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Abstract

Luttinger liquids occupy a special place in physics as the most understood case of essen-
tially quantum many-body systems. The experimental mission of measuring its main pre-
diction, power laws in observable quantities, has already produced a body of exponents in
different semiconductor and metallic structures. Here, we combine tunneling spectroscopy
with density-dependent transport measurements in the same quantum wires over more than
two orders of magnitude in temperature to very low temperatures down to ∼40 mK. This
reveals that, when the second 1D subband becomes populated, the temperature dependence
splits into two ranges with different exponents in the power-law dependence of the con-
ductance, both dominated by the finite-size effect of the end-tunneling process. This result
demonstrates the importance of measuring the Luttinger parameters as well as the number
of modes independently through spectroscopy in addition to the transport exponent in the
characterization of Luttinger liquids. This opens a new pathway to unambiguous interpre-
tation of the exponents observed in quantum wires.

Out of all many-body phenomena in quantum physics, Luttinger liquids occupy a paradig-
matic place as the most established case of interactions changing entirely the basic properties
of the underlying particles. Such a strongly correlated state is realized in one-dimensional
(1D) systems and is theoretically described by the hydrodynamic Tomonaga-Luttinger theory
[1–3]. On the microscopic level, the many interacting particles form density waves already
at low energy, producing interaction-dependent power laws in the correlation functions [4, 5]
and, therefore, in various observables, which is one of the hallmark predictions of Luttinger-
liquid physics. It was more recently generalized to the whole, usually nonlinear, energy band
[6–8]. The other signature prediction of Luttinger liquids is separation of the spin and charge
degrees of freedom for particles with spin, i.e., the velocities of spin and charge-density waves
are different. This was recently generalized to the whole nonlinear band in [9, 10].

The experimental challenge of observing the Luttinger-liquid behavior was first approached
by measuring the power law in transport experiments, where the tunneling conductance vanishes
at small voltages (called the zero-bias anomaly or ZBA) due to the vanishing of the density of
states for still gapless density-wave excitations at the Fermi energy [1, 2]. This was observed
in carbon nanotubes [11–13], in NbSe3 [14] and MoSe [15] nanowires, in GaAs 2D electron
gases (2DEG) with electrons localized at the edge by means of the quantum-Hall effect [16],
and later in quantum wires formed electrostatically [17, 18]. However, interpretation of the
observed exponents in terms of the Luttinger-liquid theory was always based on less reliable
theoretical assumptions about the interaction strength that is open to different interpretations
since different tunneling mechanisms such as bulk [19, 20], end [19, 21], and through-a-barrier
[22] tunneling processes predict different exponents, and are impossible to discriminate between
without independent knowledge of the Luttinger-liquid parameters. Separately, the spin-charge
separation was observed as two (rather than one) linear modes with different velocities around
the Fermi energy using angle-resolved photoemission spectroscopy in a strongly anisotropic
organic conductor TTF-TCNQ [23], in a high-Tc superconductor SrCuO2 [24] and also by us-
ing magnetotunneling spectroscopy in GaAs heterostructures [17, 18]. It was also measured in
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Figure 1: Schematics of the device. A Optical micrograph of the device, showing the very
regular array of wire gates as a uniform blur in the center. Near the top there are air bridges to
connect the p and wire gates. B Top view with the upper well (UW) and the electrostatic gates.
The narrow region labeled 2DEG (p-region) in the upper well remains 2D and is covered by
a gate ‘p’ to allow tuning of its density. C Side view with the double-well structure with the
centers of the upper well (UW) and lower well (LW) separated by d = 32 nm. The UW 2DEG
beneath the wire gate is formed into an array of 1D quantum wires by the negative voltage on
the wire gate Vg, and Vsd is the source-drain voltage between two wells. Other gates: AB is an
air bridge, BG is the barrier gate forcing current to flow only by tunneling; SG is the split gate
and MG is the mid-gate, injecting current only into UW.

time-of-flight experiments as two wavefronts propagating with different velocities in cold 6Li
atoms on an optical lattice [25–27] and in chiral quantum-Hall states in GaAs [28]. Such spec-
troscopy, in contrast to the power-law measurements, gives independent experimental access to
the interaction parameters directly.

Here, we choose a semiconductor wire to 2DEG tunneling setup [18] to measure transport
and spectroscopy in the same quantum wire simultaneously using the magnetotunneling tech-
nique. A highly optimized and well-filtered dilution refrigerator gives us access to a wide tem-
perature range from about 5 K down to 8 mK. By varying the electronic density systematically,
we find one or sometimes two Luttinger-liquid exponents in over two decades of temperature.
Then, we measure spectroscopy for each electronic density at low temperature to extract the mi-
croscopic parameters of the Luttinger liquid in our wires. By comparing our directly obtained
exponents with the predictions of the Luttinger-liquid theory, we find that the experimental val-
ues are an order of magnitude larger than the theoretical ones for the bulk-tunneling transport
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channel but are close to the predicted values for the end-tunneling regime. Therefore, we as-
sociate the appearance of the second exponent at higher densities with the occupation of the
second 1D subband, which is accessible in semiconductor wires and is indicated by the appear-
ance of the second Fermi point in the spectroscopic data. This measurement demonstrates the
coexistence of two fairly independent Luttinger liquids with two different sets of Luttinger pa-
rameters in the same wire, which could offer a new setup for Coulomb-drag experiments in 1D
[29–32]. This result shows that the challenge of measuring one of the main fundamental pre-
dictions of Luttinger liquids (bulk power laws) in semiconductor wires still remains open, and
raises the question of whether the ‘bulk’ exponents observed in some carbon nanotube experi-
ments [11–13] are also due to a similar finite-size effect, since they are so large that it requires
the assumption of very strong interaction strength to interpret them as the bulk effect.

