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Spanning over two decades, the study of qubits in semiconductors for quantum computing has
yielded significant breakthroughs [1–6]. However, the development of large-scale semiconductor
quantum circuits is still limited by challenges in efficiently tuning and operating these circuits.
Identifying optimal operating conditions for these qubits is complex, involving the exploration of vast
parameter spaces [7]. This presents a real ‘needle in the haystack’ problem, which, until now, has
resisted complete automation due to device variability and fabrication imperfections [8, 9]. In this
study, we present the first fully autonomous tuning of a semiconductor qubit, from a grounded device
to Rabi oscillations, a clear indication of successful qubit operation. We demonstrate this automation,
achieved without human intervention, in a Ge/Si core/shell nanowire device. Our approach integrates
deep learning, Bayesian optimization, and computer vision techniques. We expect this automation
algorithm to apply to a wide range of semiconductor qubit devices, allowing for statistical studies
of qubit quality metrics. As a demonstration of the potential of full automation, we characterise
how the Rabi frequency and g-factor depend on barrier gate voltages for one of the qubits found by
the algorithm. Twenty years after the initial demonstrations of spin qubit operation, this significant
advancement is poised to finally catalyze the operation of large, previously unexplored quantum
circuits.

Recent advances underscore the potential of qubits in
semiconductors for universal quantum computation [4–
6, 10–14]. These include the achievement of two-qubit
gates showcasing fidelities that surpass thresholds essen-
tial for fault-tolerant computing [4, 15, 16], and hot qubits
that address the bottleneck of millikelvin refrigeration
[12, 17, 18]. Strides in wafer-scale manufacturing of these
devices [7, 19] and their efficient testing at cryogenic tem-
peratures [20, 21] further highlight the rapid progress
in this field. Still, semiconductor quantum circuits are
limited to at most six qubits [22] in one device. This
stands in stark contrast to the potential afforded by mod-
ern semiconductor fabrication techniques, which could
support the integration of millions of qubits.

One of the reasons for this contrast is that a long-
standing challenge remains: the intricate tuning required
to reach and maintain qubit operation. Previous works
have introduced diverse approaches for automating single
stages of this process, such as defining double quantum
dot (DQD) confinement potentials [9, 23–25], navigat-
ing to specific charge transitions [26–33], fine-tuning of
charge transport features [34] or the inter-dot tunnel cou-
plings [35, 36], as well as device characterisation [37–39].
Offering glimpses of the potential of machine learning
for full qubit tuning automation, these works left the
challenge unaddressed.

Here, we present a fully autonomous tuning process,
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able to encode a qubit without the need for human inter-
vention. The process of going from a fully de-energized
device to the observation of Rabi oscillations, a defini-
tive indicator of qubit functionality, usually takes human
experts weeks, or even months, to complete. Our al-
gorithm, deployed on a DQD device, can complete the
tuning process within three days.

Our success in moving away from the manual tun-
ing of semiconductor qubits marks a paradigm shift in
quantum device scalability. Key to this success is the
algorithm’s ability to navigate through various stages of
the tuning process, efficiently handling challenges and
making accurate decisions. Our findings, underpinned by
deep learning, Bayesian optimisation, and computer vi-
sion techniques, would finally allow for the operation and
characterisation of complex, large-scale semiconductor
qubit circuits.

DEVICE ARCHITECTURE AND READOUT
TECHNIQUE

We consider a common layout for a DQD device (inset
of Fig. 1b). We use a Ge/Si core/shell nanowire device in
which holes are confined in depletion mode [40]. The elec-
trical potential is set by a number of gate electrodes. Two
plunger gate electrodes predominantly shift the electro-
chemical potential in the left and right dots with voltages
VLP and VRP. The rest of the gate electrodes primarily
control the barriers between the DQD and the leads as
well as the inter-dot coupling. One of the plunger gates is
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FIG. 1: Algorithm overview. a, There are four stages that the algorithm needs to successfully navigate to reach qubit
operations. The goal of each stage is illustrated with a confinement potential diagram. b, Each stage can either be successful and
produce candidates (leading to one or more branches), or unsuccessful (leading to a backtracking to the closest stage that still
has candidates). The search is therefore conducted in a tree structure. Some branches of the tree might be left unexplored. This
is indicated by dashed lines. Inset: Illustration of the device. Five different voltages Vi can be applied to a linear confinement.
c, A pulsing scheme can be applied with a microwave burst of length tburst. The fast line is connected to plunger gate RP. d,
Simulated measurement illustrations that mark the successful transition between stages. Starting from a stability diagram with
mere DQD features (far left), the algorithm tunes parameters until promising bias triangles (middle left), triangles exhibiting
PSB (middle right) and finally Rabi oscillations (far right) are obtained. The extremal points of the pulse scheme are indicated
as a star and circle in the middle right illustration.

connected to a high-frequency line via a bias-tee, allowing
for the application of voltage pulses and microwave bursts.

The device can be probed by applying a bias voltage
VSD to the source lead and recording the current ISD
at the drain lead. The algorithm navigates to a DQD
occupation that exhibits Pauli spin blockade (PSB) for
spin-to-charge conversion. To achieve this, the DQD does
not need to be depleted to the single hole regime. The
charge occupation on each dot is estimated to be in the
range of several dozens [41–44].

The algorithm uses a two-stage pulsing protocol [18, 45–
47] which is parameterised by a microwave (MW) pulse
frequency and a duration tburst(Fig. 1c). This protocol
allows for qubit manipulation if the spin resonance condi-
tions are met. Details on the pulsing scheme for coherent
spin control and the device are described in Methods and
by Carballido et al. [40].

THE ALGORITHM

The autonomous tuning algorithm is structured into
four main stages. Starting from a completely de-energized
device, i.e. with all gate voltages set to 0, the first two
stages define the DQD potential by tuning the inter-dot
barrier and the reservoir coupling. The third stage nar-
rows the search space by looking for distinct signatures

of PSB, an initialisation and readout requirement. The
last stage fine tunes the plunger voltages and finds the
frequency and duration of a microwave pulse needed to
drive the qubit. The effect of each stage on the DQD con-
finement potential is illustrated in Fig. 1a. Measurement
illustrations exemplifying those taken by the algorithm
are shown in Fig. 1d.

As a result of the algorithm design a search tree emerges,
as shown in Fig. 1b. Once a stage is successfully com-
pleted, a list of candidates is generated. A candidate
consists of all information needed for the next stage to
investigate it, usually containing locations or ranges of
gate voltages, or information on the suspected g-factor
and Rabi frequency fRabi. The candidates are ordered by
a dedicated score in each stage and a single candidate is
passed on to the next stage. If a stage is unsuccessful, the
algorithm backtracks to the previous stage and investi-
gates the next candidate in that stage’s list of candidates.
This process dynamically creates a search tree. If a differ-
ent branch has proven to lead to a qubit, some branches
of the tree may be left unexplored. These are indicated
by dashed lines in the tree in Fig. 1.

We describe each stage in this section. Details on the
stage structures, substages, and composition of candi-
dates for each stage can be found in Methods and the
Supplementary Material.
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FIG. 2: Summary of each stage. a, Stage 1: Definition of a DQD potential. a-i Current measurements along random
directions in gate voltage space to determine the points at which conducting and non-conducting regions meet, so-called pinch-off
points. a-ii Gaussian processes model the hypersurface after collecting sufficient pinch-off points. a-iii A neural network
confirms the presence of a DQD analysing the aquired stability diagrams. b, Stage 2: Optimisation of bias triangle features. b-i
Analysis of stability diagrams, segregating individual transitions and averaging them along segments orthogonal to the detuning
axes. b-ii Distribution of optimisation scores and averages of bias triangles along segments orthogonal to their detuning axes.
We aim to increase the singlet-triplet energy splitting via a proxy score that measures the dip of current between the baselines
and the rest of the triangles. b-iii Identification of plunger voltage windows unaffected by charge switches aided by neural
networks. c, Stage 3: Finding PSB c-i Initial low-resolution, wide-range detection of PSB using neural networks. c-ii Detailed
high-resolution scans employing segmentation algorithms. c-iii Bias triangles that show signatures of PSB and can be used to
optimise readout. d, Stage 4: Readout spot identification within a promising transition d-i Acquisition of stability diagrams
pulsing gate RP to locate the readout region (indicated by a white dashed box). d-ii Entropy-based scoring of magnetic field
traces within the readout region, optimized through Bayesian methods. d-iii Rabi oscillations for different magnetic fields
around the resonance condition to confirm qubit operation. The measurements marked with ILI were amplified with a lock-in
amplifier, see Methods for details.

