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S1. SETUP

In this section we discuss the experimental setup as well as the qubit operation. A schematic

of the setup is presented in Fig. S1a. We performed all experiments by measuring direct current

through a hole double quantum dot (DQD) at the base temperature ∼ 40mK of a Bluefors XLD

dilution refrigerator. Spin-to-charge conversion and spin initialization were realized using Pauli spin

blockade in parity readout mode, which has been shown to be compatible with temperatures as

high as 4 K, albeit with a reduction in readout signal and limited manipulation time [1]. The pulse

scheme for each experiment cycle is described in Fig. S1b. Coherent single-qubit spin driving is

demonstrated by a Rabi chevron measurement, presented in Fig. S1d. A more detailed description is

found in the Supplementary Material to Ref. [1]. A key difference to this previously reported setup

is the use of side-band modulation (SB) in the amplitude-quadrature (IQ) mixing of the microwave

signal, which allows to quickly address different qubit frequencies in a single experiment cycle, thus

enabling two-qubit experiments. Furthermore, this setup hosts a three-axis vector magnet.

a b

d

AWG5208 DAQ
USB-6363

Bias-tee

Wainwright 
WDKX11

Lock-in
7265

R&S 
SGS100AI

Q
PM

DAC
LNHR 927

IV
LSK389A

Subtr.
SP 944

IV
LSK389A

-

Device

SB

Ferrite core
e

V P1

Manipula�on

 ACP

Ini�aliza�on Readout
t

tb2 tb1

 A1 A2

 f1= fMW + fSB1  f2= fMW - fSB2

tramptramp

c

I/R M

FIG. S1. Setup and single qubit control. a, Schematic of the experimental setup. The following

instruments were used: a arbitrary waveform generator AWG5208 from Tektronix, a diplexer WDKX11+10-

DC-1000/1300-15000-60S3 from Wainwright, a microwave signal generator SGS100A from Rhode&Schwarz,

a lock-in amplifier Model 7265 DSP from Signal Recovery, a data acquisition card USB-6363 from National

Instruments. Further, a voltage subtractor SP944, two current-voltage converters LSK389A and a digital-

analogue converter LNHR927, all from Basel Precision Instruments, were used. b, Initialization, two-qubit

manipulation and readout schematic. c, Charge stability diagram indicating initialization/readout and

manipulation configuration. d,e Typical Rabi chevron and Ramsey fringe measurement of Q1.
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S2. SPECTROSCOPY DATA FOR QUBIT ANISOTROPY CHARACTERIZATION

Here we present the raw data of the qubit spectroscopy experiments that were used to extract

the g-tensors ĝi of Q1 and Q2 and the exchange matrix Ĵ . Further, we observe correlations between

the qubit readout signal in the lock-in current and the DC current through the base line of the bias

triangle.
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FIG. S2. Qubit spectroscopy data. a-e, Spectroscopy measurement as a function of magnetic field

orientation (α, β) for sweeping B along 5 different planes with VB = −820mV and ϵ = −4.025meV. For a

fixed magnetic field orientation 4 transitions can be identified as described in Fig. 1, which allows to extract

EZ,i and J∥ for each configuration. The gaps in the data come from a vanishing qubit readout signal for

certain magnetic field orientations. Note that for some orientations only 1-3 transitions are vanishing. For

a-c we additionally show the direct current IDC of the zero detuning transition of the DQD as a function

of magnetic field orientation at |B| = 0.1T. A correlation between a large current and a vanishing qubit

visibility is observed. f Coordinate system and definition of the sweep parameters α and β.
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S3. g-TENSORS FOR Q1 AND Q2

The g-tensors were extracted according to Ref. [2] by measuring EZ,i by MW spectroscopy in at

least 6 different orientations. The extraction was performed on the data presented in Fig. S2.

ĝ1 =


2.31 0.50 −0.06

0.50 2.00 0.06

−0.06 0.06 1.50

 , ĝ2 =


1.86 −0.57 0.09

−0.57 2.76 −0.01

0.09 −0.01 1.46

 (1)

The g-tensors can be diagonalized, such that the effective g-factors along the principal axes can be

easily read off:

ĝdiag
1 = diag (2.68, 1.68, 1.46) , ĝdiag

2 = diag (3.04, 1.62, 1.42) . (2)
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S4. TWO-QUBIT INITIALIZATION

The qubits are initialized by pulsing from the spin-blocked region, where the |↓↓⟩-state is pop-

ulated, to the (1,1) manipulation point with a linear ramp within the time tramp. By varying tramp

and observing the allowed qubit transitions in a spectroscopy experiment (see Fig. S3), we identify

the different initialized states. We carefully select the ramp time of ∼ 20 ns to ensure that only

the lowest and highest energy transitions (f1↑, f2↓) are visible, indicating initialization into the

|↓↑⟩-state.