Results

Transport exponent
In our experiment, the differential conductance G is measured in an out-of-wire tunneling setup
in a GaAs/Al0.33Ga0.67As double-well heterostructure in Fig. 1, with a finite, in-plane magnetic
field applied perpendicular to the wires.

We start by setting the wire-gate voltage to Vg = −630mV, close to pinch-off, so that only a
single 1D subband in the wires in the upper well is expected to be populated. The conductance
map for a wide range of interlayer voltages Vsd and magnetic fields B is presented in Fig. 2A-C.
The contribution to the signal from the wires shows two separate features, both with parabolic
dispersions away from Vsd = 0, and a zero-bias anomaly (ZBA) around the Vsd = 0 line, which
is almost independent of B over a wide range. The former is the nonlinear effect of the spin-
charge separation of the Fermi sea due to Coulomb interactions [10], which we have shown
can be described by two parabolae using the Fermi-Hubbard model [9], and the latter is the
linear effect of the vanishing density of states at the Fermi level, which can be described by the
Tomonaga-Luttinger model [1, 2]. The boundary between these two regimes can be found by
inspecting the conductance maps, e.g., |Vsd| = 0.25mV in Fig. 2C. In this work we are mostly
interested in the low-energy physics, so we focus on the ZBA.

One of the predictions of the Tomonaga-Luttinger model is that the conductance does not
depend on voltage Vsd and temperature T independently but is given by a universal scaling curve
of their ratio [33, 34],

G(Vsd, T ) = ATα cosh

(
eVsd

2kBT

) ∣∣∣∣Γ
(
1 + α

2
+

ieVsd

2πkBT

)∣∣∣∣
2

, (1)

where A is a temperature- and voltage-independent constant, α is a transport exponent predicted
by the Tomonaga-Luttinger model at T = 0 that depends on the interaction strength, Γ(x) is
the gamma function, kB is the Boltzmann constant, and a parameter describing the voltage
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Figure 2: A Map of the tunneling conductance G(B, Vsd) in the single-subband regime for
Vg = −630 mV at a lattice temperature of 8mK. B Derivative of G with respect to the magnetic
field B, dG/dB around the point labeled B+. The two solid lines mark the spin (vs) and charge
(vc) velocities around this point. C Derivative of G with respect to the voltage Vsd, dG/dVsd.
The black dashed lines around the Vsd = 0 line mark the extent of the linear region around the
Fermi energy, Vsd = ±0.25 mV, in which the conductance is mostly independent of magnetic
field (and momentum). The green and pink dashed lines on all panels mark the dispersions of
the spin and charge Fermi seas, respectively. The black dash-dotted line marks the dispersion of
the 2DEG in the bottom well measured by the Fermi edge of the quantum wire. The B± points
correspond to the ±k1D

F points of the 1D electrons. The details of fitting the features are given
in the text. D Voltage cut at B = 2T and T = 177mK for Vg = −650mV. The yellow rectangle
marks the linear regime |Vsd| < 0.25mV. E Rescaled conductance, G(eVsd/kBT

′)/G0, in the
linear regime in the 8 to 670 mK range, in which the electronic temperature T ′ is used to take
into account the electron-phonon decoupling at T < 65mK. The colors of the points correspond
to the temperatures shown in the bar on the right, except that gray is used for points outside
the linear regime |Vsd| < 0.25mV. The data are measured in the single-subband regime at
Vg = −650mV and B = 2T and the dashed-blue line is Eq. (1) with α = 0.36 in D and E.
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division between two tunnel junctions is not required since in our setup almost all the voltage
drops in across the tunnel barrier between two quantum wells. To check this prediction, we
measure voltage cuts in the whole map in Fig. 2A-C at a fixed magnetic field around the Fermi
point (where the signal is strongest) slowly increasing the temperature step-wise from the base
temperature of 8mK to 600mK to ensure sample thermalization throughout the process. The
temperature is controlled with a heater on the flange of the mixing chamber and measured with
a RuO2 thermometer.

Except where noted, all measurements were carried out in a heavily modified wet dilution
refrigerator that is optimized for achieving ultra-low temperatures [35]. Each lead is connected
through a thermocoax running down to the mixing chamber, which acts as an excellent mi-
crowave filter for frequencies above 3 GHz. The leads are then thermally anchored to the mix-
ing chamber using silver-epoxy microwave filters [36] offering > 100 dB attenuation above
200MHz. A 2-pole discrete component RC-filter board reduces the final bandwidth down to
a few kHz. Subsequently, each measurement wire runs through the mixing chamber, where
sintered-silver heat exchangers, each with an effective surface area of 3 m2, guarantee opti-
mal lead thermalization down to the lowest temperatures, thus allowing efficient electronic
Wiedemann-Franz cooling through the measurement leads on low-impedance devices. For
resistive devices, on the other hand, thermalization occurs predominantly by phonon cooling
through the sample substrate. Electronic sample temperatures down to 10 mK have been mea-
sured using quantum-dot thermometry in a GaAs 2DEG [37]. The present device, mounted on
a Kyocera leadless chip carrier with heat-sunk gold backplane, is resistive enough that the latter
process should dominate.

