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The development of large-scale semiconductor quantum circuits is limited
by the difficulties involved in efficiently tuning and operating such circuits.
Identifying optimal operating conditions for these qubitsis, in particular,
complex and involves the exploration of vast parameter spaces. Here we
report the autonomous tuning of asemiconductor qubit, fromagrounded
device to Rabi oscillations. Our approachintegrates deep learning,
Bayesian optimization and computer vision techniques. We demonstrate

this automationin a germanium-silicon core-shell nanowire device. To
illustrate the potential of full automation, we characterize how the Rabi
frequency and g-factor depend on barrier gate voltages for one of the
qubits found by the algorithm. We expect our automation algorithm to
be applicable to arange of semiconductor qubit devices, allowing for the
statistical studies of qubit-quality metrics.

Spin qubitsinsemiconductor devices could be used to build auniversal
quantum computer' ™. Recent work with such systems has demon-
strated two-qubit gates with fidelities that surpass the thresholds
for fault-tolerant computing*'>" and hot qubits that can address
the bottleneck of millikelvin refrigeration”'*". This has been
accompanied by advances in the wafer-scale manufacturing of
these devices'®" as well as their efficient testing at cryogenic
temperatures'®'’. However, semiconductor quantum circuits are cur-
rently limited to 12 qubits in one device'®, despite the fact that modern
semiconductor fabrication techniques could support the integration
of millions of qubits.

A key reason for this limitation is the intricate tuning required
to reach and maintain qubit operation. A range of approaches have
been explored to automate single stages of this process, including
defining double-quantum-dot (DQD) confinement potentials®®,
navigating to specific charge transitions*>?, fine tuning of charge
transport features® and interdot tunnel couplings®**, as well as
device characterization®*°. These works offer a glimpse into the
potential of machine learning for full qubit tuning automation, but
the challenge remains.

Herewereport afully autonomous tuning process that canencode
a qubit without the need for human intervention. The process of
going fromafully de-energized device to the observation of Rabi oscil-
lations, a definitive indicator of qubit functionality, typically takes
human experts weeks, or even months, to complete. Our algorithm
(Fig. 1), deployed on a DQD device, can complete the tuning process
within three days. Our approach integrates deep learning, Bayesian
optimization and a computer vision technique, and its success lies
in the ability of the algorithm to navigate through various stages
of the tuning process, efficiently handling challenges and making
accurate decisions.

Device architecture and read-out technique

We use a Ge-Si core-shell nanowire device (Extended Data Fig. 1) in
which holes are confined in depletion mode*. The electrical potential
is set by anumber of gate electrodes. Two plunger gate electrodes
predominantly shift the electrochemical potential in the left and right
dots with voltages V|, and V;,, respectively. The remaining gate elec-
trodes primarily control the barriers between the DQD and the leads
aswellastheinterdot coupling. One of the plunger gatesis connected
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Fig. 1| Algorithm overview. a, There are four stages that the algorithm needs
to successfully navigate to reach qubit operations. The goal of each stage is
illustrated with a confinement potential diagram. b, Each stage can either

be successful and produce candidates (leading to one or more branches),

or unsuccessful (leading to backtracking to the closest stage that still has
candidates). The searchis, therefore, conducted in a tree structure. Some
branches of the tree might be left unexplored. This is indicated by the dashed
lines. Inset:illustration of the device. Five different voltages V;can be applied

to alinear confinement. ¢, A pulsing scheme can be applied with an MW burst
oflength ¢, The fast lineis connected to the plunger gate RP.d, Simulated
measurement illustrations that mark the successful transition between stages.
Starting from a stability diagram with mere DQD features (far left), the algorithm
tunes the parameters until promising bias triangles (middle left), triangles
exhibiting PSB (middle right) and finally Rabi oscillations (far right) are obtained.
The extremal points of the pulse scheme are indicated as a star and circle in the
middle-rightillustration.

to a high-frequency line via a bias-tee, allowing for the application of
voltage pulses and microwave (MW) bursts.

The device can be probed by applying a bias voltage Vq, to the
source lead and recording the current / at the drain lead. The algo-
rithm navigates toa DQD occupation that exhibits Pauli spin blockade
(PSB) for spin-to-charge conversion. To achieve this, the DQD does not
need tobe depleted to the single-hole regime. The charge occupation
oneachdotis estimated to be in the range of several dozens**,

The algorithm uses a two-stage pulsing protocol™***%, which is
parameterized by an MW pulse frequency and duration ¢, (Fig. 1c).
This protocol allows for qubit manipulation if the spin resonance
conditions are met. Details on the pulsing scheme for coherent spin
controland the device are described in the Methods and another work*.

Autonomous tuning procedure
The autonomous tuning algorithmis structured into four main stages.
Starting from a completely de-energized device, that is, with all gate
voltages set to O, the first two stages define the DQD potential by tun-
ing the interdot barrier and the reservoir coupling. The third stage
narrows the search space by looking for distinct signatures of PSB,
aninitialization and read-out requirement. The last stage fine-tunes
the plunger voltages and finds the frequency and duration of an MW
pulse needed to drive the qubit. The effect of each stage on the DQD
confinement potential is illustrated in Fig. 1a. Measurement illustra-
tions exemplifying those taken by the algorithm are shown in Fig. 1d.
Asaresultofthealgorithmdesign, asearch tree emerges (Fig. 1b).
Onceastageis successfully completed, alist of candidatesis generated.
A candidate consists of all the information needed for the next stage to
investigate it, usually containing locations or ranges of gate voltages,
orinformation onthe suspected g-factor and Rabifrequency f;,;.. The
candidatesare ordered by adedicated scorein each stage and asingle
candidate is passed onto the next stage. If a stage is unsuccessful, the
algorithm backtracks to the previous stage and investigates the next

candidate in that stage’s list of candidates. This process dynamically
creates asearch tree (Supplementary Fig. 7 shows examples fromreal
tuning runs). If a different branch has proven to lead to a qubit, some
branches of the tree may be left unexplored. These are indicated by
dashedlinesinthetreeinFig.1.