Stage 1: Define DQD

The first stage identifies the gate voltage settings that
define the DQD confinement potential. It determines a
lower and upper limit for each barrier gate voltage, which
is used in subsequent stages.

Building upon the methodologies of Moon et al. [9]
and Severin et al. [24], a hypersurface model is created
to distinguish between conducting and non-conducting
regions within the three-dimensional barrier gate voltage
space. The algorithm takes current measurements along
random directions within this space (Fig. 2 a-i), and
models the hypersurface with a Gaussian process, as
depicted in Fig. 2 a-ii. We expect a DQD potential

forming near a corner of the hypersurface in the first
octant. To pinpoint this corner, three specific current
measurements are conducted using only one of the gate
electrodes at a time. The resulting coordinates are then
projected onto the model of the hypersurface, setting the
lower bounds of the region where DQDs are likely to be
found. The upper bounds of the region are given by the
coordinates of the single gate pinch-off voltages, i.e. when
the current drops to a value that is indistinguishable from
the noise floor. The resulting box is labelled as ‘DQD
search region’ in Fig. 2 a-ii.

A methodical search within this box is conducted by the
algorithm. The algorithm samples locations in the DQD
search region and investigates them, starting from the
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point nearest to the projected corner and progressing to
higher gate voltages. At each location a one-dimensional
trace of the plunger gate voltages is taken and checked for
Coulomb peaks, a signature for quantised charge transport
and a first requirement for a DQD. If Coulomb peaks are
found, a measurement varying both plunger gate voltages,
a so-called stability diagram, is acquired and analyzed via
a neural network for DQD characteristics; see Fig. 2 a-iii
for a stability diagram that shows the desired features.
Successful identification of DQD features at a location in
gate voltage space establishes it as a lower limit for the
subsequent search.

Stage 2: Tune barriers

The goal in the second stage is to adjust the tunnel
barriers to enhance the singlet-triplet energy splitting, an
important requirement for qubit operation. Additionally,
this stage needs to avoid regions of gate voltage space
with following characteristics: regions with high currents
above a generous threshold; regions that are susceptible
to charge switch noise; regions that show co-tunneling
lines.

Within the gate voltage bounds established in the first
stage, Bayesian optimisation is employed to search gate
voltage combinations. The figure of merit for this op-
timisation is based on the degree to which it reduces
current between the triangle baseline and excited states,
compared to the current throughout the rest of the bias
triangles. This acts as an easy-to-compute proxy score of
the singlet-triplet energy splitting. After Bayesian opti-
misation suggests a voltage setting, a stability diagram
is measured (Fig. 2 b-i). We first use a segmentation
algorithm [48] to find the outlines of individual pairs of
bias triangles. The score is then computed using averages
of the stability diagram along the common baseline, as
illustrated in Fig. 2 b-ii. A neural network identifies bias
triangles that are impacted by charge switches. Charge
switches distort the stability diagrams and make the area
unsuitable for qubit operation; see the hatched area in
Fig. 2b-iii or Extended Data Fig. 6 for examples. These
bias triangles are excluded from the optimisation. The
gate voltage regions explored by the optimisation are
shown in Fig. 2 b-ii.

A significant challenge of this stage is the need for nu-
merous stability diagrams, which are time-intensive to
measure. To address this, we implement an adaptive,
efficient measurement algorithm designed to specifically
focus on gate voltage regions where bias triangles are
present, see Supplementary Material for details. Employ-
ing this method cuts down the measurement time by
approximately two-thirds. The optimisation is performed
using these efficient measurements.

As a final step, stability diagrams without the efficient
measurement algorithm are taken in the most promis-
ing regions. This is done to ensure there are no charge
switches, because the previous step ranked each location

by the highest score of a bias triangle at that location.
Therefore, some stability diagrams may have regions af-
fected by charge switches. Bounding boxes are then cre-
ated in the plunger voltage space, encompassing primarily
stable bias triangles with current below the previously
mentioned threshold (Fig. 2 b-iii). These triangles are
each evaluated and scored, and the bounding boxes are
ranked based on the highest score they contain.

The algorithm has up to this point only used a positive
bias voltage. This stage proposes both positive and nega-
tive bias voltages for each candidate it creates. The gate
voltage coordinates including the bias voltage are passed
on to the subsequent stage.

Stage 3: Find PSB

In this stage, our algorithm searches for charge tran-
sitions exhibiting PSB, a necessary condition for qubit
initialisation and readout in this setup. A candidate has
to pass three different classifiers to be judged as exhibiting
PSB. This is necessary to avoid false positives entering
the time-intensive last stage.

We begin with low-resolution stability diagrams of bias
triangle candidates, both with B = 0 T and B = 0.1 T. In
these devices, PSB is expressesd as a suppressed baseline
of the bias triangles in low magnetic field compared to
high magnetic fields (Fig. 2 c-iii).

We use a routine based on the auto-correlation of the
stability diagram to pinpoint bias triangle locations, see
Methods for details. The identified triangles are then ana-
lyzed using a neural network [39](Fig. 2 c-i). Subsequently,
the algorithm measures a stability diagram to precisely
delineate the bias triangle, followed by high-resolution
stability diagrams with B = 0 T and B = 0.1 T.

The algorithm invokes a routine to segment the bias
triangles [48], illustrated in Fig. 2 c-ii. A further PSB
classification based on the segmentation is performed. The
routine from [48] defines the direction in plunger voltage
space that controls the detuning ε of the dot energies,
known as the detuning axis of the bias triangles. Scanning
along this line with varying magnetic fields, we expect to
observe a current drop at the baseline at zero magnetic
field, which another classifier detects. Upon meeting all
criteria, the gate voltage coordinates are forwarded to the
next stage.

Stage 4: Find readout

The final stage of the process is dedicated to finding an
operating point for qubit readout and manipulation. This
stage not only identifies a suitable location in plunger
voltage space but also determines the optimal driving
frequency and duration of the pulse.

Based on the segmentation from the previous stage,
a predicted readout gate voltage region within the bias
triangle is defined (Fig. 2 d-i). The algorithm optimizes
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FIG. 3: Benchmarking. a, The duration of each stage for ten successful runs is shown, sorted by the total time taken to
tune a qubit in operation. In black: the three runs that did not lead to a qubit. b, Locations in the barrier voltage space (as a
fraction of the individual pinch-off voltage) is shown. In some locations, no PSB was identified. The qubit locations are a subset
of locations that exhibit PSB. c, Examples of transitions from two different runs, showing the associated bias triangles (upper
row) and Rabi chevrons (lower row). d, Characterisation. Varying the barrier gate voltages, we can build a map of fRabi (top
row) and the g-factor (bottom row) of one of the found qubits (marked with arrows in b) using automated measurements. For
illustrative purposes we show slices of a Gaussian Process model that was fitted to the data.

across the four-dimensional space of the two plunger gate
voltages, the driving frequencies and pulse durations. It
samples a point within this space and then measures
the current as a function of the magnetic field (Fig. 2
d-ii). The optimisation’s goal is to identify a current
peak in these scans, indicative of the qubit’s resonance
condition (Fig. 2 d-ii, lower right plot). This is achieved by
evaluating the entropy of current traces; traces exhibiting
a peak correspond to lower entropy values, see Methods
for details.

Bayesian optimisation then proposes potential candi-
dates for further analysis. These candidates are filtered
based on the presence of one or two peaks (corresponding
to the number of qubits addressed), as determined by a
simple peak-finding algorithm [49]. Noisy measurements
might also show peaks. Therefore, a follow-up step in-
volves retaking the measurement to confirm the presence
of a peak.

Once a candidate is verified, several measurements are
taken by the algorithm to establish the qubit’s operational
functionality. These include a spectroscopy measurement,
a Rabi chevron experiment (Fig. 2 d-iii), and repeated
high resolution Rabi oscillations at the Larmor frequency.