The results are presented as a superposition of all the measured voltage cuts at the same
magnetic field of B = 2T for each temperature over a wide range as a function of eVsd/kBT

′ in
Fig. 2E. An effective electron temperature T ′ = 3

√
T 3
0 + T 3 [18, 35] with an electron saturation

temperature T0 = 65 mK was used in place of T to take into account the saturation of the data
at T ≲ T0, which we interpret as an effect of electron-phonon decoupling. For low voltages, the
curves collapse on to the same universal curve as predicted by Eq. (1). However, they all become
non-universal beyond a certain voltage that marks a crossover to the nonlinear regime. There
the conductance needs rather to be described by a different, nonlinear model [6–10, 38–43]
dominated by the spin-charge splitting of the Fermi sea [9, 10, 43], which is characterised by an
essential dependence on magnetic field (i.e., on the momentum of the collective modes) and the
absence of the particle-hole symmetry and of the universal conductance scaling. To assess the
crossover point to the nonlinear regime in the voltage domain quantitatively, we select a single
voltage cut at an intermediate temperature and fit it with Eq. (1) using the exponent α as a fitting
parameter in Fig. 2D. In such a fit, we use the particle-hole symmetry of the linear Tomonaga-
Luttinger model to restrict the fitting window at low voltages: the points where the amplitudes
of the signal for positive and negative voltages ±Vsd start to deviate from each other marks the
crossover, giving us Vsd = 0.25mV as the range of validity of the low-energy regime. Note that
the data in Fig. 2E was measured in the single-subband regime at a relatively high density in the
wire, corresponding to a chemical potential µ = 2− 3meV, as can be seen directly in Fig. 2C.

6



101 102 103

T (mK)

10−1

100

101

G
(µ

S
)

A

−550 mV

−570 mV

−590 mV

−610 mV

−630 mV

−650 mV

−670 mV

α1

α2

−650−600−550
Vg (mV)

100

150

200

v
(k

m
/s

)

C vs vc vF

−650 −600 −550
Vg (mV)

0.75

1.00

1.25

d
im

en
si

on
le

ss
u

n
it

s D
free Ks Kc

−650 −600 −550
Vg (mV)

0.0

0.2

0.4

0.6

d
im

en
si

on
le

ss
u

n
it

s

B

αend αbulk α1 α2

Figure 3: A Conductance at Vsd = 0 as a function of temperature on a logarithmic plot for the
gate voltages Vg given in the legend. The blue and magenta dashed lines are the power-law fits
giving the values of the exponents in B. The details of the fitting procedure are given in the text.
B The values of two exponents α1 (blue squares) and α2 (magenta squares) as a function of Vg

extracted from the conductance data in A. The bulk-transport exponent αbulk (black squares)
and the end-transport exponent αend (green squares) are evaluated for the Luttinger parameters
in D using Eq. (3) and Eq. (4), respectively. C The velocities of excitations of spin (vs, green
squares) and charge (vc, pink squares) extracted from the spectroscopic maps, e.g., Fig. 2C, as
the linear slopes around the B+ point, and the Fermi velocity vF extracted from the distance
between the B± points, see details in the text. D The Luttinger parameters for spin (Ks, green
squares) and charge (Kc, pink squares) obtained from the data in C using Kν = vF/vν . The
blue dashed line is the non-interacting limit of these parameters, Ks,c = 1.
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For different densities in the wires, the crossover point is different and is generally expected to
be smaller than Vsd = 0.25mV for lower densities.

Now we vary the density in the wires by measuring the conductance for a range of Vg and
over a wide range of about three decades in temperature in the middle of the linear regime,
at Vsd = 0. The result is presented on a log-log scale in Fig. 3A. According to Eq. (1), the
Luttinger-liquid exponent α should be directly visible as a straight line in this figure. What we
in fact observe is two different exponents in the range α = 0.3−0.6, summarized by the blue and
magenta points in Fig. 3B. In extracting the exponents, we exclude temperatures T > 1 − 3K
from the analysis since the thermal energy is already in the nonlinear regime corresponding to
eVsd ≳ 0.25meV. For the lowest temperatures of T < 35 − 65mK, the signal saturates within
the accuracy of our experiment, which we attribute to decoupling of electrons from phonons at
these temperatures, so that, below this point, the small residual heat load heats the sample until
the heat can be removed by the phonons. We therefore use

G(Vsd = 0, T ) = A
(
T 3
0 + T 3

)α
3 , (2)

instead of Eq. (1) to fit the lower-temperature exponents, α2 for Vg > −670 mV and α1 for
Vg = −670 mV. The higher-temperature exponent α1 for Vg > −670 mV starts at already high
enough temperatures that we can ignore the low-temperature saturation and we use Eq. (1) to
fit it, see the dashed lines in Fig. 3A.

Magnetic-field dependence
The magnetic-field dependence of the tunneling exponents was investigated separately, in a dif-
ferent dilution refrigerator with a base temperature below 60 mK, but with less noise filtering
and hence higher electron heating. Fig. 4A shows the rescaled conductance G(eVsd/kBT

′)/G0

as in Fig. 2E for B = 2T, from which we deduce a minimum electron temperature of T0 =
130mK. From similar plots and fits for different magnetic fields, the B dependence of α is de-
termined (see Fig. 4C). The transport Luttinger-liquid exponent α remains largely momentum-
independent within the field range B− to B+ (B− = 0.70T, B+ = 3.13T for the value of Vg in
this figure), i.e., between the ±kF points, as expected for the Tomonaga-Luttinger theory [44].