We describe each stage in this section. A list of all stages and sub-
stagesisprovidedin Extended Data Table 1. More details are provided
in Methods and details on the stage structure and composition of
candidates for each stage are provided in Supplementary Section 8.

The first stage identifies the gate voltage settings that define the
DQD confinement potential. It determines alower and upper limit for
eachbarrier gate voltage, whichis used in subsequent stages.

Building onthe methodologies of refs. 21,22, ahypersurface model
is created to distinguish between conducting and non-conducting
regions within the three-dimensional barrier gate voltage space. The
algorithmtakes current measurements along randomdirections within
this space (Fig. 2a(i)), and models the hypersurface with a Gaussian
process (GP; Fig. 2a(ii)). We expect a DQD potential forming near a
corner of the hypersurface inthe first octant. To pinpoint this corner,
three specific current measurements are conducted using only one of
the gate electrodes at a time. The resulting coordinates are then pro-
jected onto the model of the hypersurface, setting the lower bounds
ofthe region in which DQDs are likely to be found. The upper bounds
of the region are given by the coordinates of the single gate pinch-off
voltages, thatis, whenthe current drops toavaluethatisindistinguish-
able from the noise floor. The resulting box is labelled as ‘DQD search
region’in Fig. 2a(ii).

A methodical search within this box is conducted by the algo-
rithm. The algorithm samples locations in the DQD search region
and investigates them, starting from the point nearest to the pro-
jected corner and progressing to higher gate voltages. At each loca-
tion, a one-dimensional trace of the plunger gate voltages is taken
and checked for Coulomb peaks, a signature for quantized charge
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Fig.2|Summary of each stage. a, Stage 1: definition of a DQD potential.

(i) Current measurements along random directions in the gate voltage space to
determine the points at which conducting and non-conducting regions meet—
the so-called pinch-off points. (ii) GP model of the hypersurface after collecting
sufficient pinch-off points. (iii) A neural network confirms the presence of a
DQD analysing the acquired stability diagrams. b, Stage 2: optimization of the
bias triangle features. (i) Analysis of stability diagrams, segregating individual
transitions and averaging them along segments orthogonal to the detuning
axes. (ii) Distribution of optimization scores and averages of bias triangles along
segments orthogonal to their detuning axes. We aim to increase the singlet-
triplet energy splitting via a proxy score that measures the dip in current between
the baselines and the rest of the triangles. (iii) Identification of plunger voltage
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windows unaffected by charge switches aided by neural networks. ¢, Stage 3:
finding PSB. (i) Initial low-resolution, wide-range detection of PSB using neural
networks. (ii) Detailed high-resolution scans using segmentation algorithms.
(iii) Bias triangles that show signatures of PSB and can be used to optimize the
read-out. d, Stage 4: read-out spot identification within a promising transition.
(i) Acquisition of stability diagrams pulsing gate RP to locate the read-out region
(indicated by the white dashed box). (ii) Entropy-based scoring of magnetic field
traces within the read-out region, optimized through Bayesian methods.

(iii) Rabi oscillations for different magnetic fields around the resonance
condition to confirm the qubit operation. The measurements marked with /,
were amplified with alock-in amplifier (Methods).

transport and the first requirement for a DQD. If Coulomb peaks are
found, ameasurement varying both plunger gate voltages (aso-called
stability diagram) is acquired and analysed via a neural network for
DQD characteristics (Fig. 2a(iii) shows a stability diagram with the
desired features). Successfulidentification of DQD features ataloca-
tion in the gate voltage space establishes it as a lower limit for the
subsequent search.

The goal in the second stage is to adjust the tunnel barriers to
enhancethesinglet-triplet energy splitting, animportant requirement
for qubit operation. Additionally, this stage needs to avoid regions of
gate voltage space withthe following characteristics: regions with high
currents above a generous threshold, regions that are susceptible to
charge switch noise and regions that show co-tunnelling lines.

Within the gate voltage bounds established in the first stage,
Bayesian optimization is used to search for gate voltage combi-
nations. The figure of merit for this optimization is based on the
degreetowhichitreduces currentbetween the triangle baseline and
excited states, compared with the current throughout the remaining
bias triangles. This acts as an easy-to-compute proxy score of the
singlet-triplet energy splitting. The score is further detailed in the

‘Stage 2: tune barriers’ section. After Bayesian optimization suggests
avoltage setting, astability diagramis measured (Fig. 2b(i)). We first
use a segmentation algorithm* to find the outlines of individual
pairs of bias triangles. The score is then computed using averages
of the stability diagram along the common baseline (Fig. 2b(ii)). A
neural network identifies bias triangles that are impacted by charge
switches. Charge switches distort the stability diagrams and make
the area unsuitable for qubit operation (Fig. 2b(iii) (hatched area)
and Extended Data Fig. 2). These bias triangles are excluded from
optimization. The gate voltage regions explored by optimization
are showninFig. 2b(ii).

Asubstantial challenge of this stage is the need for numerous sta-
bility diagrams, which are time intensive to measure. To address this,
weimplement anadaptive, efficient measurement algorithm designed
to specifically focus ongate voltage regionsin which the bias triangles
are present (Supplementary Section 6). Using this method cuts down
the measurement time by approximately two-thirds. The optimization
is performed using these efficient measurements.

