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Fully autonomous tuning of a spin qubit
 

Jonas Schuff    1  , Miguel J. Carballido    2,5, Madeleine Kotzagiannidis3, 
Juan Carlos Calvo3, Marco Caselli3, Jacob Rawling3, David L. Craig1, 
Barnaby van Straaten1, Brandon Severin1, Federico Fedele    4, Simon Svab    2, 
Pierre Chevalier Kwon2, Rafael S. Eggli    2, Taras Patlatiuk2, Nathan Korda3, 
Dominik M. Zumbühl    2 & Natalia Ares    4 

The development of large-scale semiconductor quantum circuits is limited 
by the difficulties involved in efficiently tuning and operating such circuits. 
Identifying optimal operating conditions for these qubits is, in particular, 
complex and involves the exploration of vast parameter spaces. Here we 
report the autonomous tuning of a semiconductor qubit, from a grounded 
device to Rabi oscillations. Our approach integrates deep learning, 
Bayesian optimization and computer vision techniques. We demonstrate 
this automation in a germanium–silicon core–shell nanowire device. To 
illustrate the potential of full automation, we characterize how the Rabi 
frequency and g-factor depend on barrier gate voltages for one of the 
qubits found by the algorithm. We expect our automation algorithm to 
be applicable to a range of semiconductor qubit devices, allowing for the 
statistical studies of qubit-quality metrics.

Spin qubits in semiconductor devices could be used to build a universal 
quantum computer1–11. Recent work with such systems has demon-
strated two-qubit gates with fidelities that surpass the thresholds 
for fault-tolerant computing4,12,13 and hot qubits that can address  
the bottleneck of millikelvin refrigeration7,14,15. This has been  
accompanied by advances in the wafer-scale manufacturing of 
these devices16,17 as well as their efficient testing at cryogenic 
temperatures18,19. However, semiconductor quantum circuits are cur-
rently limited to 12 qubits in one device16, despite the fact that modern 
semiconductor fabrication techniques could support the integration 
of millions of qubits.

A key reason for this limitation is the intricate tuning required 
to reach and maintain qubit operation. A range of approaches have 
been explored to automate single stages of this process, including 
defining double-quantum-dot (DQD) confinement potentials20–23, 
navigating to specific charge transitions24–32, fine tuning of charge 
transport features33 and interdot tunnel couplings34,35, as well as 
device characterization36–40. These works offer a glimpse into the 
potential of machine learning for full qubit tuning automation, but 
the challenge remains.

Here we report a fully autonomous tuning process that can encode 
a qubit without the need for human intervention. The process of  
going from a fully de-energized device to the observation of Rabi oscil-
lations, a definitive indicator of qubit functionality, typically takes 
human experts weeks, or even months, to complete. Our algorithm 
(Fig. 1), deployed on a DQD device, can complete the tuning process 
within three days. Our approach integrates deep learning, Bayesian 
optimization and a computer vision technique, and its success lies 
in the ability of the algorithm to navigate through various stages 
of the tuning process, efficiently handling challenges and making 
accurate decisions.

Device architecture and read-out technique
We use a Ge–Si core–shell nanowire device (Extended Data Fig. 1) in 
which holes are confined in depletion mode41. The electrical potential 
is set by a number of gate electrodes. Two plunger gate electrodes 
predominantly shift the electrochemical potential in the left and right 
dots with voltages VLP and VRP, respectively. The remaining gate elec-
trodes primarily control the barriers between the DQD and the leads 
as well as the interdot coupling. One of the plunger gates is connected 
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candidate in that stage’s list of candidates. This process dynamically 
creates a search tree (Supplementary Fig. 7 shows examples from real 
tuning runs). If a different branch has proven to lead to a qubit, some 
branches of the tree may be left unexplored. These are indicated by 
dashed lines in the tree in Fig. 1.

We describe each stage in this section. A list of all stages and sub-
stages is provided in Extended Data Table 1. More details are provided 
in Methods and details on the stage structure and composition of 
candidates for each stage are provided in Supplementary Section 8.

The first stage identifies the gate voltage settings that define the 
DQD confinement potential. It determines a lower and upper limit for 
each barrier gate voltage, which is used in subsequent stages.

Building on the methodologies of refs. 21,22, a hypersurface model 
is created to distinguish between conducting and non-conducting 
regions within the three-dimensional barrier gate voltage space. The 
algorithm takes current measurements along random directions within 
this space (Fig. 2a(i)), and models the hypersurface with a Gaussian 
process (GP; Fig. 2a(ii)). We expect a DQD potential forming near a 
corner of the hypersurface in the first octant. To pinpoint this corner, 
three specific current measurements are conducted using only one of 
the gate electrodes at a time. The resulting coordinates are then pro-
jected onto the model of the hypersurface, setting the lower bounds 
of the region in which DQDs are likely to be found. The upper bounds 
of the region are given by the coordinates of the single gate pinch-off 
voltages, that is, when the current drops to a value that is indistinguish-
able from the noise floor. The resulting box is labelled as ‘DQD search 
region’ in Fig. 2a(ii).

A methodical search within this box is conducted by the algo-
rithm. The algorithm samples locations in the DQD search region 
and investigates them, starting from the point nearest to the pro-
jected corner and progressing to higher gate voltages. At each loca-
tion, a one-dimensional trace of the plunger gate voltages is taken 
and checked for Coulomb peaks, a signature for quantized charge 

to a high-frequency line via a bias-tee, allowing for the application of 
voltage pulses and microwave (MW) bursts.

The device can be probed by applying a bias voltage VSD to the 
source lead and recording the current ISD at the drain lead. The algo-
rithm navigates to a DQD occupation that exhibits Pauli spin blockade 
(PSB) for spin-to-charge conversion. To achieve this, the DQD does not 
need to be depleted to the single-hole regime. The charge occupation 
on each dot is estimated to be in the range of several dozens42–45.

The algorithm uses a two-stage pulsing protocol15,46–48, which is 
parameterized by an MW pulse frequency and duration tburst (Fig. 1c). 
This protocol allows for qubit manipulation if the spin resonance 
conditions are met. Details on the pulsing scheme for coherent spin 
control and the device are described in the Methods and another work41.