However, there appears to be a significant reduction of the exponent α for B > B+, i.e.,
for k > kF. We have previously observed signatures of this behavior in the exponent of the
voltage dependence in [8]. Such a reduction could be a hint of the spin-charge separation of
the whole Fermi sea beyond the linear regime [10]. The emerging theory of nonlinear Luttinger
liquids has already predicted a second linear Luttinger liquid around the 3kF point as a result
of the spin-charge splitting of the Fermi surface [9], with the second Luttinger liquid consisting
of only the charge (density-wave) modes. On the qualitative level, this prediction implies a
reduction of the transport exponent calculated in Eq. (3) since only the charge modes (with the
same Luttinger parameters as around the kF point) contribute to it under the sum over ν, which
is in agreement with our observation in Fig. 4C. We stress here that a transport theory still needs
to be developed to make a quantitative interpretation of such an effect in our data.
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Figure 4: A Rescaled conductance, G(eVsd/kBT
′)/G0, between 130 and 310 mK, where T ′

is the effective electronic temperature allowing for electron heating, for T0 = 130mK, for
measurements in a cryostat with more noise heating. The points are colored according to the
temperature scale shown on the color bar on the right. The gray points are outside of the linear
regime, |Vsd| > 0.25 mV, and are excluded from the fit. B Conductance at Vsd = 0 as a function
of temperature on a log-log plot. The dashed blue line is a fit to Eq. (1) with α = 0.58, which
has a relatively large statistical uncertainty of about 25%. The data in A and B were measured
at B = 2 T. C The blue points show the B-field dependence of α and the orange point is the
interpolated value of α1 from Fig. 3B for the lower-temperature experimental run. All these
data were measured in the single-subband regime at Vg = −660mV, for which B+ = 3.13T.
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Spectroscopy
Before we proceed to interpretation of the measured transport exponents, we extract another
piece of information from our data. In the nonlinear regime away from the Vsd = 0 line, the
spin- and charge-density-wave modes fill their corresponding Fermi seas [9, 10], manifesting
themselves as two parabolic dispersions with different masses, which we also observe in our
data—see the green and pink dashed lines in Fig. 2C. Close to the Fermi points ±kF, these
pairs of dispersive lines converge in the linear low-energy region of Vsd = 0, allowing us to
extract the two microscopic parameters of the linear Luttinger liquid, the renormalized velocity
vν and the dimensionless Luttinger parameter Kν directly. Here, the spin-charge separation
effect doubles the number of these parameters due to lifting of the degeneracy between the
charge (ν = c) and spin (ν = s) degrees of freedom.

Focusing our analysis around the +kF Fermi point now, we fit two slopes in our data, see the
two black lines converging on the B+ point in Fig. 2B as an example. The spin line produces
a maximum in G, which is clearly visible as a white line in the hole sector (Vsd < 0) in the
B-derivative in Fig. 2B and in the Vsd-derivative in Fig. 2C. The charge line, on the other hand,
represents a drop in conductance, where many-body excitations cease to be possible, and, being
steeper, shows as a clear minimum only in the B-derivative in the hole sector, which makes
it less visible [20]. However, it still produces a maximum in G in the particle sector, which
has a good visibility as a white line in the Vsd-derivative in our experiment. From the slopes,
we extract the two gradients ∆Eν/∆B. In order to convert them to a pair of velocities, we
use the value of d = 32 nm as vν = ∆Eν/ (ed∆B). The velocities obtained in this way for
the whole range of Vg that we used are presented in Fig. 3C. The error bars there are reduced
due to stability of the spin and charge modes in the whole band, so the fitting of two parabolas
improves the accuracy of extracting their slopes at the Fermi points. The data points on this
figure were always extracted for the first, highest-density 1D subband.

Simultaneously, we measure the distance between the two points (B+ − B−) at which the
1D dispersion crosses the Vsd = 0 line (see, e.g., Fig. 2C). This difference gives the Fermi
velocity of the 1D system as vF = ed (B+ −B−) / (2m0), where we use the value of the
single-particle electron mass in GaAs, m0 = 0.0525me, that was recently measured in [45].
The Fermi velocities for the first, highest-density 1D subband for all measured values of Vg are
presented as black squares in Fig. 3C. They increase as Vg becomes less negative, since that
increases the 1D electron density n1D = 2vFm0/(πℏ).

Together with the pairs of values of vc and vs, this information is sufficient to extract the
other dimensionless Luttinger parameters for a Galilean-invariant system as Kν = vF/vν [46].
The obtained values of these dimensionless Luttinger parameters are presented in Fig. 3D. For
more positive Vg, n1D increases, so the interaction parameter rs = 1/ (2a′Bn1D) decreases,
where a′B is the Bohr radius of conduction electrons in GaAs. Therefore, as Vg becomes more
positive, both dimensionless Luttinger parameters Kν tend towards their non-interacting limit
Kc = Ks = 1, as expected.
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Figure 5: A Saturation exponents n obtained from fitting the low-temperature data in Fig. 3A to
G ∝ (T n

0 + T n)
α
n for Vg = −550,−570 and −590mV. B Saturation temperatures T0 obtained

in the same fit for the full range of Vg. C Voltage cut at a high density, Vg = −590 mV, and
low temperature, T = 120mK. The dashed lines are Eq. (1) with two exponents α1 = 0.28
(blue line) and α2 = 0.46 (magenta line) obtained by fitting the corresponding regions in the
data in this voltage cut. The crossover voltage between the two exponents is Vsd = 0.12 mV.
D-F Evolution of G(B, Vsd) as the finger-gate voltage is decreased, for Vg = −630,−590 and
−550mV. The negative of the second-order derivative of the conductance G with respect to
the magnetic field B is plotted, in which the maximum of the signal corresponds to the centers
of the lines. From D to F, more subbands are populated, as can be seen by the appearance of
additional crossings around kF,(1,2,3). The labels (c, s), (1, 2, 3) mark the nonlinear spinon and
holon modes away from the linear region, crossings of which at the Fermi level form the Fermi
points for each subband.