The background of the measurement shows an interference pattern. This could be explained by

Landau-Zener-Stückelberg interference due to repeatedly pulsing the system across an anticrossing

[3].

FIG. S3. Two-qubit initialization. MW spectroscopy measurement as a function of ramp time tramp

for a trapezoid initialization and readout pulse (see Section S1). The vanishing contrast of the inner two

transitions indicates an initialization into the |↓↑⟩ state, which only allows transitions with the highest and

lowest frequency. This experiment was used to calibrate tramp ∼ 20 ns for the experiment in the main paper

(see Fig. 4).
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S5. DERIVATION OF EXCHANGE MATRIX FORMALISM AND FITTING FORMULA

In this section, starting from a two-site Hubbard model we derive the effective Hamiltonian of the

(1, 1) charge sector of a double QD and show that the exchange interaction in this approximation

can be written as a 3D rotation. We present the effective Hamiltonian in three different frames

with the intention to assist future work on the experimental as well as theoretical side. We obtain a

fitting formula for the exchange splitting as a function of magnetic field orientation, facilitating the

extraction of the full exchange matrix from the MW transitions measured in the two-qubit system.

Finally, we verify that in the present experiment the exchange interaction is well described by a

rotation matrix, and that including an additional Ising anisotropy [4, 5], which splits triplet states

at zero magnetic field, does not improve the fitting of the presented results.

We describe our double QD setup using a two-site Fermi-Hubbard model where each QD (QD1

and QD2, respectively) is described by a single orbital state |1⟩ and |2⟩. The Hamiltonian reads

HFH =
∑

i,j∈{1,2}

∑
s,s′∈{↑,↓}

H̃ss′
ij a

†
isajs′ + U

∑
i∈{1,2}

ni↑ni↓ , (3)

where a†i,s (ai,s) creates (annihilates) a hole on site i with spin s, and obeys fermionic anticommu-

tation relations. Furthermore, nis = a†i,sai,s is the spin-resolved particle number operator of dot

i and U is the charging energy. The single particle Hamiltonian H̃ss′
ij = ⟨is| H̃ |js′⟩ acting on the

orbital and spin degrees of freedom reads

H̃ =
ϵ+ U − U0

2
τz + t cos(θso)τx + t sin(θso)τynso · σ

+
1

2
µBB ·

[
1 + τz

2
ĝ1 · σ +

1− τz
2

ĝ2 · σ
]
,

(4)

where τk are Pauli matrices acting on the orbital degrees of freedom, e.g., τz = |1⟩ ⟨1| − |2⟩ ⟨2|, and

σ = (σx, σy, σz) are also Pauli matrices acting on the spin degree of freedom {|↑⟩ , |↓⟩}. The first

term of Eq. (4) accounts for the detuning between the left and right QDs, where ϵ is measured

from the singlet-singlet anticrossing. Furthermore, since the charging energy U in the experiment

is measured at a different barrier height than the exchange anisotropy, we introduced U0 as a

fitting parameter that accounts for the shift of the singlet-singlet anticrossing. The tunnel-coupling

between the QDs is characterized by a (spin-conserving) hopping term ∝ t cos(θso), while spin-orbit

interaction is described by the spin-flip hopping ∝ t sin(θso). For spatially homogeneous SOI, the

rotation angle is given by the dot-dot distance over the spin-orbit length i.e., corresponding to a

spin rotation of 2θso =2d/λso, and nso is the direction of the spin-orbit axis [6]. The g-tensors of

the two QDs are taken into account in the most general form, where the spin quantization axis is
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fixed such that the g-tensors g1 and g2 are symmetric if B is in the lab frame [7].

