 = 2
√

2~/σ̄
(TR

2 →∞). (c) Noisy Rabi oscillation at Z = 1.2 and various
λx/ωz ratios. The gray dashed line corresponds to the red
line in (a). (b),(d) Floquet spectra against λx/ωz. (b) Solid
black (red) dots show numerically computed Floquet energies
ωF at λz = 0 (λz = 0.3ωz); the lines denote the approxima-
tion in Eq. (4). Magenta (cyan) circles exhibit the probability
|c↓|2 = |〈↓ |0F 〉|2 for a two-tone relative phase ϕ = 0 (ϕ =
π/2). Dashed lines show Eq. (5). (d) Blue dots show the Flo-
quet spectrum at Z = 1.2, while the lines display the fitting
formula ω0,1

F = ±ωz[0.084(λx/ωz)3−0.022(λx/ωz)4] mod(ωz).
We use ωq = 103ωz.

Our driving scheme opens the possibility of dynami-
cally shifting the qubit frequency to higher harmonics,
thus reducing frequency-crowding issues in dense large-
scale quantum processors and enabling individual qubit
addressability in global microwave fields by technologi-
cally inexpensive MHz circuits.

Effects of noise.— The coupling to the environment
causes decoherence and damps the Rabi oscillations in
a time TR2 , see Fig. 3(a), black curve. The Rabi decay
time TR2 is dominated by noise at frequencies close to the
driving frequency ωx. We model this phenomenologically
by the noise Hamiltonian HN = cos(ωxt)h ·σσσ/2, describ-
ing the spin coupling to a stochastic Gaussian distributed
vector h, with zero mean and diagonal covariance ma-
trix Σij = δij σ̄

2. This model accurately describes high-
frequency noise form different sources [23, 33, 56, 68].

After ensemble averaging and focusing on the resonant

case ∆ = 0, we find that for conventional Rabi driving,
HN suppresses the Rabi oscillations as

PR(t) =
1

2

[
1− e−(t/T

R
2 )2 cos(ωRt)

]
, (3)

with TR2 = 2
√

2~/σ̄. The decay time TR2 is larger
than the dephasing time T ∗2 and determines the lifetime
of dressed spin qubits [49–52], utilizing nearly-resonant
always-on global microwave fields. However, when the
SOI is large, TR2 is significantly shortened, and becomes
comparable to T ∗2 [5, 6], thus limiting the advantages of
these architectures.

Protection of Rabi oscillations from noise.— We sim-
ulate the effect of an additional phase pulse with λz � λx
at frequency ωz ≈ λx. As shown in Fig. 3(a), even a
small phase driving (red curve) decouples Rabi oscilla-
tions from noise and enhances TR2 by orders of magni-
tude. We also verified that these decay-free oscillations
are robust against noise at different frequencies.

The origin of persistent oscillations can be under-
stood in terms of the Floquet modes |0F 〉, |1F 〉 [69,
70]. These are eigenstates of the Floquet operator

U(T ) = Ur(T )T e
[
−i
∫ T
0
H̃(τ)dτ/~

]
with eigenvalues

e−iω
0
FT , e−iω

1
FT , respectively. Here, T e is the time-

ordered exponential, the period T = 2π/ωz, and Ur
transforms the system back to the lab frame [71].

The eigenvalues and eigenvectors of U(T ) are shown
in Fig. 3(b). First, in contrast to the usual Rabi driv-
ing, when a phase driving pulse is applied at frequencies
comparable to λx and is in-phase with the Rabi drive,
the spin states in the lab frame coincide with the Flo-
quet modes, i.e. | ↑〉 = |0F 〉, | ↓ 〉 = |1F 〉 (magenta line).
Second, phase driving opens a gap of size ω1

F−ω0
F ≈ λz in

the Floquet spectrum (black and red lines), that protects
the system from moderate noise sources with σ̄ . λz. For
λz � λx ∼ ωz, the Floquet eigenenergies are

ω0,1
F = ±1

2

[
ωz +

√
(λx − ωz)2 +

λ2x
ω2
z

λ2z

]
mod(ωz) . (4)

In analogy to disorder potentials in Bloch bands, when
the system is initialized in an eigenstate, transitions to
other eigenstates are suppressed as long as the standard
deviation of the disorder is smaller than the energy gap.
This comparison allows us to identify the decay-free oscil-
lations shown in red in Fig. 3(a) as the temporal evolution
of an individual Floquet mode.