Discussion
We now interpret the transport data quantitatively, and start from the conductance measured at
zero Vsd in Fig. 3A. The low-temperature part of these data is in the linear regime, where the
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Tomonaga-Luttinger model is applicable. The extent of this region can be estimated from the
voltage that separates the linear from the nonlinear energy regions in the single-subband regime
in Fig. 2C, Vsd = 0.25 mV, as T = 0.25mV · e/ (3kB) ≃ 1 K, where the numerical factor of
3 between Vsd and T was established phenomenologically in the experiment on semiconductor
wires in [18]. We ignore data above a slightly higher temperature T > 2− 3 K in Fig. 3A since
the chemical potential is larger at higher densities, extending the linear regime to somewhat
higher values of Vsd.

At Vg = −670mV, which corresponds to the lowest electron density in the wires that we
measure, only the lowest 1D subband is occupied and we observe only a single slope in conduc-
tance, corresponding to a single power law with the exponent α1 going for well over a decade
from T = 1K down to about 60mK on the log-log scale in Fig. 3A. Below T ≃ 60mK the
conductance saturates at a constant value that originates most likely from thermal coupling bot-
tlenecks common at millikelvin temperatures, making even small parasitic heat sources balance
out the limited cooling power and keeping the electronic temperature above that of the cryostat.
At low densities, the signal-to-noise ratio is already too small to extract any information about
the nature of this saturation experimentally. However, at the highest densities that we measure,
corresponding to Vg = −590... − 550mV, the signal becomes strong enough to see the shape
of the bending from the power law to the constant below 60mK. In order to do a quantitative
assessment in this regime, we construct phenomenologically the formula G ∼ (T n

0 + T n)α/n,
which describes interpolation between the Luttinger-liquid power law G ∼ Tα at T ≫ T0 and
a saturation tail G−G(T = 0) ∼ T n at T ≪ T0. Using n and T0 as fitting parameters, we find
their values in Fig. 5A and B.

The statistical error for n in Fig. 5A is smallest for the highest density, since the low-
temperature conductance becomes large enough to see the onset of saturation move to well
below 60 mK, giving more reliably n = 3 for Vg = −550 mV, but the amplitude of the signal
decreases rapidly with decreasing density, giving a less-defined n = 3 or 4 for Vg = −570 and
−590 mV. Altogether, the current data, given the current state of the art, do not select a particu-
lar exponent for the saturation tail but rather restrict it to the range n = 3− 4. These exponents
are close to but systematically smaller than the n = 5 prediction of the purely electron-phonon
mechanism in 3D bulk [47], which suggests an additional cooling process such as out-diffusion
of electrons, i.e., Wiedemann-Franz cooling [48, 49]. The fitted values of T0 in Fig. 5B are
well-defined for all Vg, showing a two-fold decrease when the second subband is occupied,
which could indicate additional cooling due to the Wiedemann-Franz process since the higher
electronic density in the wires also increases the conductance through the whole structure some-
what. For the sake of concreteness, we use n = 3 in the formula for conductance in Eq. (2) and
for the electronic temperature in T ′ that we used to fit the Luttinger-liquid exponents in Fig. 3A.

Continuing analysis of the zero-voltage conductance in Fig. 3A, we consider the whole
temperature range for higher densities that correspond to larger values of Vg > −670mV. Below
an intermediate temperature of about 400mK, a second exponent α2 appears and both exponents
α1, α2 evolve with Vg, see the blue and magenta squares in Fig. 3B. The main physical process
behind these power laws can be assessed by comparing the directly measured transport exponent
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with the prediction of the Tomonaga-Luttinger theory for the bulk- and end-tunneling regimes
[19, 20, 22, 50]

αbulk =
∑

ν=s,c

Kν +K−1
ν − 2

4
, (3)

αend =
K−1

c +K−1
s − 1

2
, (4)

see the theoretical details in Supplementary Material. The results are plotted as the black
and green squares, respectively, in Fig. 3B. The microscopic parameters vν and Kν for the
Tomonaga-Luttinger model are readily measured as a function of Vg using transport spec-
troscopy in the same sample as used in Fig. 3C and E. Since both α1 and α2 are about an
order of magnitude larger than the predicted value of αbulk and are of the same order as αend,
we conclude that both transport exponents originate mainly from the end-tunneling process.

Following this conclusion, we attribute the appearance of the second exponent to occupation
of the second 1D subband in the quantum wire. A simple model describing the conductance
measured in our experiment at low energy can be constructed by treating two subbands as a pair
of conductors connected in parallel. The electrons can enter either of the two subbands from
the same 2DEG in the upper well and tunnel from either of the subbands to the 2DEG in the
bottom well independently, see the sketch in Fig. 1. The total conductance, then, is the sum of
two individual conductances,

G = A1min (T, T1)
α′
1 + A2min (T, T2)

α′
2 , (5)

where the parameters Ai, α′
i, and Ti are different for each of the two subbands. Since α1 < α2

for each gate voltage in Fig. 3B, α′
2 has to be attributed to the second subband, which has a

smaller density and therefore larger rs, leading to stronger interaction effects. The min functions
in this equation embody the applicability limit of the linear Tomonaga-Luttinger theory. Beyond
the energy kBTi, the power-law increase of the conductance ceases and we model (very) crudely
the transport for the nonlinear theory at small momenta corresponding to B = 2T as a constant,
motivated by our observation in the voltage cuts in Fig. 2E, that the gray points in the nonlinear
region lie systematically below the blue dashed power-law curve. We have already estimated
T1 ≃ 1K for the first subband. For the second subband, T2 ≃ 400mK is somewhat smaller,
owing to the lower density, which results in a smaller chemical potential and therefore in a
smaller extent of the linear region.