Hyperparameters

Each stage requires a set of hyperparameters. They
control various aspects of the measurements such as: reso-
lution and safe gate voltage ranges for stability diagrams;

aspects of the signal processing algorithms such as the
required prominence of peaks; and steering parameters
such as the number of candidates that a stage can suggest.
The measurement aspects can be derived from some weak
prior knowledge about device such as the magnitude of
lever arms which informs the resolution of stability dia-
grams. We also assume a g-factor larger than 0.5 (limiting
B and fMW) and a fRabi between 30 MHz and 250 MHz
(limiting tburst). The requirements on the prior knowledge
can be easily softened by widening the search space.

The set of hyperparameters influences the length of
the runs and the way the algorithm manages trade-offs
between exploration and exploitation. Regardless of the
hyperparameters, the algorithm will always terminate
once all candidates of each stage have been exhausted.

The choice of hyperparameter was made during devel-
opment and not optimised for total run time or efficiency.
We provide a full list of all hyperparameters in the Sup-
plementary Material.

Characterisation

After a qubit has been found, we may choose to study
the qubit further. Routines from Stages 3 and 4 enable
the tracking of a known readout spot and the resonance
condition in gate voltage space. This allows for the record-
ing the dependency of qubit metrics as we change the
confinement potential. We provide details of this charac-
terisation algorithm in Methods.
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RESULTS

We fixed the hyperparameters and gathered 13 runs.
Rabi oscillations were found in ten of those runs. In suc-
cessful runs, the time spent in each stage varied (Fig. 3a).
total time required ranged from 22 to 80 hours, with
a mean of 38 hours (median 34 hours) (Table I). Each
stage relies on the exploration and accuracy of the pre-
vious stage. The variation in the time required in each
stage gets progressively larger. Almost all time is spent
on measuring the device, not on the decision algorithms.
This is due to the measurement of current through the
DQD which requires long integration times. A setup
that allows for fast measurements via, e.g. radiofrequency
reflectometry could be tuned orders of magnitudes faster.

Run # 1 2 3 4 5 6 7 8 9 10

Time 22.8 24.5 28.5 32.0 33.3 34.4 34.5 37.8 56.5 79.2
(h)

fRabi 31 97 109 47 51 90 56 115 49 63
(MHz) ±1 ±2 ±1 ±1 ±1 ±1 ±1 ±3 ±1 ±1

g 1.52 0.72 0.70 2.20 2.74 0.73 2.31 0.67 2.12 0.74
±0.07 ±0.05 ±0.05 ±0.12 ±0.22 ±0.04 ±0.14 ±0.08 ±0.14 ±0.03

VL (V) 1.34 1.34 1.34 1.37 1.36 1.35 1.35 1.32 1.35 1.38
VM (V) 0.69 0.81 0.79 0.80 0.69 0.78 0.79 0.77 0.65 0.71
VR (V) 0.91 1.02 0.95 1.01 1.04 0.94 0.95 0.89 1.00 1.02

TABLE I: Metrics of successful runs. For each qubit
found, we show the total time it took, the Rabi frequency
fRabi, the g-factor, and the settings for the barrier gates VL,
VM and VR. The errors of fRabi are estimated from the fit
uncertainty and the errors of g are calculated from the width
of the resonance peak.

The three failed runs terminated after their exploration
on a similar timescale to the longest successful runs. They
took between 56.0 h and 94.9 h to complete and are shown
in black in Fig. 3a. The runs found transitions that showed
Pauli spin blockade but the algorithm was not able to find
Rabi oscillations, possibly due to unfortunate settings of
the tunnel barrier strengths in Stage 2.

The qubit locations in gate voltage space in terms of
the three barrier gate voltages are depicted in Fig. 3b. For
comparability, we normalise each voltage by the voltage at
which each barrier gate electrode pinches off the current
individually. At each point, Stage 2 (Tune barriers) passed
a candidate for further analysis (solid dots). In some
cases, PSB was detected (dashed circles), passing Stage 3,
and a subset of these also yielded a qubit (solid circles),
successfully completing Stage 4.

Fig. 3c presents examples from two runs, showing the
transitions found and Rabi chevron measurements. The
discovery of qubits in both bias directions evidences the
algorithm’s adaptability and its non-specificity to certain
transitions. Both Rabi chevrons were obtained using the
same given driving power and driving frequency, but var-
ied in magnetic fields and Rabi frequencies, highlighting

the algorithm’s generalization capability. All depicted
measurements were autonomously executed by the algo-
rithm, accounting for the non-centered chevron measure-
ments.

Analyzing the locations in gate voltage space where
qubits were found provides insight into the device physics
(Table I). By fitting a convex hull around the qubit loca-
tions in the barrier gate voltage space, we can estimate
the volume of the region where qubits can be found. For
this device, the volume of the convex hull is approximately
3.5× 10−4V3, translating to a fraction of the safe ranges
[(2V)3] of about 4× 10−5. The space is further restricted
by the plunger voltage location, which is a box of roughly
(10mV)2. Given a search space of (300mV)2, this brings
down the size of the volume to around 2 × 10−7 as a
fraction of the 5-dimensional gate voltage space. That is
roughly equivalent to a needle in a (2m)3 haystack.

Once a qubit has been found, the algorithm allows for
extensive characterisation. We can study fRabi and the
g-factor as a function of the barrier gate voltages (Fig. 3d).
The resulting maps gives insights into qubit properties and
can be extended to measure, e.g. the Hahn-echo coherence
time.

CONCLUSIONS

We have demonstrated fully automated tuning of spin
qubits, progressing from a de-energised device to qubit
control. Our algorithm autonomously achieved Rabi os-
cillations in 10 out of 13 trials. Most tuning processes
concluded within three days, with the primary speed con-
straint being the integration times required to perform
DC transport measurements, which could be replaced by
fast readout alternatives. Maps of the g-factor and fRabi
serve as evidence for the potential of this approach for
high-throughput qubit characterisation.

The methodology is versatile and can be adapted for
use with similar quantum devices, such as silicon Fin-
FETs. The modular design of the algorithm allows for
rapid adaptation to other architectures. For example,
devices that use charge sensors and reflectometry for mea-
surements would only require different signal-processing
algorithms.

We anticipate that the mass tuning and characterization
of qubits, facilitated by our fully autonomous tuning algo-
rithm, will establish a productive feedback loop between
measurement and fabrication processes. Wafer-scale, high-
throughput characterisation of quantum devices, already
feasible in early tuning stages, can mitigate device variabil-
ity. This, in turn, improves the tuning process, bolstered
by expanding datasets.

The first successful experiments on quantum comput-
ing with semiconductors were conducted nearly twenty
years ago. We have now confirmed the feasibility of fully
automatic tuning of a semiconductor qubit. This break-
through would allow us to move forward by leveraging the
ability to mass characterise qubits to advance quantum
circuit scalability in semiconductors.
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METHODS

Here we provide details of the experimental set up,
and algorithmic choices made in this study. We begin by
describing the device used for our experiments. We then
follow with a discussion of the intelligent computational
approaches used in the algorithm. Finally, details of each
stage are discussed. An overview of all the stages of the
algorithm is given in Table II.

Hyperparameters that are not explicitly given here can
be found in the Supplementary Material.

I. THE DEVICE, MEASUREMENT APPARATUS
AND PULSE SEQUENCE

The device consists of a Ge/Si core/shell nanowire
lying on top of nine bottom gates measured in a variable
temperature insert (VTI) in a liquid helium bath with the
sample mounted below the 1-K pot (base temperature
1.5 K). By applying positive voltages to the first five
bottom gates from the left, an intrinsic hole gas inside
the nanowire is depleted to form a hole DQD. An SEM
image of a device similar to the one used here is shown
in Fig.4. The device, measurement apparatus and pulse
sequence are the same as used by Carballido et al. [40]
and are described in detail in their work.

To amplify the measurements that rely on a microwave
pulse, we applied a pulse-modulation by a lock-in ampli-
fier at 87.777 Hz. The measurements therefore have an
in-phase and out-of-phase component. We apply princi-
pal component analysis (PCA) to these measurements
and project each measurement onto the principal axis.
We further offset the measurements such that they are
strictly positive. Measurements that are obtained this
way are marked with ILI, as opposed to currents that
were measured conventionally which are marked with |I|.