Autonomous tuning procedure
The autonomous tuning algorithm is structured into four main stages. 
Starting from a completely de-energized device, that is, with all gate 
voltages set to 0, the first two stages define the DQD potential by tun-
ing the interdot barrier and the reservoir coupling. The third stage 
narrows the search space by looking for distinct signatures of PSB, 
an initialization and read-out requirement. The last stage fine-tunes 
the plunger voltages and finds the frequency and duration of an MW 
pulse needed to drive the qubit. The effect of each stage on the DQD 
confinement potential is illustrated in Fig. 1a. Measurement illustra-
tions exemplifying those taken by the algorithm are shown in Fig. 1d.

As a result of the algorithm design, a search tree emerges (Fig. 1b). 
Once a stage is successfully completed, a list of candidates is generated. 
A candidate consists of all the information needed for the next stage to 
investigate it, usually containing locations or ranges of gate voltages, 
or information on the suspected g-factor and Rabi frequency fRabi. The 
candidates are ordered by a dedicated score in each stage and a single 
candidate is passed onto the next stage. If a stage is unsuccessful, the 
algorithm backtracks to the previous stage and investigates the next 
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Fig. 1 | Algorithm overview. a, There are four stages that the algorithm needs 
to successfully navigate to reach qubit operations. The goal of each stage is 
illustrated with a confinement potential diagram. b, Each stage can either 
be successful and produce candidates (leading to one or more branches), 
or unsuccessful (leading to backtracking to the closest stage that still has 
candidates). The search is, therefore, conducted in a tree structure. Some 
branches of the tree might be left unexplored. This is indicated by the dashed 
lines. Inset: illustration of the device. Five different voltages Vi can be applied 

to a linear confinement. c, A pulsing scheme can be applied with an MW burst 
of length tburst. The fast line is connected to the plunger gate RP. d, Simulated 
measurement illustrations that mark the successful transition between stages. 
Starting from a stability diagram with mere DQD features (far left), the algorithm 
tunes the parameters until promising bias triangles (middle left), triangles 
exhibiting PSB (middle right) and finally Rabi oscillations (far right) are obtained. 
The extremal points of the pulse scheme are indicated as a star and circle in the 
middle-right illustration.
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transport and the first requirement for a DQD. If Coulomb peaks are 
found, a measurement varying both plunger gate voltages (a so-called 
stability diagram) is acquired and analysed via a neural network for 
DQD characteristics (Fig. 2a(iii) shows a stability diagram with the 
desired features). Successful identification of DQD features at a loca-
tion in the gate voltage space establishes it as a lower limit for the 
subsequent search.

The goal in the second stage is to adjust the tunnel barriers to 
enhance the singlet–triplet energy splitting, an important requirement 
for qubit operation. Additionally, this stage needs to avoid regions of 
gate voltage space with the following characteristics: regions with high 
currents above a generous threshold, regions that are susceptible to 
charge switch noise and regions that show co-tunnelling lines.

Within the gate voltage bounds established in the first stage, 
Bayesian optimization is used to search for gate voltage combi-
nations. The figure of merit for this optimization is based on the 
degree to which it reduces current between the triangle baseline and  
excited states, compared with the current throughout the remaining 
bias triangles. This acts as an easy-to-compute proxy score of the 
singlet–triplet energy splitting. The score is further detailed in the 

‘Stage 2: tune barriers’ section. After Bayesian optimization suggests 
a voltage setting, a stability diagram is measured (Fig. 2b(i)). We first 
use a segmentation algorithm49 to find the outlines of individual 
pairs of bias triangles. The score is then computed using averages 
of the stability diagram along the common baseline (Fig. 2b(ii)). A 
neural network identifies bias triangles that are impacted by charge 
switches. Charge switches distort the stability diagrams and make 
the area unsuitable for qubit operation (Fig. 2b(iii) (hatched area) 
and Extended Data Fig. 2). These bias triangles are excluded from 
optimization. The gate voltage regions explored by optimization 
are shown in Fig. 2b(ii).

A substantial challenge of this stage is the need for numerous sta-
bility diagrams, which are time intensive to measure. To address this, 
we implement an adaptive, efficient measurement algorithm designed 
to specifically focus on gate voltage regions in which the bias triangles 
are present (Supplementary Section 6). Using this method cuts down 
the measurement time by approximately two-thirds. The optimization 
is performed using these efficient measurements.

As the final step, stability diagrams without the efficient measure-
ment algorithm are taken in the most promising regions. This is done 
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Fig. 2 | Summary of each stage. a, Stage 1: definition of a DQD potential.  
(i) Current measurements along random directions in the gate voltage space to 
determine the points at which conducting and non-conducting regions meet—
the so-called pinch-off points. (ii) GP model of the hypersurface after collecting 
sufficient pinch-off points. (iii) A neural network confirms the presence of a 
DQD analysing the acquired stability diagrams. b, Stage 2: optimization of the 
bias triangle features. (i) Analysis of stability diagrams, segregating individual 
transitions and averaging them along segments orthogonal to the detuning 
axes. (ii) Distribution of optimization scores and averages of bias triangles along 
segments orthogonal to their detuning axes. We aim to increase the singlet–
triplet energy splitting via a proxy score that measures the dip in current between 
the baselines and the rest of the triangles. (iii) Identification of plunger voltage 

windows unaffected by charge switches aided by neural networks. c, Stage 3: 
finding PSB. (i) Initial low-resolution, wide-range detection of PSB using neural 
networks. (ii) Detailed high-resolution scans using segmentation algorithms. 
(iii) Bias triangles that show signatures of PSB and can be used to optimize the 
read-out. d, Stage 4: read-out spot identification within a promising transition. 
(i) Acquisition of stability diagrams pulsing gate RP to locate the read-out region 
(indicated by the white dashed box). (ii) Entropy-based scoring of magnetic field 
traces within the read-out region, optimized through Bayesian methods.  
(iii) Rabi oscillations for different magnetic fields around the resonance 
condition to confirm the qubit operation. The measurements marked with ILI 
were amplified with a lock-in amplifier (Methods).
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to ensure that there are no charge switches, because the previous 
step ranked each location by the highest score of a bias triangle at 
that location. Therefore, some stability diagrams may have regions 
affected by charge switches. Bounding boxes are then created in the 
plunger voltage space, encompassing primarily stable bias triangles 
with current below the previously mentioned threshold (Fig. 2b(iii)). 
These triangles are each evaluated and scored, and the bounding boxes 
are ranked based on the highest score they contain.