The whole dataset in Fig. 3A can be explained with these values of Ti, a pair of amplitudes
A1 < A2, and a pair of α′

1 > α1, α′
2 > α2, in which the latter is due to the total conductance in

Eq. (5) always being a sum of two contributions. At low temperatures T < T1, T2, the second
contribution, with the larger exponent α′

2, dominates, but the smaller exponent α′
1 reduces the

effective value α2 in G to α′
1 < α2 < α′

2. At high temperatures T2 < T < T1, the first
contribution with the smaller exponent α1 dominates in Eq. (5) but the second contribution is
still a constant, acting as the exponent α2 = 0, and reducing α1 in G to α1 < α′

1. Note that
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the bulk-tunneling process is always present in our experiment since the electrons can tunnel
from any position in the wire to the 2DEG in the bottom well through the same tunneling
barrier. This process occurs in parallel with the end-tunneling process, so we always need to
add its contribution AbulkT

αbulk to the conductance in Eq. (5). However, since α1,2 ≫ αbulk the
contribution from the bulk-tunneling process (with much smaller exponent) is much smaller for
large enough T . We were unable to observe it independently down to the smallest T0 ≃ 35mK
seen in our experiment, although it is possible that it explains some or all of the saturation itself.

By measuring a voltage cut (G as a function of Vsd) at a higher electron density at Vg =
−590mV and at an intermediate temperature of T = 120mK above T0 but below T1, we find
further evidence for the two-subband interpretation. Fitting the data in Fig. 5C with Eq. (1)
we find two exponents in the linear regime of |Vsd| < 0.25mV: α2 = 0.46 at smaller Vsd and
α1 = 0.28 for larger Vsd. Within the relatively large uncertainty of this fit (of about 20%) these
two exponents are the same exponents α1 and α2 in Fig. 3B for Vg = −590mV measured in
G at Vsd = 0 as a function of T . The crossover point in voltage at Vsd = 0.12mV gives the
same crossover temperature (within error bars) of T2 = 0.12mV · e/ (3kB) ≃ 450mK that we
observe in the temperature-resolved measurements of G at Vsd = 0 in Fig. 3A.

In the spectroscopic maps that we measure as G in a wide range of Vsd and B covering the
whole energy band for the same densities corresponding to Vg = −630,−590,−550mV, the
second (and third) subband also appears in the form of the second (and third) pair of the spin
charge parabolae, see Fig. 5D-F. In this figure, the second (and third) sets of parabolae marked
by (s, c), (1, 2, 3) define the second (and third) Fermi points marked by kF,(1,2,3) that correspond
to successively smaller densities of the higher 1D subbands in our quantum wires. While the ap-
pearance of the second transport exponent in the temperature-resolved measurements in Fig. 3A
generally correlates with the appearance of the second subband in Fig. 5D-F, the second sub-
band in Fig. 5D-F appears at somewhat higher Vg than the second exponent. This happens since
the ZBA hinders the low-energy sector up to a finite value of Vsd in the transport spectroscopy
measurements, e.g., up to Vsd = 0.25mV in Fig. 2C. In order for the second subband to be
visible, the density has to become large enough for its chemical potential to exceed this thresh-
old. For the lowest Vg = −550 mV that we investigated, the crossover region in the transport
exponent in Fig. 3A around T = 400mK widens, which hints at a third exponent developing in
between α1 and α2, corresponding to the appearance of the third subband in Fig. 5F. However,
the extent of this region in Fig. 3A is still too small (narrower than a decade in temperature) to
draw a definitive conclusion.

Methods

Sample preparation
All out-of-wire tunneling devices measured in this work were fabricated using GaAs/AlGaAs
heterostructures grown via molecular-beam epitaxy (MBE), and composed of two identical
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18 nm quantum wells (QWs) separated by a 14 nm-thick GaAs/AlGaAs superlattice barrier.
Si-doped layers on the far side of each well lead to electron densities of 2.85(1.54)× 1015 m−2

and mobilities of 191(55)m−2V−1s−1 in the top (bottom) wells, as measured by the Shubnikov–
de-Haas effect at 1.4K.

Ti/Au gates were patterned using a combination of photo- and electron-beam lithography,
see Fig. 1. Electrical contact to both wells was achieved via standard AuGeNi ohmic contacts.
Gates were then biased to inject current from one ohmic contact through the 1D channel defined
only in the upper well by the split gates and mid-gate. The current was then carried by electrons
tunneling to or from the lower well in the central array of 1D wires, and it then flowed out
beneath the barrier gate (which blocked the upper well) to the other ohmic contact (see [45] for
further details).

Our spectroscopy technique allows us to probe the dispersion of a given system (e.g., a 1D
array of wires) with respect to a known standard (e.g., a 2D Fermi liquid) by measuring the
tunnel current between both. This is given by the convolution of the two spectral functions as
[20]

I (B, Vsd) =

∫
d2kdε

(
fUW
T (ε− eVsd)− fLW

T (ε)
)

AUW (k, ε)ALW (k+ ed (n×B) /ℏ, ε− eVsd) , (6)

where AUW/LW (k, ε) and f
UW/LW
T (ε) are the spectral functions and the Fermi distribution of

the electrons in the upper/lower wells (UW/LW), −e is the electron charge, d is the distance
between the wells, n = ẑ is the normal to the 2D plane. In order to map the full dispersion
of each system, we then measure the differential conductance G = dI/dV as a function of
both energy ε and momentum ℏk. This is achieved by simultaneously applying a DC bias eVsd

between the layers (i.e., offsetting their Fermi energies) and varying the in-plane magnetic field
B applied in the direction perpendicular to the wires B = −Bŷ, so that the momentum of the
tunneling electrons is shifted by edB in the x-direction.