II. TECHNIQUES USED IN THE ALGORITHM

Useful automation of tuning from a de-energised device
to identification of Rabi oscillations requires an algorithm
that can adapt to different data capture regimes, and
be transferred to other, similar devices. To achieve this,
we have made extensive use of intelligent, adaptive and
data-driven subroutines. Nowadays, there is a plethora of
such techniques to choose from, and in order to choose the
right technique to apply to each stage of the algorithm,
we considered:

• the need for expert labelled training data, which
was not always possible or realistic to source;

• the need of being efficient both in the total num-
ber of measurements taken during a stage, and in
the resources needed for computing decisions about
which measurements to take;
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• the minimal accuracy needed in each stage for the
whole algorithm to be able to achieve its overall
goal of identifying operating parameters for a qubit.

To address the above considerations across the many
stages of the algorithm, a non-exhaustive list of techniques
we have found useful to employ includes Gaussian process
(GP) inference, convolutional neural networks (CNNs),
unsupervised computer vision (CV) and computational
geometry techniques, and Bayesian optimisation (BO). We
now briefly introduce these, highlighting their strengths
and weaknesses.

GPs are a popular form of non-parametric Bayesian
inference [50]. They can be thought of as a method for do-
ing principled Bayesian inference over a space of functions.
GPs can be tailored to any specific domain or problem
by making a choice of the so-called kernel (or covari-
ance) function, a part of this model which describes prior
knowledge about the possible space of functions in which
inference is to occur. This choice can allow practitioners
to encode important domain knowledge before capturing
any data, such as specifying knowledge of periodicities,
symmetries or the expected degree of smoothness of the
underlying process that is being observed. This consti-
tutes the main strength of GP modelling, often enabling
highly data-efficient inference. However, both model fit-
ting and model prediction can be computationally inten-
sive, typically growing cubically [50] in the number of
observed data points.

Over the past two decades, CNN architectures have
proved to be go-to models for solving computer vision
tasks. Their strengths lie in their adaptability across
different computer vision tasks, their robustness in the
face of unknown noise, and their computational efficiency
at training time. Their weakness lies in always requiring
substantial amounts of training data. In this work, we use
some standard architectures, such as ResNet [51] as tools
for extracting properties from or making assessments of
stability diagrams. Where we have applied them, training
data has been either generated by a sufficiently good
simulator, or gathered from this or similar devices and
then labelled by an expert.

Often, the use of CNNs is neither required nor appro-
priate for the particular computer vision task at hand. In
particular, it has been of crucial importance to a number
of stages through the algorithm to be able to automat-
ically locate and segment bias triangles within stability
diagrams using a coordinate-wise approach. To achieve
this we have employed a number of unsupervised computer
vision techniques that can mitigate noise in, and localize
features of the geometric figures present in stability dia-
grams. Whereas CNNs would require large amounts of
labelled training data to achieve this result, the require-
ments can be met by computer vision techniques that
need no training data, and require only a few hyperpa-
rameter choices to be made. All together we have called
this a bias triangle segmentation framework, and it is
described in [48], where the specific application to PSB
detection is also detailed.

Bayesian optimisation [52] is a general, iterative ap-
proach to black-box function optimisation. At each it-
eration, it constructs a surrogate model of the function
being approximated using the data already gathered, and
uses this surrogate model to efficiently compute the next
most informative location from which to sample the un-
known function. In order to apply this technique one
must specify a score function to optimise and a parameter
space over which the search for an optimum is conducted.
The choice of the surrogate model is also influential in
the accuracy, efficiency and reliability achieved using this
method. In this work we have made consistent use of GP
surrogate models using a Matern 5/2 kernel.

III. STAGES OF THE ALGORITHM

1. Define DQD

a. Hypersurface building

As a first step, the algorithm determines a current that
it considers to be pinched off by ramping to the high end of
the safe ranges. We take repeated current measurements
there to characterise the noise floor. From the noise floor
we compute a pinch off current.

Next, we sample several points within the safe ranges
using a Sobol sequence for quasi-random locations. The
points are used to define rays from the origin that are
then investigated for pinch off. To avoid overloading the
current amplifier, we search for pinch off from the origin
towards the upper end of the safety ranges with a low bias
voltage. Once pinch off is found, we retrace with a higher
bias voltage to confirm the exact pinch off location.

Finally, we use this data to construct the hypersurface
model as outlined in the main text.

b. Double dot detection

The previous stage defines a region within which we can
look for a DQD potential. We sample quasi-random points
via a Sobol sequence for investigation. For each point, we
vary both plunger voltages simultaneously and measure
the current, following the method described by Moon et
al. [9]. We use the random forest classifier developed by
Severin et al. [24] to check for the presence of Coulomb
peaks. If Coulomb peaks are found, we then measure
a stability diagram. This diagram is analyzed with a
neural network to detect features of the DQD. The neural
network was trained on data from a variety of devices,
mainly from the data gathered by Moon et al. [9] and
Severin et al. [24], and additional data from a nanowire
device different from the one used in this work. In total,
there were 4,611 stability diagrams of which 726 showed
double dot features.
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2. Tune barriers

a. Barrier optimisation

Upon formation of separated pairs of bias triangles,
we perform coordinate-wise segmentation and polygon
fitting (see Sect. III 3 b for more details, [48]) in order to
facilitate their tracking and feature extraction throughout
the remainder of the tuning pipeline.

The segmentation and shape extraction enable the as-
sessment of the current intensity difference between the
base line and gap formed between the base and first ex-
cited state line. By quantifying this intensity difference in
a base separation score, we can employ a Bayesian optimi-
sation framework which seeks to maximize the intensity
difference, as a promising indicator for detecting viable
candidates for PSB.

Each pair of bias triangles should present a base well
separated from the main body. The wider the separation,
the better the protection of the ground state and the more
likely it is that we are in the presence of a qubit. The
separation score is computed by averaging the current
along the detuning axis, see the two one-dimensional
traces in Fig. 2 b-ii, and computing the ratio of the
intensity between the peaks and the lowest point in the
valley between them. In the case of multiple triangles,
the highest separation is used as score.

Certain potential landscapes can lead to situations in
which charge configurations are affected by charge switch
noise. Since these potentials are unlikely to be used as
a qubit and the resulting bias triangles can skew our
base separation scoring, we excluded them by leveraging
a neural network classifier. This classifier was trained
to distinguish between normal bias triangles and ones
that are affected by charge switch noise, as illustrated
in Fig. 6. The training dataset for this classifier was
obtained as follows: initially, potential bias triangles were
identified using our segmentation routine. Subsequently,
we hand-labeled 2,302 of these (1,539 samples showed no
switch noise) to create a robust training set. The classifier
itself was then obtained by fine-tuning a ResNet-based
architecture with this dataset.

Once the voltage space has been explored through BO
we have a clear understanding of the landscape, as in
Fig. 2 b-ii. The measurements in this optimisation were
obtained using an efficient measurement algorithm, see
Supplementary Materials for details. We sample the most
promising regions again without the efficient measurement
algorithm and analyse them as described in the next
section.

b. Plunger window selection

Given a sampled stability diagram containing bias tri-
angles, the aim is to select the region that contains as
many bias triangles with scores as high as possible, no
areas with current that is too high, and as few switches

as possible as depicted in Fig. 2 b-iii. High current bias
triangles are unlikely to be able to be used for qubit op-
erations. This is a heuristic and we set a conservative
threshold of 200 pA. To ease the downstream steps, the
region should be a rectangular window. Through an it-
erative approach, starting from the smallest bounding
boxes containing each single pair of bias triangles, larger
windows are constructed by merging the existing ones in
case they satisfy the conditions about switch absence and
low currents. For the switches absence we used a soft
constraint, allowing for bias triangles affected by switch
noise in case their total area was less than 25% of the area
covered by all triangles in the window. The algorithm
complexity scales exponentially with respect to the num-
ber of triangles and some heuristics have been leveraged
to reduce substantially complexity and therefore execu-
tion time. In particular, at each iteration, only the top
100 bounding boxes by the number of contained triangles
without switches were kept, to ensure a manageable upper
limit on the number of possible merges. The routine halts
when no further merges are possible. Once the plunger
windows have been selected they are ranked by highest
separation score.