Asthe final step, stability diagrams without the efficient measure-
ment algorithm are taken in the most promising regions. This is done
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Fig. 3| Benchmarking. a, Duration of each stage for ten successful runs is shown,
sorted by the total time taken to tune a qubit in operation. Black: the three runs
that did not lead to a qubit. b, Locations in the barrier voltage space (as a fraction
ofthe individual pinch-off voltage) is shown. Insome locations, no PSB was
identified. The qubit locations are a subset of locations that exhibit PSB. In the
failed runs, PSB was found but no Rabi oscillations were observed. ¢, Examples

of transitions from two different runs, showing the associated bias triangles
(top row) and Rabi chevrons (bottom row). d, Characterization. By varying the
barrier gate voltages, we can build a map of fi,; (top row) and g-factor (bottom
row) of one of the found qubits (marked with arrows in b) using automated
measurements. For illustrative purposes, we show slices of a GP model that were
fitted to the data.

to ensure that there are no charge switches, because the previous
step ranked each location by the highest score of a bias triangle at
that location. Therefore, some stability diagrams may have regions
affected by charge switches. Bounding boxes are then created in the
plunger voltage space, encompassing primarily stable bias triangles
with current below the previously mentioned threshold (Fig. 2b(iii)).
These triangles are each evaluated and scored, and the bounding boxes
areranked based on the highest score they contain.

Uptothis point, the algorithm has only used a positive bias voltage.
This stage proposes both positive and negative bias voltages for each
candidate it creates. The gate voltage coordinates including the bias
voltage are passed onto the subsequent stage.

In the third stage, our algorithm searches for charge transitions
exhibiting PSB, a necessary condition for qubit initialization and
read-out in this setup. A candidate has to pass three different classi-
fiers to be judged as exhibiting PSB. This is necessary to avoid false
positives entering the time-intensive last stage.

We begin with low-resolution stability diagrams of the bias tri-
angle candidates, both with B=0T and B=0.1T. In these devices,
PSB is expressed as a suppressed baseline of the bias triangles in a
low magnetic field compared with high magnetic fields (Fig. 2c(iii)).
A comparison between the positive and negative bias voltages could
alsobe used at the benefit of removing slow magnetic field sweeps but
at the cost of less-reliable signatures.

We use a routine based on the autocorrelation of the stabil-
ity diagram to pinpoint bias triangle locations (Methods and
Extended DataFig.3). Theidentified triangles are then analysed using
aneural network®(Fig. 2c(i)). Subsequently, the algorithm measures a
stability diagram to precisely delineate the bias triangle, followed by
high-resolution stability diagramswithB=0TandB=0.1T.

The algorithm invokes a routine to segment the bias triangles*
(Fig. 2c(ii)). A further PSB classification based on the segmentation
is performed. The routine from ref. 49 defines the direction in the
plunger voltage space that controls the detuning € of the dot energies,
known as the detuning axis of the bias triangles. Scanning along this

line with varying magnetic fields, we expect to observe a current drop
atthebaseline at zero magnetic field, which another classifier detects
(Extended Data Fig. 4). On meeting all criteria, the gate voltage coor-
dinates are forwarded to the next stage.

The final stage of the processis dedicated to finding an operating
point for qubit read-out and manipulation. This stage not only identi-
fiesasuitablelocationinthe plunger voltage space but also determines
the optimal driving frequency and duration of the pulse.

Onthe basis of the segmentation from the previous stage, a pre-
dicted read-out gate voltage region within the bias triangle is defined
(Fig. 2d(i)). The algorithm optimizes across the four-dimensional
space of the two plunger gate voltages, driving frequencies and
pulse durations. It samples a point within this space and then
measures the currentas a function of the magnetic field (Fig. 2d(ii)).
The optimization’s goal is to identify a current peak in these
scans, indicative of the qubit’s resonance condition (Fig. 2d(ii),
bottom-right plot). This is achieved by evaluating the entropy of
current traces; traces exhibiting a peak correspond to lower entropy
values (Methods).

Bayesian optimization then proposes potential candidates
for further analysis. These candidates are filtered based on the pres-
ence of one or two peaks (corresponding to the number of qubits
addressed), as determined by asimple peak-finding algorithm*°. Noisy
measurements might also show peaks. Therefore, a follow-up step
involves retaking the measurement to confirm the presence of a peak.

Once a candidate is verified, several measurements are taken
by the algorithm to establish the qubit’s operational functionality.
These include a spectroscopy measurement; a Rabi chevron experi-
ment (Fig. 2d(iii)), which is used to calibrate the resonance frequency
(Extended DataFig. 5); and repeated high-resolution Rabi oscillations
atthe Larmor frequency.

Each stage requires a set of hyperparameters. They control vari-
ous aspects of the measurements such as resolution and safe gate
voltage ranges for stability diagrams; aspects of the signal processing
algorithms such as the required prominence of peaks; and steering
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Table 1| Metrics of successful runs

Run Time Frabi g A Vu Ve
number Th)  (MH2) v v W
1 22.8 31+1 1.52+0.07 1.34 0.69 0.91
2 24.5 97+2 072+0.05 134 0.81 1.02
3 28.5 109 £1 070+0.05 134 0.79 0.95
4 32.0 47 +1 2.20+0.12 1.37 0.80 1.01
5 333 51+1 274+0.22 1.36 0.69 1.04
6 34.4 90 +1 073+0.04 1.35 0.78 0.94
7 345 56 +1 2.31+014 1.35 0.79 0.95
8 378 15+3 067+0.08 132 0.77 0.89
9 56.5 49 +1 212+0.14 1.35 0.65 1.00
10 79.2 63 +1 0.74+0.03 1.38 o 1.02

For each qubit found, we show the total time it took; Rabi frequency fg,,; g-factor; and
settings for barrier gates V|, V), and V. The errors of fi,; are estimated from the fit uncertainty
and the errors of g are calculated from the width of the resonance peak.

parameters such as the number of candidates that a stage can sug-
gest. The measurement aspects can be derived from some weak prior
knowledge about the device, such as the magnitude of lever arms,
which informs the resolution of stability diagrams. We also assume a
g-factor larger than 0.5 (limiting B and f,,,) and f,,; between 30 MHz
and 250 MHz (limiting ¢,,,..). The requirements on prior knowledge can
be easily softened by widening the search space.

The set of hyperparameters influences the length of the runs
and the way the algorithm manages trade-offs between exploration
and exploitation. Regardless of the hyperparameters, the algorithm
will always terminate once all the candidates of each stage have
been exhausted.