The decay-free Rabi oscillations depend on the gapped
Floquet spectrum and the possibility of preparing a Flo-
quet eigenmode. In Fig. 3(b), we show that a relative,
experimentally-tunable phase ϕ between the Rabi and
phase tones can be used to select arbitrary superposi-
tions of Floquet states (magenta and cyan curves). The
amplitudes cs = 〈s|0F 〉 between the spin state |s =↑↓〉



5

and the Floquet state |0F 〉 are

c↑↓(ϕ) ≈ cos(θ)± sin(θ)eiϕ√
2

, tan(2θ) =
λxλz

ωz|λx − ωz|
.

(5)
For strong phase drivings, where λz ∼ λx, Eqs. (4)

and (5) are inaccurate, but simulations still predict
decay-free oscillations and gapped Floquet spectrum. For
example, in Fig. 3(c),(d) we examine the oscillations and
the Floquet spectrum at Z = 1.2. The Floquet bands
touch at λx = 0 mod(ωz); at λx & ωz, the gap becomes
significant and decay-free oscillations persist for a wide
range of parameters. Because of the strong phase driving
the oscillations are not sinusoidal. Their peculiar shape
probes the temporal structure of the Floquet mode and
is shown in Fig. 3(d) for different values of λx.

We note that relaxation between Floquet modes is sup-
pressed, as reflected in persistent oscillations, but super-
positions of Floquet modes are still subjected to dephas-
ing with characteristic time TR2 . We envision that the
possibility to stabilize Floquet modes by phase driving
opens a wide range of exciting opportunities to optimize
dressed qubits, and to prepare exotic states in future Flo-
quet metamaterials.

Conclusion.— We demonstrated that radio-
frequency phase driving of hole spin qubits induces
collapse and revival of Rabi oscillations, resulting in
oscillations at sidebands of the qubit frequency. These
sidebands do not require non-linear coupling of the spin
to the driving field. We show theoretically that phase
driving also leads to decay-free Rabi oscillations in noisy
qubits. Our two-tone driving scheme provides an alter-
native way of implementing individual addressability
in global microwave fields in future large-scale qubit
architectures, and Floquet engineering high-fidelity
qubit gates.
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[26] S. Geyer, B. Hetényi, S. Bosco, L. C. Camenzind,
R. S. Eggli, A. Fuhrer, D. Loss, R. J. Warburton,
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Supplemental Material:
Phase driving hole spin qubits

ADDITIONAL MEASUREMENTS OF OUR FIRST AND SECOND DEVICES

(a) (b)

Figure S1. Phase-driving-induced slowing down of Rabi oscillations in qubit 2 (Q2). Measurements (a) and simulations
(b) match well, and this trend is analogous to the one reported in the main text for Q1, see Fig. 1(b),(c). Here, we used
ωx/2π = ωq/2π = 3.115 GHz, λx/2π = 11 MHz, and λz/2π = 6.1 MHz.

(a) (b)

Figure S2. Phase-driving-induced sideband Rabi oscillations in qubit 1 (Q1). Measurements (a) and simulations (b) are in
good agreement, and these sidebands are analogous to the ones reported in the main text for Q2, see Fig. 2(b),(e). Here, we
used ωq/2π = 4.5 GHz, λx/2π = λz/2π = 30 MHz, and ωz/2π = 90.5 MHz, corresponding to Z = 0.33.

We present here additional data from our two qubits, Q1 and Q2, encoded in two different devices. In Fig. S1, we
show the slowing down of Rabi oscillations by phase driving Q2. Compared to Figs. 1(b),(c) in the main text, we
observe a similar trend, with a lower Rabi and phase driving amplitudes. The measurement in Fig. S1(a) matches well
the numerical simulation in Fig. S1(b). In Fig. S2, we show phase-driving-induced sideband oscillations appearing at
finite detuning in Q1. These results are comparable to the ones obtained for Q2 and shown in Figs. 2(b),(e) in the
main text. Also in this case, we observe a good agreement between measurements (a) and simulations (b).
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