3. Find PSB

a. Wide shot PSB detection

To identify each bias triangle’s location, we first leverage
the fact that they sit on a honeycomb or skewed rectangle
pattern. We use autocorrelation on the stability diagram
to identify this pattern. The largest two peaks in the
autocorrelation help us establish a vector that spans this
pattern of skewed rectangles. To fix the pattern in place,
we employ a blob detection algorithm, using the first blob
it identifies. This helps us accurately overlay the skewed
rectangle pattern and estimate the locations of the bias
triangles (Fig. 5).

Next, we extract these bias triangles using the identi-
fied locations, with side lengths informed by the pattern
dimensions. These extracted bias triangles are then in-
put into a neural network for further analysis. We used
autonomously gathered data that was taken during the
initial development phase. In total, we used 626 pairs
of bias triangles taken from 70 stability diagrams. 55 of
the pairs of bias triangles showed PSB. For more detailed
information on this procedure, see Schuff et al. [39].

b. Re-centering and high resolution PSB detection

In an effort to filter the previously detected candidates
for PSB and eliminate false positives, a second set of
higher resolution measurements is performed. For that
purpose, a dedicated low resolution stability diagram
of the candidate bias triangles is taken and used to
update the plunger voltage extent based on the detected
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contours, effectively performing a re-centering. With
the updated voltage extent, high resolution stability
diagrams with B = 0 T and with B = 0.1 T are taken.

A second sub-stage of PSB-classification is applied
through a segmentation-based detection and feature ex-
traction framework, which facilitates the coordinate-wise
quantification of geometric and physical properties of bias
triangles [48]. In particular, given the high-resolution
stability diagram with B = 0.1 T, this framework fits
minimum-edge polygons to the detected contours of
bias triangle pairs by utilizing a relaxed extension of
the Ramer-Douglas-Peucker algorithm [48]. Once the
segmented shape mask is identified, further geometric
properties such as the base and excited state lines can
be automatically extracted solely based on the prior
knowledge of the bias voltage sign, which predicts the
direction in which bias triangles point.

For the identification of PSB, an analytical classi-
fier based on the above framework was devised [48].
PSB expresses itself as a suppressed base line of the
bias triangles at B = 0 T. At B > 0 T, there is a
leakage current at the base line. The routine extracts
the segment enclosing the base and a prominent excited
state line on the stability diagram with leakage current
(B = 0.1 T). Subsequently, the average pixel intensity
of the segment normalised by the intensity of the entire
pair of bias triangles is computed. By superimposing
the detected segment on the scan with blocked current
(B = 0 T), normalised intensity values are compared
and, if their difference exceeds a specified threshold, the
charge transition is identified as positive for PSB.

Based on the segmented bias triangle shape mask,
further geometrical properties can be automatically
extracted, which enables the tuning of bias triangle
features in stage 2.
The detuning axis, utilized for the Danon gap measure-
ment, is automatically extracted by identifying the bias
triangles base midpoints and tips and computing the
lines between them.

c. Danon gap check

As a further filter for possible candidates, we check to
magnetic field dependence of the leakage current at the
base of the bias triangles in a different way. As a function
of the applied magnetic field B, we expect the leakage
current to be minimal at B = 0 T and higher away from
this point. We call this the Danon gap [53]. A current
measurement of the detuning line while varying the
magnetic field gives us a two-dimensional input (Fig. 7),
which we can analyse as follows: Ignoring the noise signal,
the current is roughly constant along the magnetic field
axis, whereas the detuning line axis is information-rich:
away from the Danon gap there are two local extrema

(to one side the noise floor outside the bias triangles,
to the other side the gap due to singlet-triplet energy
splitting) whilst the Danon gap region is characterised by
a monotonic behaviour, with roughly a constant value.
To detect the presence of the Danon gap, the current
I is firstly processed with a Gaussian filter, to smooth
out the noise, and then the absolute slopes along the
detuning line axis are integrated g(B) :=

∑
ε

∣∣∣∂Ĩ(ε,B)
∂ε

∣∣∣,
where the derivative is the discrete derivative along the
detuning line axis. The function g is minimised in the
areas where the smoothed signal Ĩ shows a constant
value. We show the normalised function ḡ = g

|ε| in Fig. 7.
To detect the presence of the Danon gap from g two
tunable hyperparameters are used, validating the depth
and width of the basin of the global minimum of g: in
case the basin is not prominent enough there is no Danon
gap. As the last check, the location of the minima has to
be in proximity of zero magnetic field.

4. Find readout

a. Tracking & entropy optimisation

In subsequent steps, we apply a pulse sequence to
the right plunger electrode. As it is a two-stage pulse,
the bias triangles will have a ‘shadow’ in the stability
diagram. We need to identify the original bias triangles
and find a suitable region where we can expect to find
qubit readout. In light of resulting shape distortions and
further degrading effects to the measurement quality,
we opt for template matching as opposed to performing
re-segmentation for bias triangle tracking in order to
ensure robustness.

The relative direction in which the shadow bias
triangles appear with respect to the original one is
known in advance due to the applied pulse shape. This
is incorporated into the shape matching approach as
the cardinal direction to uniquely identify and track the
triangles.
We perform shape matching by comparing the edge map
of a stability diagram prior to pulsing, functioning as
the template, to the edge map of a subsequent stability
diagram with pulsing, functioning as the source for
current information. Further, we extract the segmented
shape mask from the template. The method slides the
template over the source edge map, thereby comparing
the template with individual patches of the stability
diagram with pulsing, and returns a result matrix (of
the same size as the source) whose individual entries
quantify the similarity with the template patch. The
employed similarity metric is the normalized correlation
coefficient and the patch with maximum correlation is
selected. Once the appropriate patch has been identified,
the initial segmentation mask of the stability diagram
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without pulsing is mapped to the stability diagram with
pulsing and used for subsequent processing.
In order to identify the optimal readout spot, we extract
the segment enclosing the base and prominent excited
state lines on the obtained segmented mask of bias
triangles with pulsing, and perform Bayesian optimisation
of a readout quality score over four parameters: the
constrained two-dimensional plunger gate voltage space,
frequency of the driving pulse fMW and burst time tburst.
Optimal readout candidates are those which meet the
resonance conditions of the qubit. If they are met, there
is a leakage current that we record using the lock-in
amplifier. For a given burst time tburst (relating to
the Rabi frequency fRabi) and a given frequency of the
driving pulse fMW (relating to the g-factor), the leakage
is characterized as a peak in leakage current for a certain
magnetic field B. Thus, for the readout optimisation, we
use measure the current with varying magnetic fields.
Instead of applying PCA, as explained above, we use the
L2 norm of the in-phase and out-of-phase components to
retrieve a one-dimensional trace l(B). This guarantees
peaks to be higher than the background, as opposed to
processing with PCA, which can lead to dips rather than
peaks.

To quantify the sharpness of these peaks, we de-
veloped a score based on the Shannon entropy H =
−∑

B [l(B) log(l(B)] of the trace. For the calculation of
the entropy of the score, we first subtract the median and
then clip values at zero. This particular pre-processing
turns the trace into something more akin to a distribution
and enhances the robustness of our score, making it less
susceptible to potential noise disturbances in the trace.
This method results in a smooth score landscape suitable
for Bayesian optimisation.

b. Resonance confirmation

This verification step acts as a final filter and the last
stages are all executed once a candidate passes this filter.
The previous stage sends a candidate with a suspected
resonance condition. The stage re-measures the leakage
current as a function of the magnetic field. If the reso-
nance condition was truly found, a peak should appear
at the same magnetic field again. Should a peak with a
specified prominence at this magnetic field within a set
margin of error be detected, the resonance condition is
considered confirmed and all downstream measurements
are executed. We note that a noisy candidate might pass
this stage. Repeating the verification step can reduce
such occurrences.

c. Qubit measurements

Once a resonance condition is found, we vary the mag-
netic field and the burst duration. The characteristic Rabi
chevron can be analysed by considering the frequency spec-

trum for each magnetic field. The frequency should have
a minimum at the magnetic field that meets the resonance
condition of the qubit. The amplitude should also be max-
imal there due to decoherence for off-resonant driving.
We can therefore simply look for the maximum amplitude
in the Fourier transformed Rabi chevron (Fig. 8). This in-
formation will give us the precise resonance conditions for
the last step, repeated measurements of Rabi oscillations
on resonance.