The choice of hyperparameter was made during development and
notoptimized for the total run time or efficiency. We provide a full list
of allhyperparametersin Supplementary Section 5.

After a qubit has been found, we may choose to study the qubit
further. Routines from stages 3 and 4 enable the tracking of a known
read-out spot and the resonance condition in the gate voltage space.
Thisallows for recording the dependency of qubit metrics as we change
the confinement potential. We provide details of this characterization
algorithmin the Methods.

Tuning performance

We fixed the hyperparameters and gathered 13 runs. Rabi oscillations
were found in ten of those runs. In successful runs, the time spent in
each stage varied (Fig. 3a). The total time required ranged from 22 to
80 h, with amean of 38 h (median, 34 h; Table 1). Each stage relies on
the exploration and accuracy of the previous stage. The variationin the
timerequiredin each stage gets progressively larger. Almost all time is
spenton measuring the device, not onthe decision algorithms. Thisis
due to the measurement of current through the DQD, which requires
long integration times. A setup that allows for fast measurements via,
forexample, radio-frequency reflectometry could be tuned orders of
magnitudes faster.

Thethreefailed runs ultimately reached alimit onthe explorations
itisallowed to make, terminating the search to prevent an unbounded
exploration of parameter space. They lasted between 56.0 hand 94.9 h
(Fig. 3a, black). Although these runs identified transitions consistent
with PSB, the algorithm could not proceed to detect Rabi oscillations.
Since the optimal conditions for qubit formation are not uniformly
distributed, the algorithm can sometimes converge on parameter
regimesinwhich the tunnel-barrier settings are less optimal. Addition-
ally, when the signal-to-noiseratiois lower, the algorithm may not yield
apositive detection.

The qubitlocationsin the gate voltage spacein terms of the three
barrier gate voltages are depicted in Fig. 3b. For comparability, we
normalize each voltage by the voltage at which each barrier gate elec-
trode pinches offthe currentindividually. At each point, stage 2 (tune
barriers) passed a candidate for further analysis (solid dots). In some
cases, PSBwas detected (dashed circles), passing stage 3, and asubset
of these also yielded a qubit (solid circles), successfully completing
stage 4. Asimilar plot showing the distributionin plunger voltage space
isprovided in Supplementary Section 2 and Supplementary Fig. 2.

Figure 3¢ presents examples from two runs, showing the transi-
tions found and Rabi chevron measurements. The discovery of qubits
in both bias directions evidences the algorithm’s adaptability and
its non-specificity to certain transitions. Both Rabi chevrons were
obtained using the same given driving power and driving frequency,
but varied in magnetic fields and Rabi frequencies, highlighting the
algorithm’s generalization capability. All the depicted measurements
were autonomously executed by the algorithm, accounting for the
non-centred chevron measurements. Respective measurements for
all successful runs are provided in Supplementary Fig. 1.

Analysing the locations in the gate voltage space in which qubits
were found providesinsightinto the device physics (Table1). By fitting
a convex hull around the qubit locations in the barrier gate voltage
space, we can estimate the volume of the regioninwhich qubits can be
found. For this device, the volume of the convex hullis approximately
3.2x107* V3, translating to a fraction of the safe ranges ((2 V)?) of about
4 %1075, The spaceis further restricted by the plunger voltage location,
which s a box of roughly (10 mV)2 Given a search space of (300 mV)?,
this brings down the size of the volume to around 2 x 107 as a fraction
ofthe five-dimensional gate voltage space, whichis roughly equivalent
toaneedleina (2 m)*haystack.

Once a qubit has been found, the algorithm allows for extensive
characterization. We can study f,,; and g-factor as a function of the
barrier gate voltages (Fig. 3d). The resulting maps give insights into
qubit properties and can be extended to measure, for example, the
Hahn-echo coherence time.

Conclusions

We havereported the fully automated tuning of spin qubits, progressing
from a de-energized device to qubit control. Our algorithm autono-
mously achieved Rabi oscillations in 10 out of 13 trials. Most tuning
processes concluded within three days, with the primary speed con-
straint being the integration timesrequired to performd.c. transport
measurements. The times can be sped up via fast read-out alternative
or spin manipulation techniques of the quantum device. Maps of the
g-factor and fp,,,; serve as evidence for the potential of this approach
for high-throughput qubit characterization.

Our methodology could be extended to other semiconductor-
based qubitarchitectures, includingsilicon fin field-effect transistors”.
The modular design of our algorithm makes adapting to different
device layouts and measurement techniques—including charge sens-
ing and single-shot read-out—accessible. Although certain modules
and optimization approaches may require refinement to suit larger or
more complex devices, our end-to-end approach provides a founda-
tion for future work.

Our autonomous pipeline could also be extended beyond qubit
formation towards high-fidelity control. Additional stages can be
added that automatically design and refine shaped control pulses,
an approach that has already pushed single- and two-qubit fideli-
ties past fault tolerance thresholds when performed manually” >,
Coupling such pulse engineering routines with the gate voltage tun-
ing demonstrated here, as well as scaling the full loop to multiqu-
bit architectures, defines the next step for fully self-optimizing spin
qubit hardware. Meeting these challenges will be pivotal for realizing
hands-free, high-performance quantum processors. More broadly,
we expect theinternal scores that steer our autonomousloop, such as
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energy-splitting and entropy measures, may correlate with established
qubit-quality benchmarks; systematically mapping those connections,
as well as refining the scores accordingly, is a promising direction for
future optimization studies.

The mass tuning and characterization of qubits, facilitated by
our fully autonomous tuning algorithm, could provide a productive
feedback loop between measurement and fabrication processes.
Wafer-scale, high-throughput characterization of quantum devices,
already feasible in early tuning stages, can mitigate device vari-
ability. This, in turn, could improve the tuning process, bolstered by
expanding datasets.