Up to this point, the algorithm has only used a positive bias voltage. 
This stage proposes both positive and negative bias voltages for each 
candidate it creates. The gate voltage coordinates including the bias 
voltage are passed onto the subsequent stage.

In the third stage, our algorithm searches for charge transitions 
exhibiting PSB, a necessary condition for qubit initialization and 
read-out in this setup. A candidate has to pass three different classi-
fiers to be judged as exhibiting PSB. This is necessary to avoid false 
positives entering the time-intensive last stage.

We begin with low-resolution stability diagrams of the bias tri-
angle candidates, both with B = 0 T and B = 0.1 T. In these devices, 
PSB is expressed as a suppressed baseline of the bias triangles in a 
low magnetic field compared with high magnetic fields (Fig. 2c(iii)). 
A comparison between the positive and negative bias voltages could 
also be used at the benefit of removing slow magnetic field sweeps but 
at the cost of less-reliable signatures.

We use a routine based on the autocorrelation of the stabil-
ity diagram to pinpoint bias triangle locations (Methods and 
Extended Data Fig. 3). The identified triangles are then analysed using 
a neural network38(Fig. 2c(i)). Subsequently, the algorithm measures a 
stability diagram to precisely delineate the bias triangle, followed by 
high-resolution stability diagrams with B = 0 T and B = 0.1 T.

The algorithm invokes a routine to segment the bias triangles49 
(Fig. 2c(ii)). A further PSB classification based on the segmentation 
is performed. The routine from ref. 49 defines the direction in the 
plunger voltage space that controls the detuning ε of the dot energies, 
known as the detuning axis of the bias triangles. Scanning along this 

line with varying magnetic fields, we expect to observe a current drop 
at the baseline at zero magnetic field, which another classifier detects 
(Extended Data Fig. 4). On meeting all criteria, the gate voltage coor-
dinates are forwarded to the next stage.

The final stage of the process is dedicated to finding an operating 
point for qubit read-out and manipulation. This stage not only identi-
fies a suitable location in the plunger voltage space but also determines 
the optimal driving frequency and duration of the pulse.

On the basis of the segmentation from the previous stage, a pre-
dicted read-out gate voltage region within the bias triangle is defined 
(Fig. 2d(i)). The algorithm optimizes across the four-dimensional 
space of the two plunger gate voltages, driving frequencies and  
pulse durations. It samples a point within this space and then  
measures the current as a function of the magnetic field (Fig. 2d(ii)). 
The optimization’s goal is to identify a current peak in these 
scans, indicative of the qubit’s resonance condition (Fig. 2d(ii), 
bottom-right plot). This is achieved by evaluating the entropy of 
current traces; traces exhibiting a peak correspond to lower entropy 
values (Methods).

Bayesian optimization then proposes potential candidates  
for further analysis. These candidates are filtered based on the pres-
ence of one or two peaks (corresponding to the number of qubits 
addressed), as determined by a simple peak-finding algorithm50. Noisy 
measurements might also show peaks. Therefore, a follow-up step 
involves retaking the measurement to confirm the presence of a peak.

Once a candidate is verified, several measurements are taken 
by the algorithm to establish the qubit’s operational functionality. 
These include a spectroscopy measurement; a Rabi chevron experi-
ment (Fig. 2d(iii)), which is used to calibrate the resonance frequency 
(Extended Data Fig. 5); and repeated high-resolution Rabi oscillations 
at the Larmor frequency.

Each stage requires a set of hyperparameters. They control vari-
ous aspects of the measurements such as resolution and safe gate 
voltage ranges for stability diagrams; aspects of the signal processing 
algorithms such as the required prominence of peaks; and steering 
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parameters such as the number of candidates that a stage can sug-
gest. The measurement aspects can be derived from some weak prior 
knowledge about the device, such as the magnitude of lever arms, 
which informs the resolution of stability diagrams. We also assume a 
g-factor larger than 0.5 (limiting B and fMW) and fRabi between 30 MHz 
and 250 MHz (limiting tburst). The requirements on prior knowledge can 
be easily softened by widening the search space.

The set of hyperparameters influences the length of the runs 
and the way the algorithm manages trade-offs between exploration 
and exploitation. Regardless of the hyperparameters, the algorithm 
will always terminate once all the candidates of each stage have 
been exhausted.

The choice of hyperparameter was made during development and 
not optimized for the total run time or efficiency. We provide a full list 
of all hyperparameters in Supplementary Section 5.

After a qubit has been found, we may choose to study the qubit 
further. Routines from stages 3 and 4 enable the tracking of a known 
read-out spot and the resonance condition in the gate voltage space. 
This allows for recording the dependency of qubit metrics as we change 
the confinement potential. We provide details of this characterization 
algorithm in the Methods.

Tuning performance
We fixed the hyperparameters and gathered 13 runs. Rabi oscillations 
were found in ten of those runs. In successful runs, the time spent in 
each stage varied (Fig. 3a). The total time required ranged from 22 to 
80 h, with a mean of 38 h (median, 34 h; Table 1). Each stage relies on 
the exploration and accuracy of the previous stage. The variation in the 
time required in each stage gets progressively larger. Almost all time is 
spent on measuring the device, not on the decision algorithms. This is 
due to the measurement of current through the DQD, which requires 
long integration times. A setup that allows for fast measurements via, 
for example, radio-frequency reflectometry could be tuned orders of 
magnitudes faster.