IV. CHARACTERISATION

The maps in Fig. 3 were generated using automated
measurements. Initially, upon identifying a qubit, we
record its readout spot, g-factor, and fRabi. We then
alter the confinement potential by slightly adjusting the
barrier gate voltages. This adjustment may shift the bias
triangles, consequently moving the readout spot, g-factor,
and fRabi. Our method involves tracing these transitions
to locate the readout spot in its new position. At this new
location, we conduct an EDSR check scan. Any changes
in the peak’s location inform us about variations in the
g-factor. Furthermore, measuring Rabi oscillations at this
point helps update our understanding of fRabi.

As we progressively deviate from the initial measure-
ment point, we utilize our closest prior qubit data to infer
the properties at the new location. This step is crucial as
a shift in the g-factor necessitates modifying the magnetic
field range, while a change in fRabi requires adjusting the
tburst duration for the EDSR check to accurately detect
resonances.
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EXTENDED DATA

100 nmVL VM VR

VLPVSD
VRP

FIG. 4: Device. False color micrograph of a nanowire device
similar to the one used in this work. The Ge/Si nanowire is
colored in yellow.
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FIG. 5: Bias triangle locations via auto-correlation.
A stability diagram (top left) is processed using its auto-
correlation (top right). Within the auto-correlation, we can
find the highest values to span a grid of skewed rectangles.
The extracted information is used to locate bias triangles in
the original stability diagram (bottom).
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FIG. 6: Effect of charge switch noise. Stability diagrams
can be affected by charge switches. Their effect can be seen in
the left column. For comparison, the right column is unaffected
by these charge switches.
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FIG. 8: Rabi chevron analysis. A qubit that is driven close
to the resonance condition exhibits so-called Rabi chevrons,
see left column for examples (top: simulation, bottom: experi-
mental data). To find the resonance frequency, we analyse the
frequency spectrum for each magnetic field (which controls the
detuning from resonance). The frequencies have a maximum
amplitude and a minimal point at the resonance condition.
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Stage Description Techniques used Candidate information

Stage 1: Define DQD
a, Hypersurface building Building a model of the surface

that separates pinch-off from
conducting

Gaussian processes Upper and lower bounds of bar-
rier voltages

b, Double dot detection Identifying Coulomb peaks and
double dot signatures

Random forests and neural
networks

Corrected lower bound of bar-
rier voltages

Stage 2: Tune Barriers
a, Barrier optimisation Search over the barrier voltage

space for ideal settings
Bayesian optimisation, com-
puter vision, neural networks

Promising barrier voltage
location

b, Plunger window selection Determine a window for plunger
voltages

Computer vision, neural
networks

Barrier voltage location and
wide plunger voltage range

Stage 3: Find PSB
a, Wide shot PSB detection Identify locations of transitions

with PSB
Neural networks, computer
vision

Narrow plunger voltage range

b, Re-centering Get precise plunger voltage
window

Computer vision Corrected narrow plunger volt-
age range

c, High res. PSB detection Confirm PSB with high resolu-
tion measurement

Computer vision Narrow plunger voltage range,
link to high res. measurement,
detuning line definition

d, Danon gap check Confirm PSB by measuring de-
tuning line as a function of mag-
netic field

Computer vision Narrow plunger voltage range,
link to high res. measurement

Stage 4: Find Readout
a, Entropy optimisation Find readout spot, g-factor and

Rabi frequency by optimisation
of an entropy score

Bayesian optimisation, com-
puter vision

Precise plunger voltage loca-
tions, magnetic field, drive fre-
quency and burst time

b, Resonance confirmation Confirm resonance from previ-
ous stage/filter out noise

Peak finding Passed on from previous

c, Spectroscopy Measurement of current while
varying tburst and fMW for
documentation

- Passed on from previous

d, Rabi chevron Measuring Rabi oscillations
close to the resonance condition

Frequency analysis Corrected magnetic field for res-
onance condition

e, Rabi oscillations Take repeated Rabi oscillations
on resonance

- -

TABLE II: List of all stages. We list all stages and sub-stages with a short description, a rough overview of what techniques
were used and what the information is passed downstream for a candidate from each stage. Besides information on the parameters
that are directly needed to operate a qubit, the stages also pass down meta-information that other stages might need to use,
e.g. the high resolution stability diagram of Stage 3c is needed in Stage 4a for template matching.
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S1. QUBIT MEASUREMENTS OF ALL SUCCESSFUL RUNS

We show measurements that confirm that we found a qubit in the ten successful runs, ordered by total run time as in the main
text, see Fig. S1. The measurements were all taken autonomously. We show the associated pair of bias triangles (upper left in
each panel), a measurement varying the magnetic field and the driving frequency (upper right), a Rabi chevron measurement
where we vary the magnetic field and the burst duration (lower left), and an averaged measurement of Rabi oscillations (lower
right) at the magnetic field indicated with dashed lines in the Rabi chevron measurement.

The diversity in the plunger voltage settings, the magnetic field settings, and the Rabi frequencies showcase the versatility of
our algorithm.
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FIG. S1. Qubit measurements of all successful runs. The panels a,-j, are ordered by the total run time of the algorithm for each qubit
respectively. Each panel includes four current measurements: the pair of bias triangles (upper left), spectroscopy measurement, varying
magnetic field and driving frequency (upper right), Rabi chevron pattern, varying magnetic field and burst duration (lower left), and averaged
Rabi oscillations (lower right) taken at the dashed lines in the Rabi chevron measurement. All measurements were performed autonomously.
The Rabi chevron measurement does not have a dedicated re-centering stage, accounting for the off-centered measurements. The spectroscopy
measurements were purely taken for documentation and always with the same ranges; these measurements did not inform any other part of the
algorithm. Some measurements for panels d, e, and f were taken again using automated measurements after the initial runs finished because a
setting of the lock-in amplifier led to slight measurement artifacts.
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S2. HYPERPARAMETERS

List of all hyperparameters and comment on what they do. We do not report on hyperparameters that are irrelevant to the
functionality of the algorithm, such as how often measurements are plotted to a documentation file.

1. Define DQD

a. Hypersurface building

• Steering parameters:

– number_of_rays = 32 // Number of rays used to build hypersurface.
– n_noise_floor = 100 // Number of measurements of the noise floor.

• Measurement parameters:

– lower_bounds = [0, 0, 0] // Defines lower bound of area in which the hypersurface model is built, in V.
– upper_bounds = [1.8, 1.8, 1.8] // Defines upper bound of area in which the hypersurface model is built, in V.
– bias_low = 0.0007 // Low bias voltage used to find pinch off starting from the conducting region, in V.
– bias_high = 0.005 // Bias voltage used to in subsequent stages. Used to confirm pinch off going from non-

conducting to conducting region, in V.
– d_r = 0.003 // Step length of pinch off search, in V.
– len_after_pinchoff = 0.250 // Length after last point above threshold before pinch off is considered true (past

last Coulomb peaks), in V.
– max_dist = 2 // Additional safe range how far the ray is maximally ramped, in V.

• Analysis parameters:

– threshold_as_multiple_of_noise_high = 100 // Used to define the noise threshold based on the noise floor
measurement

b. Double dot detection

• Measurement parameters:

– magnetic_field = 0.1 // At which magnetic field the measurements are taken, in T.
– plunger_location = [0, 0] // Center of the plunger gate voltages, in V.
– One-dimensional scan (to detect Coulomb peaks):

* window_right_plunger = 0.1 // Defines side length of window in which measurements us taken, in V.

* window_left_plunger = 0.1 // Defines side length of window in which measurements us taken, in V.

* n_px = 128 // Number of points to be taken.

* wait_time = 0.051 // Delay after setting parameter before measurement is performed, in s.
– Two-dimensional scan (to detect DQD features):

* window_right_plunger = 0.2 // As above.

* window_left_plunger = 0.2 // As above.

* n_px_rp = 48 // Number of points to be taken for right plunger axis.