Methods
Here we provide details of the experimental setup and the algorithmic
choices made in this study. We begin by describing the device used for
our experiments. We then follow with a discussion of the intelligent
computational approaches used in the algorithm. Finally, details of
each stage are discussed. Anoverview of all the stages of the algorithm
isgivenin Extended Data Table 1.

Hyperparameters that are not explicitly given here are provided
inSupplementary Section 5.

Device and measurement details

The device consists of a Ge-Si core-shell nanowire lying on top of
nine bottom gates measured in a variable-temperature insertin a
liquid-helium bath, with the sample mounted below the 1-K pot (base
temperature, 1.5 K). By applying positive voltages to the first five bot-
tom gates from the left, an intrinsic hole gas inside the nanowire is
depleted to form a hole DQD. A scanning electron microscopy image
ofadevice similar to the one used hereis shownin Extended Data Fig. 1.
The device, measurement apparatus and pulse sequence are the same
as those used in ref. 41 and are described in detail in that work, which
was performed independently and served primarily as an initial ref-
erence for the device’s characteristics. We did not explicitly encode
knowledge of the particular qubit from ref. 41 into our algorithm.

To amplify the measurements that rely on an MW pulse, we applied
pulse modulation by a lock-in amplifier at 87.777 Hz. The measure-
ments, therefore, have an in-phase and out-of-phase component.
We apply principal component analysis to these measurements and
project each measurement onto the principal axis. We further offset
the measurements such that they are strictly positive. Measurements
that are obtained in this way are marked as /,;, as opposed to currents
that were measured conventionally (which are marked as |/]).

Techniques used in the algorithm

Useful automation of tuning from a de-energized device to identify
Rabi oscillations requires an algorithm that can adapt to different
data-capture regimes, and be transferred to other, similar devices.
To achieve this, we have made extensive use of intelligent, adaptive
and data-driven subroutines. Nowadays, there is a plethora of such
techniques to choose from. To choose the right technique to apply to
each stage of the algorithm, we considered the following:

» theneed for expert-labelled training data, which was not
always possible or realistic to source;

« theneed of being efficient in both total number of measure-
ments taken during a stage and in the resources needed for
computing decisions about which measurements to take;

- theminimal accuracy needed in each stage for the whole
algorithm to be able to achieve its overall goal of identifying
operating parameters for a qubit.

Toaddress the above considerations across the many stages of the
algorithm, anon-exhaustive list of techniques we have found useful to
useincludes GPinference, convolutional neural networks (CNNs), unsu-
pervised computer vision and computational geometry techniques,

and Bayesian optimization. We now briefly introduce these, highlight-
ing their strengths and weaknesses.

GPs are a popular form of non-parametric Bayesian inference’*.
They can be thought of as a method for doing principled Bayesian
inference over aspace of functions. GPs can be tailored to any specific
domain or problem by making a choice of the so-called kernel (or
covariance) function, a part of this model that describes prior knowl-
edge about the possible space of functions in which inference is to
occur. This choice canallow practitioners to encodeimportant domain
knowledge before capturing any data, such as specifying knowledge
of periodicities, symmetries or the expected degree of smoothness
of'the underlying process that is being observed. This constitutes the
main strength of GP modelling, often enabling highly data-efficient
inference. However, both model fitting and model prediction can be
computationally intensive, typically growing cubically* in the number
of observed data points.

Over the past two decades, CNN architectures have proved to be
go-to models for solving computer vision tasks. Their strengths lie in
their adaptability across different computer vision tasks, their robust-
ness in the face of unknown noise and their computational efficiency
at training time. Their weakness lies in always requiring substantial
amounts of training data. In this work, we use some standard architec-
tures, such asResNet*, as tools for extracting properties from or making
assessments of stability diagrams. Where we have applied them, train-
ing data have been either generated by a sufficiently good simulator
or gathered fromthis or similar devices and then labelled by an expert.

Often, the use of CNNsis neither required nor appropriate for the
particular computer vision task at hand. In particular, it has been of
crucialimportance to anumber of stages through the algorithm to be
able to automatically locate and segment bias triangles within stability
diagrams using a coordinate-wise approach. To achieve this, we have
used a number of unsupervised computer vision techniques that can
mitigate noise in, and localize features of the geometric figures present
inthe stability diagrams. Although CNNs would require large amounts
of labelled training data to achieve this result, the requirements can
be met by computer vision techniques that need no training data, and
require only a few hyperparameter choices to be made. All together,
we have called this a bias triangle segmentation framework, and it is
describedinref. 49, where the specific application to PSB detectionis
also detailed.

Bayesian optimization?-*>°* is a general, iterative approach to
black-box function optimization. At each iteration, it constructs a
surrogate model of the function being approximated using the data
already gathered, and uses this surrogate model to efficiently compute
the next most informative location from which to sample the unknown
function. To apply this technique, one must specify ascore function to
optimize and aparameter space over which the search for an optimum
is conducted. The choice of the surrogate model is also influential in
the accuracy, efficiency and reliability achieved using this method. In
this work, we have made consistent use of GP surrogate models using
aMatern5/2 kernel.

Stages of the algorithm

Stage 1: define DQD. (a) Hypersurface building. As the first step, the
algorithm determines a current that it considers to be pinched off by
ramping to the high end of the safe ranges. We take repeated current
measurements there to characterize the noise floor. From the noise
floor, we compute a pinch-off current.

Next, we sample several points within the safe ranges using aSobol
sequence for quasi-random locations. The points are used to define
rays from the origin that are then investigated for pinch-off. To avoid
overloading the current amplifier, we search for pinch-off from the
origin towards the upper end of the safety ranges with a low bias volt-
age. Once the pinch-offis found, we retrace with a higher bias voltage
to confirm the exact pinch-offlocation.
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Finally, we use these data to construct the hypersurface model, as
outlined in the main text.