Conductance measurements
In this work, we measure the differential conductance between the two wells, G (B, Vsd) =
∂Vsd

I (B, Vsd). In order to achieve low electron temperatures, the measurement lines were fil-
tered by a two-stage RC low-pass filter and subsequently passed through inductive microwave
filters. G was measured using a lock-in amplifier at low frequency (17.77Hz) with a small ac
excitation of 2–6µV rms. The line resistance was calibrated on the first conductance plateau of
the split-gate characteristic, and subsequently subtracted.

When the wires are completely pinched off (Vg < −700mV), the transport is purely in the
2D–2D tunneling regime, since there is still a non-negligible ‘parasitic’ area of 2DEG that takes
current from the injector to the 1D wires, see Fig. 1. The current in this regime is described by
the 2D Fermi liquid in both wells. Its spectral functions AUW/LW(k, ε) = δ(ε − ε2D(k)) are
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centered on parabolae

ε2D(k) =
ℏ2

(
k − k2D

F,L/F

)2

2m∗
2D

, (7)

with the effective mass m∗
2D renormalised by the Coulomb interaction according to the Landau’s

Fermi-liquid theory; the Fermi wave-vectors are k2D
F,U and k2D

F,L, respectively. Substitution of
these spectral functions in Eq. (6) models two parabolic dispersions in the conductance. The
peaks in our data are fit well by this model with d = 32 nm and m∗

2D = 0.062me, where me is
the free-electron mass, in the same way as it was in [10].

When reducing Vg, the tunnel current in our device has two contributions. One is from the
tunneling through the array of 1D wires to the lower 2DEG (which we are interested in) and the
other is from the tunneling through the 2D ‘p’ region. This parasitic tunneling leads to uncer-
tainties in the extraction of the tunneling exponents and, therefore, has to be accounted for. To
do so, we measure the conductance as a function of Vg past wire pinch-off and observe that the
remaining 2D–2D conductance is linear in Vg. We therefore extrapolate the linear dependence
to the Vg of interest and subtract it from the measured conductance. Such subtraction of the
parasitic 2D–2D signal is performed in all measurements of the wires, taking the uncertainties
into account in the overall error estimates.
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1 Tomonaga-Luttinger theory
Here, we briefly summarise the Tomonaga-Luttinger theory [1] that predicts a particular relation
between the transport exponent α and the microscopic parameters Kν , vν .

The Tomonaga-Luttinger model, describing interacting one-dimensional electrons with spin-
1/2 after the bosonisation in the low-energy regime, is given by the following Hamiltonian [2,
3],

H =

∫
dx

∑

ν=s,c

vν
2π

[
Kν (∇θν(x))

2 +
(∇φν(x))

2

Kν

]
, (S1)

where vν are the renormalised velocities of the collective modes, Kν are the dimensionless
Luttinger parameters describing the interaction strength for the spin (s) and charge (c) degrees
of freedom, and the two pairs of the bosonic θν(x), φν(x) are canonically conjugated variables,
[φν(x),∇θν′(x

′)] = iπδνν′δ (x− x′).
The Green function for the original fermions was evaluated based on this model also using

the bosonization technique in [4, 5] as

G± (x, t) =
±eik

1D
F x

2π
√
x− vst± ir

√
x− vct± ir

[
r2

x2 − (vct∓ ir)2

]γc [ r2

x2 − (vst∓ ir)2

]γs
,

(S2)
where γν = (Kν + K−1

ν − 2)/8, the ± sign marks the particle and hole sectors, k1D
F is the

Fermi momentum, and r is a small but finite short-range cutoff. This result gives explicitly
the complete information about the static, dynamical and spectral properties of the electrons
described by the model in Eq. (S1).

1.1 Bulk-tunneling regime
The electrons can tunnel from the wire in the upper quantum well to the 2DEG in the lower
well at any point along the wire (see the scheme of our device in Fig. 1). The electric current
that we measure in this perpendicular geometry is given by the tunneling conductance as the
convolution of two spectral functions [6], which we have already quoted in Eq. (6). Taking the
limit of zero temperature T → 0 and substituting AUW = A+

1D and ALW = A−
2D, for instance for

the positive voltages Vsd > 0 for which electrons tunnel from the wire to the 2DEG, we obtain

I(B, Vsd) =

∫
dk

∫ 0

eVsd

dεA−
1D (k, ε)A+

2D (k + edB, ε− eVsd) . (S3)

Here the spectral function of the quantum wire is given by the Fourier transform of the Green
function in Eq. (S2) as

A±
1D (k, ω) =

i

2π

∫
dt dx ei(ωt−kx)G± (x, t) . (S4)
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The spectral function of 2DEG has the δ-functional form centered at the single-particle dis-
persion in Eq. (7), A±

2D (k, ε) = δ (ε∓ ε2D(k)) θ (±ε2D(k)) where θ(x) is the step function.
Since in the 1D-2D geometry only the spectral function of the 2DEG depends on ky in Eq. (6)
the integral along this direction can be absorbed into it as A±

2D (kx, ε) =
∫
dkyA

±
2D (k, ε). The

resulting projected onto the direction of the wire spectral function of the 2DEG is

A±
2D (kx, ε) =

√
m∗

2D

2ℏ2
θ
(
±ε− v2DF,Lℏ

(
kx + k2D

F,L

))
√
±ε− v2DF,Lℏ

(
kx + k2D

F,L

) , (S5)

where v2DF,L = ℏk2D
F,L/m

∗
2D is the Fermi velocity of 2DEG.