* n_px_lp = 48 // Number of points to be taken for left plunger axis.

* wait_time_slow_axis = 0.5 // Delay after setting parameter before measurement is performed, in s.

* wait_time_fast_axis = 0.051 // Delay after setting parameter before measurement is performed, in s.

• Analysis parameters:

– max_distance_between_locations = 0.1 // Used to determine number of points sampled within DQD search
region. Sets maximal distance between each sampled point, in V.

– path_to_nn = local_path // Path to weights of neural network used for DQD feature detection.
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2. Tune barriers

a. Entropy optimisation

• Steering parameters:

– seeding = 15 // Parameter for Bayesian optimisation that informs exploration period.

– n_required_results = 30 // Number of stability diagrams to be taken.

• Measurement parameters:

– rp_start = −0.15 // Starting point of measurement for right plunger, in V.

– rp_end = 0.15 // End point of measurement for right plunger, in V.

– lp_start = −0.15 // Starting point of measurement for left plunger, in V.

– lp_end = 0.15 // End point of measurement for left plunger, in V.

– n_points_plungers = 100 // Number of points in each dimension.

b. Plunger window detection

• Steering parameters:

– number_of_full_scans_threshold = 10 // Maximum number of full scans (i.e., without the efficient measure-
ment algorithm) to be taken.

– number_of_candidates = 10 // Maximum number of candidates Stage 2 can suggest in each bias direction, i.e.,
10 can lead to up 20 candidates.

– bias_directions = [positive_bias, negative_bias] // Candidates are built in those bias directions.

3. Find PSB

a. Wide shot PSB detection

• Steering parameters:

– max_number_candidates = 5 //Maximum number of candidates this sub-stage can create.

• Measurement parameters:

– low_magnetic_field= 0.0 //Magnetic field at which the stability diagram with blocked current shall be taken, in
T.

– high_magnetic_field= 0.1 //Magnetic field at which the stability diagram with leakage current shall be taken, in
T.

– resolution = 0.002 // Resolution of stability diagram in each axis, in V.

– padding = 0.03 // Padding added to the plunger window suggestion from previous stage. Needed to have a slight
margin around bias triangles, in V.

• Analysis parameters:

– psb_threshold = 0.5 // Threshold for PSB detection. Neural network returns a value between 0 and 1 for each pair
of bias triangles.

– folder_path_to_nn = local_path // Path to neural network model that predicts signatures of PSB from low
resolution measurements.

– offset_px = 10 // Parameter used in the location detection via auto-correlation. The highest peak will always be in
the center, so peaks within a certain distance (given in pixel here) from the center are disregarded.
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b. Re-centering

• Measurement parameters:

– magnetic_field= 0.0 //Magnetic field at which the stability diagram shall be taken, in T.

– resolution = 0.002 // Resolution of stability diagram in each axis, in V.

– wait_time_slow_axis = 0.5 // As above.

– wait_time_fast_axis = 0.051 // As above.

• Analysis parameters (all related to routine from Kotzagiannidis et al. [1]):

– segmentation_upscaling_res = 2 // Image is upscaled by this factor to improve segmentation.

– relative_min_area = 0.01 // Computes the min_area as a fraction of the total area. min_area sets a threshold
for the minimum area of contour to be detected to avoid outliers.

– denoising = true // Apply Gaussian smoothing.

– allow_MET = false //Determines whether the ’Minimal enclosing triangle’ technique is used or not. If true facilitates
enclosing triangle shape approximation for disconnected contours.

– thr_method = ’triangle’ // Thresholding method for contour detection.

c. High resolution PSB detection

• Measurement parameters:

– low_magnetic_field= 0.0 // As above.

– high_magnetic_field= 0.1 // As above.

– resolution = 0.00075 // As above.

– wait_time_slow_axis = 0.5 // As above.

– wait_time_fast_axis = 0.051 // As above.

– padding = 0.005 // As above.

• Analysis parameters:

– slope_tol = 0.4 // Tolerance for deviation in absolute value between slopes of detected lines.

– int_tol = 0.05 // Tolerance for PSB metric (absolute value difference between normalized segment intensities).

– seg_tol = 0.05 // Gives percentage of image length as threshold for segments that are too small.

– median = false // If true, selects the median of detected lines (ordered by y-intercept); false by default, so that the
line with largest y-intercept (outmost) is selected.

– segmentation_upscaling_res = 2 // As above.

– relative_min_area = 0.01 // As above.

– denoising = true // As above.

– allow_MET = false // As above.

– thr_method = ’triangle’ // As above.

d. Danon gap check

• Measurement parameters:

– magnetic_field_min = - 0.1 // Start of magnetic field, in T.

– magnetic_field_max = 0.1 // End of magnetic field, in T.

– resolution_magnet = 0.003 // Resolution of magnetic field, in T.



7

– resolution_detuning = 0.0001 // Resolution of detuning line axis, in V.

– detuning_base_offset = 0.002 // We add this to the detuning line measurement to include the full base as the
segmentation algorithm can lead to detuning line definitions that end on the base line, therefore missing valuable
information.

– extra_wait_time_slow_axis = 0.5 // The slow axis (magnetic field) is delayed by the time needed for the magnet
to ramp one position, plus this given time.

– wait_time_fast_axis = 0.077 // As above.

• Analysis parameters:

– segmentation_upscaling_res =2 // As above.

– min_area = 3 // As above.

– thr_method = ’triangle’ // As above.

– allow_MET = false // As above.

– padding_factor = 1 // As above.

– minimum_det_line_length_ratio = 0.33 // The detuning line is determined via the segmentation algorithm.
It also determines a cutoff within the triangles so that the algorithm only takes measurements at the base line of
the triangle. If the detuning line that is determined is less than minimum_det_line_length_ratio of the full
detuning line (from base line to the tip of the triangles), we extend the detuning line definition to avoid detuning
lines definitions that are too short.

– peak_offset_tolerance = 0.025 // The gap can be at most offset from 0T by this much and still be accepted as a
true gap, in T.

– sigma = 1 // For the gap detection, Gaussian smoothing factor.

– field_gap_size = 0.002 // For the gap detection, parameter that controls maximal gap width.

– relative_depth = 1.0 // For the gap detection, parameter that controls maximal gap depth.

4. Find readout

a. Entropy optimisation

• Steering parameters:

– number_of_candidates = 3 //Maximum number of candidates this sub-stage can create.

– seeding = 15 // As above.

– iterations = 30 // Number of total measurements taken by the Bayesian optimisation.

– freq_vs.minimum = 2.6e9 //Minimum driving frequency fMW used in Bayesian optimisation, in Hz.

– freq_vs.maximum = 2.9e9 //Maximum driving frequency fMW used in Bayesian optimisation, in Hz.

– burst_time_ns.minimum = 2 //Minimum burst time tburst used in Bayesian optimisation, in ns.

– burst_time_ns.maximum = 16 //Minimum burst time tburst used in Bayesian optimisation, in ns.

• Measurement parameters:

– magnetic_field = 0.1 // As above.

– resolution = 0.00075 // As above.

– padding = 0.005 // As above.

– wait_time_slow_axis = 0.5 // As above.

– wait_time_fast_axis = 0.051 // As above.

– lockin_tc = 1 // Time constant of lock-in amplifier, in s.

– field_setpoint.start = 0.0 //Minimum magnetic field, in T.

– field_setpoint.stop = 0.4 //Maximum magnetic field, in T.
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– field_setpoint.num_points = 300 // Number of points in magnetic field axis.
– field_setpoint.delay = 1 // Delay parameter, as above.

• Analysis parameters:

– segmentation_upscaling_res = 2 // As above.
– relative_min_area = 0.001 // As above.
– thr_method = ’triangle’ // As above.

b. Resonance confirmation

• Measurement parameters:

– magnetic_field_window = 0.1 //Window symmetric around the assumed peak, in T.
– resolution_magnet = 0.001 // Resolution of scan, in T.
– wait_time = 2.5 // Delay for measurement, needs to be longer than the lock-in time constant.
– lockin_tc = 2 // As above.