The three failed runs ultimately reached a limit on the explorations 
it is allowed to make, terminating the search to prevent an unbounded 
exploration of parameter space. They lasted between 56.0 h and 94.9 h 
(Fig. 3a, black). Although these runs identified transitions consistent 
with PSB, the algorithm could not proceed to detect Rabi oscillations. 
Since the optimal conditions for qubit formation are not uniformly 
distributed, the algorithm can sometimes converge on parameter 
regimes in which the tunnel-barrier settings are less optimal. Addition-
ally, when the signal-to-noise ratio is lower, the algorithm may not yield 
a positive detection.

The qubit locations in the gate voltage space in terms of the three 
barrier gate voltages are depicted in Fig. 3b. For comparability, we 
normalize each voltage by the voltage at which each barrier gate elec-
trode pinches off the current individually. At each point, stage 2 (tune 
barriers) passed a candidate for further analysis (solid dots). In some 
cases, PSB was detected (dashed circles), passing stage 3, and a subset 
of these also yielded a qubit (solid circles), successfully completing 
stage 4. A similar plot showing the distribution in plunger voltage space 
is provided in Supplementary Section 2 and Supplementary Fig. 2.

Figure 3c presents examples from two runs, showing the transi-
tions found and Rabi chevron measurements. The discovery of qubits 
in both bias directions evidences the algorithm’s adaptability and 
its non-specificity to certain transitions. Both Rabi chevrons were 
obtained using the same given driving power and driving frequency, 
but varied in magnetic fields and Rabi frequencies, highlighting the 
algorithm’s generalization capability. All the depicted measurements 
were autonomously executed by the algorithm, accounting for the 
non-centred chevron measurements. Respective measurements for 
all successful runs are provided in Supplementary Fig. 1.

Analysing the locations in the gate voltage space in which qubits 
were found provides insight into the device physics (Table 1). By fitting 
a convex hull around the qubit locations in the barrier gate voltage 
space, we can estimate the volume of the region in which qubits can be 
found. For this device, the volume of the convex hull is approximately 
3.2 × 10−4 V3, translating to a fraction of the safe ranges ((2 V)3) of about 
4 × 10−5. The space is further restricted by the plunger voltage location, 
which is a box of roughly (10 mV)2. Given a search space of (300 mV)2, 
this brings down the size of the volume to around 2 × 10−7 as a fraction 
of the five-dimensional gate voltage space, which is roughly equivalent 
to a needle in a (2 m)3 haystack.

Once a qubit has been found, the algorithm allows for extensive 
characterization. We can study fRabi and g-factor as a function of the 
barrier gate voltages (Fig. 3d). The resulting maps give insights into 
qubit properties and can be extended to measure, for example, the 
Hahn-echo coherence time.

Conclusions
We have reported the fully automated tuning of spin qubits, progressing 
from a de-energized device to qubit control. Our algorithm autono-
mously achieved Rabi oscillations in 10 out of 13 trials. Most tuning 
processes concluded within three days, with the primary speed con-
straint being the integration times required to perform d.c. transport 
measurements. The times can be sped up via fast read-out alternative 
or spin manipulation techniques of the quantum device. Maps of the 
g-factor and fRabi serve as evidence for the potential of this approach 
for high-throughput qubit characterization.

Our methodology could be extended to other semiconductor- 
based qubit architectures, including silicon fin field-effect transistors15. 
The modular design of our algorithm makes adapting to different 
device layouts and measurement techniques—including charge sens-
ing and single-shot read-out—accessible. Although certain modules 
and optimization approaches may require refinement to suit larger or 
more complex devices, our end-to-end approach provides a founda-
tion for future work.

Our autonomous pipeline could also be extended beyond qubit 
formation towards high-fidelity control. Additional stages can be 
added that automatically design and refine shaped control pulses, 
an approach that has already pushed single- and two-qubit fideli-
ties past fault tolerance thresholds when performed manually51–53. 
Coupling such pulse engineering routines with the gate voltage tun-
ing demonstrated here, as well as scaling the full loop to multiqu-
bit architectures, defines the next step for fully self-optimizing spin 
qubit hardware. Meeting these challenges will be pivotal for realizing 
hands-free, high-performance quantum processors. More broadly, 
we expect the internal scores that steer our autonomous loop, such as 

Table 1 | Metrics of successful runs

Run 
number

Time fRabi g VL VM VR

(h) (MHz) (V) (V) (V)

1 22.8 31 ± 1 1.52 ± 0.07 1.34 0.69 0.91

2 24.5 97 ± 2 0.72 ± 0.05 1.34 0.81 1.02

3 28.5 109 ± 1 0.70 ± 0.05 1.34 0.79 0.95

4 32.0 47 ± 1 2.20 ± 0.12 1.37 0.80 1.01

5 33.3 51 ± 1 2.74 ± 0.22 1.36 0.69 1.04

6 34.4 90 ± 1 0.73 ± 0.04 1.35 0.78 0.94

7 34.5 56 ± 1 2.31 ± 0.14 1.35 0.79 0.95

8 37.8 115 ± 3 0.67 ± 0.08 1.32 0.77 0.89

9 56.5 49 ± 1 2.12 ± 0.14 1.35 0.65 1.00

10 79.2 63 ± 1 0.74 ± 0.03 1.38 0.71 1.02

For each qubit found, we show the total time it took; Rabi frequency fRabi; g-factor; and 
settings for barrier gates VL, VM and VR. The errors of fRabi are estimated from the fit uncertainty 
and the errors of g are calculated from the width of the resonance peak.
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energy-splitting and entropy measures, may correlate with established 
qubit-quality benchmarks; systematically mapping those connections, 
as well as refining the scores accordingly, is a promising direction for 
future optimization studies.

The mass tuning and characterization of qubits, facilitated by 
our fully autonomous tuning algorithm, could provide a productive 
feedback loop between measurement and fabrication processes. 
Wafer-scale, high-throughput characterization of quantum devices, 
already feasible in early tuning stages, can mitigate device vari-
ability. This, in turn, could improve the tuning process, bolstered by 
expanding datasets.