(b) Double-dot detection. The previous stage defines a region
within whichwe canlook for aDQD potential. We sample quasi-random
points viaa Sobol sequence for investigation. For each point, we vary
both plunger voltages simultaneously and measure the current, follow-
ingthe method described inref.21. We use the random forest classifier
developed inref. 22 to check for the presence of Coulomb peaks. If
Coulomb peaks are found, we then measure a stability diagram. This
diagram is analysed with a neural network to detect features of the
DQD. The neural network was trained on data fromavariety of devices,
mainly from the data gathered in refs. 21,22, and additional data are
obtained from a nanowire device different from the one used in this
work. In total, there were 4,611 stability diagrams, out of which 726
showed double-dot features.

Stage 2: tune barriers. (a) Barrier optimization. On the formation
of separated pairs of bias triangles, we perform coordinate-wise seg-
mentation and polygon fitting* to facilitate their tracking and feature
extraction throughout the remainder of the tuning pipeline.

Segmentation and shape extraction enable the assessment of
the currentintensity difference between the baseline and gap formed
betweenthebase and first excited-state line. By quantifying this inten-
sity difference in abase separation score, we can use a Bayesian optimi-
zation framework, which seeks to maximize the intensity difference, as
apromising indicator for detecting viable candidates for PSB.

Each pair of bias triangles should present a base well separated
from the mainbody. By measuring the d.c. current through the device,
we effectively probe the internal energy transitions between the two
quantum dots. Crucially, these transitions remain relatively unaf-
fected by the thermal broadening of the leads, making the scheme
viable at higher (‘hot’) temperatures. For PSB-based read-out to be
effective, the energy splitting between the relevant singlet and tri-
plet states, that is, As;, must exceed the thermal energy (k; 7). Once
Agr < kg T, the PSB mechanism can degrade and allow unwanted leak-
age current, thereby compromising the quality of the read-out. The
energy-splitting score, therefore, serves as a metric to guide the
algorithm towards bias triangles that are more likely to yield robust
spinread-out and, ultimately, stable qubit operation. Supplementary
Section 3 provides further discussion on the relation of this score with
spin-state visibility. Supplementary Section 4 provides empirical
justification of the score.

The separationscoreis computed by averaging the current along
the detuning axis (Fig. 2b(ii) shows two one-dimensional traces), and
computing theratio of the intensity between the peaks and the lowest
pointinthe valley between them. In the case of multiple triangles, the
highest separationis used as the score.

Certain potential landscapes canlead to situations in which charge
configurations are affected by charge switch noise. Since these poten-
tials are unlikely to be used as a qubit and the resulting bias triangles
canskew our base separation scoring, we excluded them by leveraging
aneural network classifier. This classifier was trained to distinguish
between normalbias triangles and the ones that are affected by charge
switch noise (Extended Data Fig. 2). The training dataset for this clas-
sifier was obtained as follows: initially, potential bias triangles were
identified using our segmentation routine. Subsequently, we manu-
ally labelled 2,302 of these (1,539 samples showed no switch noise) to
create a robust training set. The classifier itself was then obtained by
fine-tuning a ResNet-based architecture with this dataset.

Once the voltage space has been explored through Bayesian opti-
mization, we have aclear understanding of the landscape (Fig. 2b(ii)).
The measurements in this optimization were obtained using an effi-
cient measurement algorithm (Supplementary Section 6). We sample
the most promising regions again without the efficient measurement
algorithm and analyse them, as described in the next section.

(b) Plunger window selection. Given a sampled stability diagram
containing bias triangles, the aim is to select the region that contains
as many bias triangles with scores as high as possible, no areas with
current that is too high and as few switches as possible (Fig. 2b(iii)).
High-currentbias triangles are unlikely to be able to be used for qubit
operations. This is a heuristic and we set a conservative threshold of
200 pA. To ease the downstream steps, the region should be arec-
tangular window. Through an iterative approach, starting from the
smallest bounding boxes containing each single pair of bias triangles,
larger windows are constructed by merging the existing ones in case
they satisfy the conditions about switch absence and low currents. For
the absence of switches, we used a soft constraint, allowing for bias
triangles affected by switch noise in case their total area was less than
25% of the area covered by all triangles in the window. The algorithm
complexity scales exponentially with respect to the number of triangles
and some heuristics have been leveraged to reduce substantially com-
plexity and, therefore, execution time. In particular, at eachiteration,
only the top100 bounding boxes by the number of contained triangles
without switches were kept, to ensure amanageable upper limitonthe
number of possible merges. The routine halts when no further merges
are possible. Once the plunger windows have been selected, they are
ranked by the highest separation score.

Stage 3: find PSB. (a) Wide-shot PSB detection. To identify each bias
triangle’s location, we first leverage the fact that they sit on a honey-
comb or skewed rectangle pattern. We use autocorrelation on the
stability diagram to identify this pattern. The largest two peaks in the
autocorrelation help us establish a vector that spans this pattern of
skewed rectangles. To fix the patternin place, we use ablob detection
algorithm, using the first blob it identifies. This helps us accurately
overlay the skewed rectangle pattern and estimate the locations of the
bias triangles (Extended Data Fig. 3).

Next, we extract these bias triangles using the identified locations,
withsidelengthsinformed by the pattern dimensions. These extracted
biastriangles are theninputinto aneural network for further analysis.
We used autonomously gathered datathat were taken during the initial
development phase. In total, we used 626 pairs of bias triangles taken
from 70 stability diagrams. Here 55 pairs of bias triangles showed PSB.
Reference 38 provides more detailed information on this procedure.

(b) Re-centring and high-resolution PSB detection. Inaneffort to
filter the previously detected candidates for PSB and eliminate false
positives, a second set of higher-resolution measurements is per-
formed. For that purpose, a dedicated low-resolution stability diagram
ofthe candidate bias triangles is taken and used to update the plunger
voltage extent based on the detected contours, effectively performing
are-centring. With the updated voltage extent, high-resolution stability
diagramswithB=0 T and with B=0.1T are taken.