• Analysis parameters:

– prominence = 0.9 //Minimum prominence of peaks.
– sigma = 1 // Gaussian smoothing factor.
– peak_offset_tolerance = 0.025 // Peaks with a maximum offset of this parameter from the assumed position are

accepted.

c. Spectroscopy

• Measurement parameters:

– min_magnetic_field = 0 // Start of magnetic field, in T.
– max_magnetic_field = 0.5 // End of magnetic field, in T.
– resolution_magnet = 0.005 // Resolution of magnetic field, in T.
– min_freq_vs = 2e9 // Start of driving frequency fMW, in Hz.
– max_freq_vs = 3e9 // End of driving frequency fMW, in Hz.
– resolution_freq = 0.5e8 // Resolution of driving frequency fMW, in Hz.
– extra_wait_time_slow_axis = 1 // As above.
– wait_time_fast_axis = 1.1 // As above.
– lockin_tc = 1 // As above.

d. Rabi chevron

• Measurement parameters:

– magnetic_field_window_multiplier = 2 // The window is determined by the width of the peak that resonance
confirmation (Stage 4b) takes and multiplied with this factor.

– n_px_magnet = 40 // Number of points in the magnetic field axis.
– resolution_burst_time = 1e-9 // Resolution of the burst time tburst axis, in s.
– min_burst_time = 0 //Minimum of the burst time tburst, in s.
– max_burst_time = 45e-9 //Maximum of the burst time tburst, in s.
– dead_burst_time = 10e-9 // The total length of the pulse is twice the maximum tburst, plus this factor, in s.
– extra_wait_time_slow_axis = 6 // As above. Needs to be significantly larger than the lock-in time constant to

avoid spill-over effects.
– wait_time_fast_axis = 2.5 // As above.
– lockin_tc = 2 // As above.
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e. Rabi oscillations

• Steering parameters:

– n_repetitions = 5 // Number of repetitions of the same Rabi oscillation measurement.

• Measurement parameters:

– resolution_burst_time = 0.5e-9 // As above.

– min_burst_time = 0 // As above.

– max_burst_time = 60e-9 // As above.

– dead_burst_time = 10e-9 // As above.

– lockin_tc = 2 // As above.
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S3. EFFICIENT MEASUREMENT ALGORITHM
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FIG. S2. Examples of measurements taken with the efficient measurement algorithm. Areas where no measurement have been taken
have been filled with the threshold value.

Taking multiple charge transition stability diagram measurements is notably time-consuming, largely due to the predominance
of featureless areas, as bias triangles are typically embedded within a skewed rectangular pattern. To address this, we have
developed an efficient measurement algorithm. By rephrasing the measurement of bias triangles as an image processing task,
whereby the goal is to determine a contour that traces the outline of a bias triangle, we were able to reduce the measurement
time to 33% of a brute force scan.

For a binary image represented by a matrix composed entirely of zeros and ones, the perimeter of any grouping of non-zero
elements that form a contiguous region is known as a contour. The Moore-Neighbour contour tracing algorithm provides a
method of evaluating a complete contour given a starting point within the contour [2]. The Moore-Neighbour contour achieves
this by only ever examining pixels adjacent to a previously examined pixel. As the location of pixels corresponds to plunger gate
voltages, measurements of well separated pixels are both costly in time and present a risk of introducing noise such as switches.
Once the edge of a bias triangle has been identified, its contour can therefore be quickly measured with minimal overhead from
the device. After the contour has been evaluated, each pixel inside the contour can be measured sequentially to complete the
bias triangle.

To construct a binary image from a series of measured current values at differing gate voltages, a threshold must be determined.
Current values above and below this threshold are considered to be ones and zeros in the binary image, respectively. The
threshold can either be set manually, using prior knowledge of the system, or determined on-the-fly. To provide a fully automated
system we took a calibration scan using a sparse sampling and evaluated the median absolute deviation threshold from these
measured points. The sampling routine was a so-called snake scan, where measurements are performed horizontally left-to-right
until a boundary of the measurement region is reached, then proceed vertically for a fixed length and continue horizontally in
the opposite direction until the entire image has been covered.

With a threshold determined, a second sparse sampling across the measurement region is performed. The Moore-Neighbour
contour tracing routine is triggered on any measurements that exceed the threshold, followed by a routine to measure the inside
of the contour. This process systematically captures a complete pair of bias triangles. Post completion, the scan resumes until
the next cluster necessitates flood filling. In order to minimize wasted measurements, current values were cached. The second
sampling of the routine also used a snake scan to explore the measurement region, however it was offset vertically compared to
the original to maximise the chance of encountering a bias triangle.

Bias triangles are organised on a skewed grid pattern. The bias triangles evaluated in the second sparse sampling stage can be
used to fit a skewed rectangular grid and infer the location of any missing bias triangles. Triangles can be missed by the initial
sparse sampling if they reside between the horizontal lines of the two snake scans. A skewed grid can be represented by two
vectors that describe the spatial separation between points on the grid, and the location of one grid point. These parameters were
determined by minimising the total distance between the barycenter of all contours evaluated in the second sampling stage and
points on the fitted grid. After fitting, each point on the grid within the measurement region that did not have a bias triangle was
measured sequentially.

Employing this method has proven to significantly streamline the process, cutting down the measurement time by approxi-
mately two-thirds. For the hyperparameters as reported above, the measurement of a 100 by 100 point stability diagram takes
14.5 min ± 3.0 min with this efficient measurement algorithm, and 43.7 min ± 0.1 min with a conventional grid scan.
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S4. SEARCH TREE EXAMPLES

In Fig. 1b of the main text, we show an illustrative example of a search tree. Here, we show the search trees that were actually
constructed for the longest and shortest runs in our experiments.

Stage 2 
Tune barriers

Qubit

No Qubit
No Qubit

No Qubit
No Qubit

Qubit

Grounded 
device

Grounded 
device

Stage 1
Define DQD

Stage 3
Find PSB

Stage 4
Find readout

Fastest run

a b a b a b c d a b c d e

Slowest run

FIG. S3. Examples of search trees from full runs. The fastest run only has two branches and then successfully found a qubit. The slowest
run explored much more, with several branches reaching all the way to qubit measurements. However, only the last branch shows conclusive
qubit signatures. We rejected the first tries as noise.
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S5. MODULAR FRAMEWORK

We implemented several design choices to standardize the framework across all stages, achieving a cohesive and modular
architecture. Each stage exhibits these common characteristics:

1. Stage structure

1. Integration with QCoDeS [3]: All stages have access to the station object of QCoDeS, allowing each stage to take mea-
surements and change experimental parameters.

2. Data management: A data access object manages (in addition to the QCoDeS database) costum data saving, such as the
structure of the tree that was created so far, and automated documentation of the run.

3. Hyperparameter configuration: Each stage possesses specifically tailored hyper-parameters to fulfill its requirements, as
detailed in the Section S2.

4. Candidate management: A list of candidates that were passed to a stage and that are sent off to another stage is kept.

a. Functions

1. Investigation function: Stages are primarily invoked through an investigate function, managing candidate lists, orches-
trating measurements and data analysis, and forwarding candidates to the subsequent stage.

2. Experimental setup: A prepare_experiment function sets up the experimental parameters as needed, for example,
setting certain voltages, ramping the magnet to a starting position, or stopping the AWG from outputting a pulse sequence.

3. Experiment execution: The function perform_experiment unction conducts the stage-specific measurements.

4. Data analysis: determine_candidate function analyses the acquired data to assemble a viable set of candidates for
further exploration.

2. Candidates

1. Data association: Once a stage has taken data relating to a specific candidate, it will keep a note of the global unique
identifier (GUID) that is recorded in the QCoDeS database.

2. Parameter storage: Critical parameter information is stored flexibly in a dictionary format to adapt to various experimental
scenarios.

3. Metadata storage: Candidates carry metadata, such as their position within the search tree.

4. Stage timing: The duration required for each stage’s process is recorded.

5. Resulting candidates list: A distinct list is maintained for candidates resulting from the stage’s analysis.

[1] M. Kotzagiannidis, J. Schuff, and N. Korda, arXiv preprint arXiv:2312.03110 (2023).
[2] T. Pavlidis, Algorithms for graphics and image processing (Springer Science & Business Media, 2012).
[3] Copenhagen / Delft / Sydney /Microsoft quantum computing consortium, “QCoDeS,” .