Methods
Here we provide details of the experimental setup and the algorithmic 
choices made in this study. We begin by describing the device used for 
our experiments. We then follow with a discussion of the intelligent 
computational approaches used in the algorithm. Finally, details of 
each stage are discussed. An overview of all the stages of the algorithm 
is given in Extended Data Table 1.

Hyperparameters that are not explicitly given here are provided 
in Supplementary Section 5.

Device and measurement details
The device consists of a Ge–Si core–shell nanowire lying on top of 
nine bottom gates measured in a variable-temperature insert in a 
liquid-helium bath, with the sample mounted below the 1-K pot (base 
temperature, 1.5 K). By applying positive voltages to the first five bot-
tom gates from the left, an intrinsic hole gas inside the nanowire is 
depleted to form a hole DQD. A scanning electron microscopy image 
of a device similar to the one used here is shown in Extended Data Fig. 1. 
The device, measurement apparatus and pulse sequence are the same 
as those used in ref. 41 and are described in detail in that work, which 
was performed independently and served primarily as an initial ref-
erence for the device’s characteristics. We did not explicitly encode 
knowledge of the particular qubit from ref. 41 into our algorithm.

To amplify the measurements that rely on an MW pulse, we applied 
pulse modulation by a lock-in amplifier at 87.777 Hz. The measure-
ments, therefore, have an in-phase and out-of-phase component. 
We apply principal component analysis to these measurements and 
project each measurement onto the principal axis. We further offset 
the measurements such that they are strictly positive. Measurements 
that are obtained in this way are marked as ILI, as opposed to currents 
that were measured conventionally (which are marked as ∣I∣).

Techniques used in the algorithm
Useful automation of tuning from a de-energized device to identify 
Rabi oscillations requires an algorithm that can adapt to different 
data-capture regimes, and be transferred to other, similar devices. 
To achieve this, we have made extensive use of intelligent, adaptive 
and data-driven subroutines. Nowadays, there is a plethora of such 
techniques to choose from. To choose the right technique to apply to 
each stage of the algorithm, we considered the following:

•	 the need for expert-labelled training data, which was not 
always possible or realistic to source;

•	 the need of being efficient in both total number of measure-
ments taken during a stage and in the resources needed for 
computing decisions about which measurements to take;

•	 the minimal accuracy needed in each stage for the whole 
algorithm to be able to achieve its overall goal of identifying 
operating parameters for a qubit.

To address the above considerations across the many stages of the 
algorithm, a non-exhaustive list of techniques we have found useful to 
use includes GP inference, convolutional neural networks (CNNs), unsu-
pervised computer vision and computational geometry techniques, 

and Bayesian optimization. We now briefly introduce these, highlight-
ing their strengths and weaknesses.

GPs are a popular form of non-parametric Bayesian inference54. 
They can be thought of as a method for doing principled Bayesian 
inference over a space of functions. GPs can be tailored to any specific 
domain or problem by making a choice of the so-called kernel (or 
covariance) function, a part of this model that describes prior knowl-
edge about the possible space of functions in which inference is to 
occur. This choice can allow practitioners to encode important domain 
knowledge before capturing any data, such as specifying knowledge 
of periodicities, symmetries or the expected degree of smoothness 
of the underlying process that is being observed. This constitutes the 
main strength of GP modelling, often enabling highly data-efficient 
inference. However, both model fitting and model prediction can be 
computationally intensive, typically growing cubically54 in the number 
of observed data points.

Over the past two decades, CNN architectures have proved to be 
go-to models for solving computer vision tasks. Their strengths lie in 
their adaptability across different computer vision tasks, their robust-
ness in the face of unknown noise and their computational efficiency 
at training time. Their weakness lies in always requiring substantial 
amounts of training data. In this work, we use some standard architec-
tures, such as ResNet55, as tools for extracting properties from or making 
assessments of stability diagrams. Where we have applied them, train-
ing data have been either generated by a sufficiently good simulator 
or gathered from this or similar devices and then labelled by an expert.

Often, the use of CNNs is neither required nor appropriate for the 
particular computer vision task at hand. In particular, it has been of 
crucial importance to a number of stages through the algorithm to be 
able to automatically locate and segment bias triangles within stability 
diagrams using a coordinate-wise approach. To achieve this, we have 
used a number of unsupervised computer vision techniques that can 
mitigate noise in, and localize features of the geometric figures present 
in the stability diagrams. Although CNNs would require large amounts 
of labelled training data to achieve this result, the requirements can 
be met by computer vision techniques that need no training data, and 
require only a few hyperparameter choices to be made. All together, 
we have called this a bias triangle segmentation framework, and it is 
described in ref. 49, where the specific application to PSB detection is 
also detailed.

Bayesian optimization21,22,56,57 is a general, iterative approach to 
black-box function optimization. At each iteration, it constructs a 
surrogate model of the function being approximated using the data 
already gathered, and uses this surrogate model to efficiently compute 
the next most informative location from which to sample the unknown 
function. To apply this technique, one must specify a score function to 
optimize and a parameter space over which the search for an optimum 
is conducted. The choice of the surrogate model is also influential in 
the accuracy, efficiency and reliability achieved using this method. In 
this work, we have made consistent use of GP surrogate models using 
a Matern 5/2 kernel.

Stages of the algorithm
Stage 1: define DQD. (a) Hypersurface building. As the first step, the 
algorithm determines a current that it considers to be pinched off by 
ramping to the high end of the safe ranges. We take repeated current 
measurements there to characterize the noise floor. From the noise 
floor, we compute a pinch-off current.

Next, we sample several points within the safe ranges using a Sobol 
sequence for quasi-random locations. The points are used to define 
rays from the origin that are then investigated for pinch-off. To avoid 
overloading the current amplifier, we search for pinch-off from the 
origin towards the upper end of the safety ranges with a low bias volt-
age. Once the pinch-off is found, we retrace with a higher bias voltage 
to confirm the exact pinch-off location.
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Finally, we use these data to construct the hypersurface model, as 
outlined in the main text.