A second substage of PSB classification is applied through a
segmentation-based detection and feature extraction framework,
which facilitates the coordinate-wise quantification of geometric
and physical properties of bias triangles®. In particular, given the
high-resolution stability diagram with B=0.1T, this framework fits
minimum-edge polygons to the detected contours of bias triangle
pairs by utilizing a relaxed extension of the Ramer-Douglas-Peucker
algorithm®, Once the segmented shape mask is identified, further geo-
metric properties such as the base and excited-state lines can be auto-
matically extracted solely based on prior knowledge of the bias voltage
sign, which predicts the direction in which the bias triangles point.

For the identification of PSB, an analytical classifier based on the
above framework was devised*’. PSB expresses itself as a suppressed
baseline of the biastrianglesat B=0 T.AtB>0 T, thereis aleakage cur-
rent at the baseline. The routine extracts the segment enclosing the
base and a prominent excited-state line on the stability diagram with
aleakage current (B=0.1T).Subsequently, the average pixel intensity
of the segment normalized by the intensity of the entire pair of bias
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triangles is computed. By superimposing the detected segment on
the scan with blocked current (B =0 T), normalized intensity values
are compared and, if their difference exceeds a specified threshold,
the charge transition s identified as positive for PSB.

On the basis of the segmented shape mask of the bias triangle,
further geometrical properties can be automatically extracted, which
enables the tuning of bias triangle featuresin stage 2. The detuning axis,
utilized for the Danon gap measurement, is automatically extracted by
identifying the bias triangles’ base midpoints and tips and computing
the lines between them.

(c) Danon gap check. As a further filter for possible candidates, we
checktofindthe magnetic field dependence of the leakage current at the
base of the bias triangles in a different way. As a function of the applied
magnetic field B, we expect the leakage current to be minimalat B=0T
and higher away from this point. We call this the Danon gap®. A current
measurement of the detuning line as the magnetic field is varied, giving
usatwo-dimensional input (Extended DataFig.4), which we can analyse
asfollows.Ignoringthe noise signal, the currentis roughly constantalong
the magnetic field axis, whereas the detuning line axis is information
rich. Away from the Danon gap, there are two local extrema (to onesside,
the noise floor outside the bias triangles, and to the other side, the gap
duetosinglet-triplet energy splitting), whereas the Danongap regionis
characterized by amonotonic behaviour, with roughly aconstant value.

To detect the presence of the Danon gap, the current/is first pro-
cessed with a Gaussian filter, to smooth out the noise, and then the
absolute slopes along the detuning line axis are integrated:

gB) =Y, "7(;’8) ,where the derivative is the discrete derivative along

the detuning line axis. The function g is minimized in the areas where
the smoothed signal 7shows a constant value. We show the normalized

function g = &in Extended Data Fig. 4. To detect the presence of the

Danongap from g, two tunable hyperparameters are used, validating
the depth and width of the basin of the global minimum of g: in case
the basin is not prominent enough, there is no Danon gap. As the last
check, the location of the minima has to be in proximity of zero
magneticfield.

Stage 4: find read-out. (a) Tracking and entropy optimization. Inthe
subsequent steps, we apply a pulse sequence to the right plunger elec-
trode. As it is a two-stage pulse, the bias triangles will have a ‘shadow’
in the stability diagram. We need to identify the original bias trian-
gles and find a suitable region in which we can expect to find qubit
read-out. Inlight of the resulting shape distortions and further degrad-
ing effects to the measurement quality, we opt for template matching
as opposed to performing re-segmentation for bias triangle tracking
to ensure robustness.

The relative direction in which the shadow bias triangles appear
with respect to the original oneisknowninadvance due to the applied
pulse shape. This is incorporated into the shape-matching approach
as the cardinal direction to uniquely identify and track the triangles.
We perform shape matching by comparing the edge map of a stability
diagrambefore pulsing, functioning as the template, to the edge map of
asubsequent stability diagram with pulsing, functioning as the source
for currentinformation. Further, we extract the segmented shape mask
from the template. The method slides the template over the source
edge map, thereby comparing the template with individual patches of
the stability diagram with pulsing, and returns a result matrix (of the
samesize as the source) whose individual entries quantify the similarity
with the template patch. The used similarity metric is the normalized
correlation coefficient, and the patch withthe maximum correlationis
selected. Oncethe appropriate patch hasbeenidentified, the initial seg-
mentation mask of the stability diagram without pulsing is mapped to
the stability diagram with pulsing and used for subsequent processing.

To identify the optimal read-out spot, we extract the segment
enclosing the base and prominent excited-state lines on the obtained

segmented mask of bias triangles with pulsing. We then perform Bayes-
ian optimization of aread-out quality score over the following param-
eters: the constrained two-dimensional plunger gate voltage space,
frequency of the driving pulsefi,w and burst time ¢, .

Optimal read-out candidates are those that meet the resonance
conditions of the qubit. If they are met, there is a leakage current that
werecord using thelock-in amplifier. Foragivenburst time ¢, (relat-
ing to the Rabi frequency fi.,) and a given frequency of the driving
pulse fyw (relating to the g-factor), the leakage is characterized as a
peak in leakage current for a certain magnetic field B. In this setup,
hardware-related resonances and non-uniformattenuationacross cer-
tainfrequency ranges introduce distortions when the drive frequency
is varied instead of the magnetic field. Consequently, sweeping the
magnetic field at a fixed frequency provides a more stable and inter-
pretable signal, even thoughitis slower. Thus, for read-out optimiza-
tion, we measure the current with varying magnetic fields. Instead of
applying principal component analysis, as explained above, we use
the L2 norm of the in-phase and out-of-phase components to retrieve
aone-dimensional trace [(B). This guarantees peaks to be higher than
the background, as opposed to processing with principal component
analysis, which canlead to dips rather than peaks.