Evaluation of the integrals in Eq. (S3) for both positive and negative voltages Vsd gives the
same the current that is independent of the magnetic field B and has a power-law dependence
on the voltage Vsd, I(B, Vsd) ∼ |Vsd|1+αbulk , with the exponent given by the dimensionless
Luttinger parameters Kν as

αbulk =
∑

ν=s,c

Kν +K−1
ν − 2

4
. (S6)

The conductance can then be found as a derivative, G(Vsd) = ∂Vsd
I(B, Vsd), giving the transport

exponent of the Tomonaga-Luttinger model as

G(Vsd) ∼ |Vsd|αbulk . (S7)

This power-law vanishing of conductance at small voltages is a signature effect of Luttinger
liquids. It is a reflection of a more generic property: the density of states ρ(ε) for the model in
Eq. (S1) vanishes at the Fermi energy in the same power-law fashion, ρ(ε) ∼ |ε|αbulk .

1.2 End-tunneling regime
The relation between the transport exponent and the microscopic Luttinger parameters in
Eq. (S6) was derived under the assumption of an infinitely long wire. When the length is fi-
nite, the bound states at the end provide another local channel for tunneling of the collective
modes of Luttinger liquid to the 2DEG in the bottom well. Such a local transport process also
results in a power-law dependence of the conductance on voltage Vsd, in the same way as the
non-local tunneling in the previous subsection but with a modified exponent [7, 8], in which the
Friedel oscillations are mixed in on top of the bulk Luttinger exponent [9, 10].

The application of the hard-wall boundary condition at x = ±L/2, where L is the length of
the wire, to the model in Eq. (S1) leads to the modification of its eigenmodes near the edges.
Such a modification, in turn, makes the Green function in Eq. (S2) explicitly dependent on two
coordinates x, x′ via multiplication by a finite-size factor as [10]

G±(x, 0;x′, t) = G±(x−, t)

[
x2
+ − x2

−
x2
+ + (vct)

2

]γc [
x2
+ − x2

−
x2
+ + (vst)

2

]γs

, (S8)
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where x− = x−x′ and x+ = x+x′+L in the right-hand side are the sum and difference of the
two separate spatial coordinates of the Green function. Then the conduction is evaluated using
the same steps as in the bulk case, in Eqs. (S3)-(S7). The only difference is the need to integrate
the Green function in Eq. (S8) over sum of coordinates x+ in a small region around the end of
the wire to select the the localised end-state before inserting it into the Fourier transform over
the difference of the spacial variables in Eq. (S4). The result at the end is the same conductance
as in Eq. (S7) but with the exponent

αend =
K−1

c +K−1
s − 1

2
. (S9)

So far, the conductance was derived at T = 0 in this section. Introduction of a finite temper-
ature smears the power-law dependence on voltage at low voltages, resulting in the additional
temperature dependence in Eq. (1), in which the exponent α is the same αbulk in Eq. (S6) and
αend in Eq. (S9) for both tunneling processes as in the T = 0 case.
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Figure S1: The values of two exponents α1 (blue squares) and α2 (magenta squares) as a func-
tion of Vg extracted from the conductance data in Fig. 3A. The bulk transport exponent αbulk, i
(black and gray squares) and the end transport exponent αend, i (green and the light squares) are
evaluated for the Luttinger parameters in Fig. 3D using Eq. (S6) and Eq. (S9) respectively. The
index i = 1, 2 labels the first and the second subband, when the latter appear at Vg > −620mV.
The values for the second subband are estimates only, since they are, in turn, based on the esti-
mates of Ks,2 and Kc,2 in Fig. S2.
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Figure S2: A The spin (vs,i, green squares) and charge (vc,i, pink squares) velocities extracted
from the spectroscopic maps, e.g., Fig. 2B, as the linear slopes around the B+ point and the
Fermi velocity extracted as the distance between the B± points, see details in the text. B The
spin (Ks,i, green squares) and charge (Kc,i, pink squares) obtained from the data in A using
Kν = vF/vν . The blue dashed line is the non-interacting limit of these parameters Ks,c = 1. The
index i = 1, 2 labels the first and the second subband, when the latter appear at Vg > −620mV.
The Fermi velocity of the second subband vF,2 is directly extracted from the data. The spin and
charge velocities for the second subband, vc,2 and vs,2, are estimates only.

6



References
[1] T. Giamarchi. Quantum physics in one dimension. Oxford: Clarendon Press, 2003.

[2] S. Tomonaga. “Remarks on Bloch’s Method of Sound Waves applied to Many-Fermion
Problems”. In: Prog. Theor. Phys. 5 (1950), p. 544.

[3] J. M. Luttinger. “An Exactly Soluble Model of a Many-Fermion System”. In: J. Math.
Phys. 4 (1963), p. 1154.

[4] V. Meden and K. Schönhammer. “Spectral functions for the Tomonaga-Luttinger model”.
In: Phys. Rev. B 46 (1992), pp. 15753–15760.

[5] Johannes Voit. “Charge-spin separation and the spectral properties of Luttinger liquids”.
In: Phys. Rev. B 47 (1993), pp. 6740–6743.

[6] Alexander Altland et al. “Magnetotunneling as a Probe of Luttinger-Liquid Behavior”.
In: Phys. Rev. Lett. 83 (1999), p. 1203.

[7] C. L. Kane and Matthew P. A. Fisher. “Transmission through barriers and resonant
tunneling in an interacting one-dimensional electron gas”. In: Phys. Rev. B 46 (1992),
p. 15233.

[8] Yaroslav Tserkovnyak et al. “Interference and zero-bias anomaly in tunneling between
Luttinger-liquid wires”. In: Phys. Rev. B 68 (2003), p. 125312.

[9] M. Fabrizio and Alexander O. Gogolin. “Interacting one-dimensional electron gas with
open boundaries”. In: Phys. Rev. B 51 (1995), p. 17827.

[10] Sebastian Eggert, Henrik Johannesson, and Ann Mattsson. “Boundary Effects on Spectral
Properties of Interacting Electrons in One Dimension”. In: Phys. Rev. Lett. 76 (1996),
p. 1505.

7