(b) Double-dot detection. The previous stage defines a region 
within which we can look for a DQD potential. We sample quasi-random 
points via a Sobol sequence for investigation. For each point, we vary 
both plunger voltages simultaneously and measure the current, follow-
ing the method described in ref. 21. We use the random forest classifier 
developed in ref. 22 to check for the presence of Coulomb peaks. If 
Coulomb peaks are found, we then measure a stability diagram. This 
diagram is analysed with a neural network to detect features of the 
DQD. The neural network was trained on data from a variety of devices, 
mainly from the data gathered in refs. 21,22, and additional data are 
obtained from a nanowire device different from the one used in this 
work. In total, there were 4,611 stability diagrams, out of which 726 
showed double-dot features.

Stage 2: tune barriers. (a) Barrier optimization. On the formation 
of separated pairs of bias triangles, we perform coordinate-wise seg-
mentation and polygon fitting49 to facilitate their tracking and feature 
extraction throughout the remainder of the tuning pipeline.

Segmentation and shape extraction enable the assessment of 
the current intensity difference between the baseline and gap formed 
between the base and first excited-state line. By quantifying this inten-
sity difference in a base separation score, we can use a Bayesian optimi-
zation framework, which seeks to maximize the intensity difference, as 
a promising indicator for detecting viable candidates for PSB.

Each pair of bias triangles should present a base well separated 
from the main body. By measuring the d.c. current through the device, 
we effectively probe the internal energy transitions between the two 
quantum dots. Crucially, these transitions remain relatively unaf-
fected by the thermal broadening of the leads, making the scheme 
viable at higher (‘hot’) temperatures. For PSB-based read-out to be 
effective, the energy splitting between the relevant singlet and tri-
plet states, that is, ΔST, must exceed the thermal energy (kBT). Once 
ΔST ≤ kBT, the PSB mechanism can degrade and allow unwanted leak-
age current, thereby compromising the quality of the read-out. The 
energy-splitting score, therefore, serves as a metric to guide the 
algorithm towards bias triangles that are more likely to yield robust 
spin read-out and, ultimately, stable qubit operation. Supplementary 
Section 3 provides further discussion on the relation of this score with 
spin-state visibility. Supplementary Section 4 provides empirical 
justification of the score.

The separation score is computed by averaging the current along 
the detuning axis (Fig. 2b(ii) shows two one-dimensional traces), and 
computing the ratio of the intensity between the peaks and the lowest 
point in the valley between them. In the case of multiple triangles, the 
highest separation is used as the score.

Certain potential landscapes can lead to situations in which charge 
configurations are affected by charge switch noise. Since these poten-
tials are unlikely to be used as a qubit and the resulting bias triangles 
can skew our base separation scoring, we excluded them by leveraging 
a neural network classifier. This classifier was trained to distinguish 
between normal bias triangles and the ones that are affected by charge 
switch noise (Extended Data Fig. 2). The training dataset for this clas-
sifier was obtained as follows: initially, potential bias triangles were 
identified using our segmentation routine. Subsequently, we manu-
ally labelled 2,302 of these (1,539 samples showed no switch noise) to 
create a robust training set. The classifier itself was then obtained by 
fine-tuning a ResNet-based architecture with this dataset.

Once the voltage space has been explored through Bayesian opti-
mization, we have a clear understanding of the landscape (Fig. 2b(ii)). 
The measurements in this optimization were obtained using an effi-
cient measurement algorithm (Supplementary Section 6). We sample 
the most promising regions again without the efficient measurement 
algorithm and analyse them, as described in the next section.

(b) Plunger window selection. Given a sampled stability diagram 
containing bias triangles, the aim is to select the region that contains 
as many bias triangles with scores as high as possible, no areas with 
current that is too high and as few switches as possible (Fig. 2b(iii)). 
High-current bias triangles are unlikely to be able to be used for qubit 
operations. This is a heuristic and we set a conservative threshold of 
200 pA. To ease the downstream steps, the region should be a rec-
tangular window. Through an iterative approach, starting from the 
smallest bounding boxes containing each single pair of bias triangles, 
larger windows are constructed by merging the existing ones in case 
they satisfy the conditions about switch absence and low currents. For 
the absence of switches, we used a soft constraint, allowing for bias 
triangles affected by switch noise in case their total area was less than 
25% of the area covered by all triangles in the window. The algorithm 
complexity scales exponentially with respect to the number of triangles 
and some heuristics have been leveraged to reduce substantially com-
plexity and, therefore, execution time. In particular, at each iteration, 
only the top 100 bounding boxes by the number of contained triangles 
without switches were kept, to ensure a manageable upper limit on the 
number of possible merges. The routine halts when no further merges 
are possible. Once the plunger windows have been selected, they are 
ranked by the highest separation score.

Stage 3: find PSB. (a) Wide-shot PSB detection. To identify each bias 
triangle’s location, we first leverage the fact that they sit on a honey-
comb or skewed rectangle pattern. We use autocorrelation on the 
stability diagram to identify this pattern. The largest two peaks in the 
autocorrelation help us establish a vector that spans this pattern of 
skewed rectangles. To fix the pattern in place, we use a blob detection 
algorithm, using the first blob it identifies. This helps us accurately 
overlay the skewed rectangle pattern and estimate the locations of the 
bias triangles (Extended Data Fig. 3).

Next, we extract these bias triangles using the identified locations, 
with side lengths informed by the pattern dimensions. These extracted 
bias triangles are then input into a neural network for further analysis. 
We used autonomously gathered data that were taken during the initial 
development phase. In total, we used 626 pairs of bias triangles taken 
from 70 stability diagrams. Here 55 pairs of bias triangles showed PSB. 
Reference 38 provides more detailed information on this procedure.

(b) Re-centring and high-resolution PSB detection. In an effort to 
filter the previously detected candidates for PSB and eliminate false 
positives, a second set of higher-resolution measurements is per-
formed. For that purpose, a dedicated low-resolution stability diagram 
of the candidate bias triangles is taken and used to update the plunger 
voltage extent based on the detected contours, effectively performing 
a re-centring. With the updated voltage extent, high-resolution stability 
diagrams with B = 0 T and with B = 0.1 T are taken.