To quantify the sharpness of these peaks, we developed a score
based on the Shannon entropy H = -3 [I(B) log[{(B)]] of the trace. For
the calculation of the entropy of the score, we first subtract the median
and then clip values at zero. This particular preprocessing turns the
trace into something more akin to a distribution and enhances the
robustness of our score, making it less susceptible to potential noise
disturbancesin the trace. This method results inasmooth score land-
scape suitable for Bayesian optimization.

(b) Resonance confirmation. This verification step acts as a final
filter and all the last stages are executed once a candidate passes this
filter. The previous stage sends a candidate with a suspected resonance
condition. The stage re-measures the leakage current as a function
of the magnetic field. If the resonance condition was truly found, a
peak should appear at the same magnetic field again. If we detect a
peak with a specified prominence at this magnetic field within a set
margin of error, the resonance condition is considered confirmed
and all downstream measurements are executed. We note that anoisy
candidate might pass this stage. Repeating the verification step can
reduce such occurrences.

(c) Qubit measurements. Once a resonance condition is found,
we vary the magnetic field and burst duration. The characteristic
Rabi chevron can be analysed by considering the frequency spec-
trum for each magnetic field. The frequency should have a minimum
atthe magnetic field that meets the resonance condition of the qubit.
The amplitude should also be the maximum there due to decoher-
ence for off-resonant driving. We can, therefore, simply look for
the maximum amplitude in the Fourier-transformed Rabi chevron
(Extended Data Fig. 5). This information will give us the precise reso-
nance conditions for the last step, which are repeated measurements
of Rabi oscillations on resonance.

Characterization
The maps shown in Fig. 3 were generated using automated measure-
ments. Initially, on identifying a qubit, we record its read-out spot,
g-factor and f;,,;. We then alter the confinement potential by slightly
adjusting the barrier gate voltages. This adjustment may shift the bias
triangles, consequently moving the read-out spot, g-factor and fp,p;.
Our method involves tracing these transitions to locate the read-out
spot in its new position. At this new location, we conduct an electric
dipole spin resonance check scan. Any changes in the peak’s location
inform us about variations in the g-factor. Furthermore, measuring
Rabi oscillations at this point helps update our understanding of f;,p;.
As we progressively deviate from the initial measurement point,
we utilize our closest prior qubit data to infer the properties at the
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new location. This step is crucial as a shift in the g-factor necessitates
modifying the magnetic field range, whereas a change in f;,,; requires
adjusting thet,,, duration for the electric dipole spin resonance check
toaccurately detect resonances.

Data availability
The data are available via Zenodo (https://doi.org/10.5281/
zenodo.17745219)%.

Code availability
The code is available via GitHub at https://github.com/
oxquantum-repo/fully-autonomous-tuning.
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Extended Data Table 1| List of all stages

Stage

Description

Techniques used

Candidate information

Stage 1: Define DQD

a, Hypersurface building

Building a model of the surface that separates
pinch-off from conducting

Gaussian processes

Upper and lower bounds of
barrier voltages

b, Double dot detection

Identifying Coulomb peaks and double dot
signatures

Random forests and neural networks

Corrected lower bound of barrier
voltages

Stage 2: Tune Barriers

a, Barrier optimisation

Search over the barrier voltage space for
ideal settings

Bayesian optimisation, computer vision,
neural networks

Promising barrier voltage location

b, Plunger window selection

Determine a window for plunger voltages

Computer vision, neural networks

Barrier voltage location and wide
plunger voltage range

Stage 3: Find PSB

a, Wide shot PSB detection

Identify locations of transitions with PSB

Neural networks, computer vision

Narrow plunger voltage range

b, Re-centering

Get precise plunger voltage window

Computer vision

Corrected narrow plunger
voltage range

¢, High res. PSB detection

Confirm PSB with high resolution measurement

Computer vision

Narrow plunger voltage range,
link to high res. measurement,
detuning line definition

d, Danon gap check

Confirm PSB by measuring detuning line as a
function of magnetic field

Computer vision

Narrow plunger voltage range,
link to high res. measurement

Stage 4: Find Readout

a, Entropy optimisation

Find readout spot, g-factor and Rabi frequency
by optimisation of an entropy score

Bayesian optimisation, computer vision

Precise plunger voltage locations,
magnetic field, drive frequency
and burst time

b, Resonance confirmation

Confirm resonance from previous stage/filter
out noise

Peak finding

Passed on from previous

¢, Spectroscopy

Measurement of current while varying t,,.; and
fuw for documentation

Passed on from previous

d, Rabi chevron

Measuring Rabi oscillations close to the
resonance condition

Frequency analysis

Corrected magnetic field for
resonance condition

e, Rabi oscillations

Take repeated Rabi oscillations on resonance

We list all stages and sub-stages with a short description, a rough overview of what techniques were used and what information is passed downstream for a candidate from each stage. Besides
information on the parameters that are directly needed to operate a qubit, the stages also pass down meta-information that other stages might need to use, for example the high resolution
stability diagram of Stage 3c is needed in Stage 4a for template matching.
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Extended Data Fig. 1| Device. False color micrograph of ananowire device similar to the one used in this work. The Ge/Si nanowire is colored in yellow.
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Extended Data Fig. 2 | Bias triangle locations via auto-correlation. A stability diagram (top left) is processed using its auto-correlation (top right). Within the
auto-correlation, we can find the highest values to span a grid of skewed rectangles. The extracted information is used to locate bias triangles in the original stability
diagram (bottom).
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Extended Data Fig. 4| Danon gap check. As a final check to confirm the presence of PSB, the algorithm takes measurements of the detuning line £ (marked in the left
panel) as a function of the magnetic field B (middle). The measurement is analysed by first computing the averaged sum of absolute derivatives g (right).Ifadipis

presentin g closetoB=0T,PSBis confirmed.
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examples (top: simulation, bottom: experimental data). To find the resonance
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frequency, we analyse the frequency spectrum for each magnetic field (which

controls the detuning from resonance). The frequencies have amaximum
amplitude and a minimal point at the resonance condition.
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