A second substage of PSB classification is applied through a 
segmentation-based detection and feature extraction framework, 
which facilitates the coordinate-wise quantification of geometric 
and physical properties of bias triangles49. In particular, given the 
high-resolution stability diagram with B = 0.1 T, this framework fits 
minimum-edge polygons to the detected contours of bias triangle 
pairs by utilizing a relaxed extension of the Ramer–Douglas–Peucker 
algorithm49. Once the segmented shape mask is identified, further geo-
metric properties such as the base and excited-state lines can be auto-
matically extracted solely based on prior knowledge of the bias voltage 
sign, which predicts the direction in which the bias triangles point.

For the identification of PSB, an analytical classifier based on the 
above framework was devised49. PSB expresses itself as a suppressed 
baseline of the bias triangles at B = 0 T. At B > 0 T, there is a leakage cur-
rent at the baseline. The routine extracts the segment enclosing the 
base and a prominent excited-state line on the stability diagram with 
a leakage current (B = 0.1 T). Subsequently, the average pixel intensity 
of the segment normalized by the intensity of the entire pair of bias 
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triangles is computed. By superimposing the detected segment on 
the scan with blocked current (B = 0 T), normalized intensity values 
are compared and, if their difference exceeds a specified threshold, 
the charge transition is identified as positive for PSB.

On the basis of the segmented shape mask of the bias triangle, 
further geometrical properties can be automatically extracted, which 
enables the tuning of bias triangle features in stage 2. The detuning axis, 
utilized for the Danon gap measurement, is automatically extracted by 
identifying the bias triangles’ base midpoints and tips and computing 
the lines between them.

(c) Danon gap check. As a further filter for possible candidates, we 
check to find the magnetic field dependence of the leakage current at the 
base of the bias triangles in a different way. As a function of the applied 
magnetic field B, we expect the leakage current to be minimal at B = 0 T 
and higher away from this point. We call this the Danon gap58. A current 
measurement of the detuning line as the magnetic field is varied, giving 
us a two-dimensional input (Extended Data Fig. 4), which we can analyse 
as follows. Ignoring the noise signal, the current is roughly constant along 
the magnetic field axis, whereas the detuning line axis is information 
rich. Away from the Danon gap, there are two local extrema (to one side, 
the noise floor outside the bias triangles, and to the other side, the gap 
due to singlet–triplet energy splitting), whereas the Danon gap region is 
characterized by a monotonic behaviour, with roughly a constant value.

To detect the presence of the Danon gap, the current I is first pro-
cessed with a Gaussian filter, to smooth out the noise, and then the 
absolute slopes along the detuning line axis are integrated: 

g(B) ∶= ∑ε
|
|
∂ ̃I(ε,B)

∂ε
|
|, where the derivative is the discrete derivative along 

the detuning line axis. The function g is minimized in the areas where 
the smoothed signal ̃I  shows a constant value. We show the normalized 
function ̄g = g

|ε|
 in Extended Data Fig. 4. To detect the presence of the 

Danon gap from g, two tunable hyperparameters are used, validating 
the depth and width of the basin of the global minimum of g: in case 
the basin is not prominent enough, there is no Danon gap. As the last 
check, the location of the minima has to be in proximity of zero 
magnetic field.

Stage 4: find read-out. (a) Tracking and entropy optimization. In the 
subsequent steps, we apply a pulse sequence to the right plunger elec-
trode. As it is a two-stage pulse, the bias triangles will have a ‘shadow’ 
in the stability diagram. We need to identify the original bias trian-
gles and find a suitable region in which we can expect to find qubit 
read-out. In light of the resulting shape distortions and further degrad-
ing effects to the measurement quality, we opt for template matching 
as opposed to performing re-segmentation for bias triangle tracking 
to ensure robustness.

The relative direction in which the shadow bias triangles appear 
with respect to the original one is known in advance due to the applied 
pulse shape. This is incorporated into the shape-matching approach 
as the cardinal direction to uniquely identify and track the triangles. 
We perform shape matching by comparing the edge map of a stability 
diagram before pulsing, functioning as the template, to the edge map of 
a subsequent stability diagram with pulsing, functioning as the source 
for current information. Further, we extract the segmented shape mask 
from the template. The method slides the template over the source 
edge map, thereby comparing the template with individual patches of 
the stability diagram with pulsing, and returns a result matrix (of the 
same size as the source) whose individual entries quantify the similarity 
with the template patch. The used similarity metric is the normalized 
correlation coefficient, and the patch with the maximum correlation is 
selected. Once the appropriate patch has been identified, the initial seg-
mentation mask of the stability diagram without pulsing is mapped to 
the stability diagram with pulsing and used for subsequent processing.

To identify the optimal read-out spot, we extract the segment 
enclosing the base and prominent excited-state lines on the obtained 

segmented mask of bias triangles with pulsing. We then perform Bayes-
ian optimization of a read-out quality score over the following param-
eters: the constrained two-dimensional plunger gate voltage space, 
frequency of the driving pulse fMW and burst time tburst.

Optimal read-out candidates are those that meet the resonance 
conditions of the qubit. If they are met, there is a leakage current that 
we record using the lock-in amplifier. For a given burst time tburst (relat-
ing to the Rabi frequency fRabi) and a given frequency of the driving 
pulse fMW (relating to the g-factor), the leakage is characterized as a 
peak in leakage current for a certain magnetic field B. In this setup, 
hardware-related resonances and non-uniform attenuation across cer-
tain frequency ranges introduce distortions when the drive frequency 
is varied instead of the magnetic field. Consequently, sweeping the 
magnetic field at a fixed frequency provides a more stable and inter-
pretable signal, even though it is slower. Thus, for read-out optimiza-
tion, we measure the current with varying magnetic fields. Instead of 
applying principal component analysis, as explained above, we use 
the L2 norm of the in-phase and out-of-phase components to retrieve 
a one-dimensional trace l(B). This guarantees peaks to be higher than 
the background, as opposed to processing with principal component 
analysis, which can lead to dips rather than peaks.

To quantify the sharpness of these peaks, we developed a score 
based on the Shannon entropy H = −∑B [l(B) log[l(B)]] of the trace. For 
the calculation of the entropy of the score, we first subtract the median 
and then clip values at zero. This particular preprocessing turns the 
trace into something more akin to a distribution and enhances the 
robustness of our score, making it less susceptible to potential noise 
disturbances in the trace. This method results in a smooth score land-
scape suitable for Bayesian optimization.

(b) Resonance confirmation. This verification step acts as a final 
filter and all the last stages are executed once a candidate passes this 
filter. The previous stage sends a candidate with a suspected resonance 
condition. The stage re-measures the leakage current as a function 
of the magnetic field. If the resonance condition was truly found, a 
peak should appear at the same magnetic field again. If we detect a 
peak with a specified prominence at this magnetic field within a set 
margin of error, the resonance condition is considered confirmed 
and all downstream measurements are executed. We note that a noisy 
candidate might pass this stage. Repeating the verification step can 
reduce such occurrences.

(c) Qubit measurements. Once a resonance condition is found, 
we vary the magnetic field and burst duration. The characteristic 
Rabi chevron can be analysed by considering the frequency spec-
trum for each magnetic field. The frequency should have a minimum 
at the magnetic field that meets the resonance condition of the qubit. 
The amplitude should also be the maximum there due to decoher-
ence for off-resonant driving. We can, therefore, simply look for 
the maximum amplitude in the Fourier-transformed Rabi chevron 
(Extended Data Fig. 5). This information will give us the precise reso-
nance conditions for the last step, which are repeated measurements 
of Rabi oscillations on resonance.

Characterization
The maps shown in Fig. 3 were generated using automated measure-
ments. Initially, on identifying a qubit, we record its read-out spot, 
g-factor and fRabi. We then alter the confinement potential by slightly 
adjusting the barrier gate voltages. This adjustment may shift the bias 
triangles, consequently moving the read-out spot, g-factor and fRabi. 
Our method involves tracing these transitions to locate the read-out 
spot in its new position. At this new location, we conduct an electric 
dipole spin resonance check scan. Any changes in the peak’s location 
inform us about variations in the g-factor. Furthermore, measuring 
Rabi oscillations at this point helps update our understanding of fRabi.

As we progressively deviate from the initial measurement point, 
we utilize our closest prior qubit data to infer the properties at the 
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new location. This step is crucial as a shift in the g-factor necessitates 
modifying the magnetic field range, whereas a change in fRabi requires 
adjusting the tburst duration for the electric dipole spin resonance check 
to accurately detect resonances.

Data availability
The data are available via Zenodo (https://doi.org/10.5281/
zenodo.17745219)59.

Code availability
The code is available via GitHub at https://github.com/
oxquantum-repo/fully-autonomous-tuning.
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Extended Data Table 1 | List of all stages

Stage Description Techniques used Candidate information

Stage 1: Define DQD

a, Hypersurface building Building a model of the surface that separates 
pinch-off from conducting

Gaussian processes Upper and lower bounds of 
barrier voltages

b, Double dot detection Identifying Coulomb peaks and double dot 
signatures

Random forests and neural networks Corrected lower bound of barrier 
voltages

Stage 2: Tune Barriers

a, Barrier optimisation Search over the barrier voltage space for  
ideal settings

Bayesian optimisation, computer vision,  
neural networks

Promising barrier voltage location

b, Plunger window selection Determine a window for plunger voltages Computer vision, neural networks Barrier voltage location and wide 
plunger voltage range

Stage 3: Find PSB

a, Wide shot PSB detection Identify locations of transitions with PSB Neural networks, computer vision Narrow plunger voltage range

b, Re-centering Get precise plunger voltage window Computer vision Corrected narrow plunger 
voltage range

c, High res. PSB detection Confirm PSB with high resolution measurement Computer vision Narrow plunger voltage range, 
link to high res. measurement, 
detuning line definition

d, Danon gap check Confirm PSB by measuring detuning line as a 
function of magnetic field

Computer vision Narrow plunger voltage range, 
link to high res. measurement

Stage 4: Find Readout

a, Entropy optimisation Find readout spot, g-factor and Rabi frequency 
by optimisation of an entropy score

Bayesian optimisation, computer vision Precise plunger voltage locations, 
magnetic field, drive frequency 
and burst time

b, Resonance confirmation Confirm resonance from previous stage/filter 
out noise

Peak finding Passed on from previous

c, Spectroscopy Measurement of current while varying tburst and 
fMW for documentation

- Passed on from previous

d, Rabi chevron Measuring Rabi oscillations close to the 
resonance condition

Frequency analysis Corrected magnetic field for 
resonance condition

e, Rabi oscillations Take repeated Rabi oscillations on resonance - -

We list all stages and sub-stages with a short description, a rough overview of what techniques were used and what information is passed downstream for a candidate from each stage. Besides 
information on the parameters that are directly needed to operate a qubit, the stages also pass down meta-information that other stages might need to use, for example the high resolution 
stability diagram of Stage 3c is needed in Stage 4a for template matching.
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Extended Data Fig. 1 | Device. False color micrograph of a nanowire device similar to the one used in this work. The Ge/Si nanowire is colored in yellow.
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Extended Data Fig. 2 | Bias triangle locations via auto-correlation. A stability diagram (top left) is processed using its auto-correlation (top right). Within the 
auto-correlation, we can find the highest values to span a grid of skewed rectangles. The extracted information is used to locate bias triangles in the original stability 
diagram (bottom).
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Extended Data Fig. 3 | Effect of charge switch noise. Stability diagrams can be affected by charge switches. Their effect can be seen in the left column. For comparison, 
the right column is unaffected by these charge switches.
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Extended Data Fig. 5 | Rabi chevron analysis. A qubit that is driven close to 
the resonance condition exhibits so-called Rabi chevrons, see left column for 
examples (top: simulation, bottom: experimental data). To find the resonance 

frequency, we analyse the frequency spectrum for each magnetic field (which 
controls the detuning from resonance). The frequencies have a maximum 
amplitude and a minimal point at the resonance condition.
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