Spin-orbit frame. In order to eliminate the spin-flip tunnelling term and thus obtain a simpler

matrix form of the Hamiltonian, we move to the spin-orbit frame. The corresponding unitary basis

transformation is given by H̃so = U †
soH̃Uso, where Uso = exp(−iθsoτznso · σ/2), which rotates the

spin-quantization axes on the two sites in opposite directions. In this spin-orbit frame, the spin-

conserving and spin-flip tunnelling transform as t cos(θso)τx → t cos2(θso)τx − t sin(2θso)τynso · σ/2

and t sin(θso)τynso · σ → t sin2(θso)τx + t sin(2θso)τynso · σ/2, respectively, and the Hamiltonian in

Eq. (4) reads

H̃so =
ϵ+ U − U0

2
τz + tτx +

1

2
µBB ·

[
1 + τz

2
ĝso
1 · σ +

1− τz
2

ĝso
2 · σ

]
, (5)

where the spin-orbit rotated g-tensors are ĝso
1 = ĝ1 · R̂so(θso) and ĝso

2 = ĝ2 · R̂so(−θso) with R̂so(φ)

denoting the right-handed rotation around the spin-orbit axis nso by an angle φ. The transformation

of the g-tensors is straightforward

U †
so

[
1 + τz

2
ĝ1 · σ

]
Uso =

exp(iθsonso · σ/2) · ĝ1 · σ exp(−iθsonso · σ/2) 0

0 0

 =
1 + τz

2
ĝ1·R̂so(θso)·σ,

(6)

keeping in mind the transformation rule for the vector of Pauli matrices. Note that the spin-flip

tunnelling does not appear in this formulation, but the ĝso
i matrices are not symmetric anymore.

Since the quantization axis has been rotated by ∓θso around nso for the left and right sites,

respectively, the on-site Hubbard term Uni↑ni↓ has the same form as in the lab frame. The Hamil-

tonian in Eq. (3) using the single-particle term of Eq. (5) is then projected to the lowest-energy

two-particle sector using the basis states

|S(0, 2)⟩ = a†2↑a
†
2↓ |0⟩ , (7a)

|S⟩ = 1√
2
(a†1↑a

†
2↓ − a†1↓a

†
2↑) |0⟩ , (7b)

|T0⟩ =
1√
2
(a†1↑a

†
2↓ + a†1↓a

†
2↑) |0⟩ , (7c)

|Tss⟩ = a†1sa
†
2s |0⟩ , (7d)

where |0⟩ is the vacuum state for holes and we omitted the S(2, 0) state since we operate close to

the S(0, 2)− S anticrossing, i.e., ϵ≪ U − U0. The low-energy 5× 5 Hamiltonian of the DQD then
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reads

H5×5 =



U0 − ϵ
√
2t 0 0 0

√
2t 0 − δbx+iδby√

2

δbx−iδby√
2

δbz

0 − δbx−iδby√
2

b̄z 0
b̄x−ib̄y√

2

0
δbx+iδby√

2
0 −b̄z b̄x+ib̄y√

2

0 δbz
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0


, (8)

where the order of the basis states is [S(0, 2), S, T↑↑, T↓↓, T0] and we introduced the average- and

gradient Zeeman fields as b̄ = (b1 + b2)/2 = µBB · (ĝso
1 + ĝso

2 )/2 and δb = (b1 − b2)/2 = µBB ·

(ĝso
1 − ĝso

2 )/2, where the second equality defines the Zeeman field bi for the ith site. Furthermore

the charging energy U of the doubly occupied singlet S(0, 2) is compensated by our definition of

the detuning ϵ̃ = ϵ + U − U0, in Eq. (4), and U0 remains a fitting parameter (much smaller than

U).

The [S(0, 2), S] block of the Hamiltonian in Eq. (8) can be diagonalized exactly, leading to

hybridized singlet states [S+, S−] with S+ = cos(γ/2)S(0, 2)+sin(γ/2)S and S− = − sin(γ/2)S(0, 2)

+ cos(γ/2)S at energies ES+ = U0−ϵ+J0 and ES− = −J0, respectively, where J0 =
√
2t tan(γ/2) =

−(U0 − ϵ)[1−
√
1 + 8t2/(U0 − ϵ)2]/2 and the angle γ = arctan[

√
8t/(U0 − ϵ)]. In the limit of large

detuning U0 − ϵ ≫ t we obtain J0 = 2t2/(U0 − ϵ) as in Eq. (1) of the main text. After the

transformation of the singlet sector one obtains

H5×5 =



U0 − ϵ+ J0 0 − δbx+iδby√
2

sin(γ2 )
δbx−iδby√

2
sin(γ2 ) δbz sin(

γ
2 )

0 −J0 − δbx+iδby√
2

cos(γ2 )
δbx−iδby√

2
cos(γ2 ) δbz cos(

γ
2 )

− δbx−iδby√
2

sin(γ2 ) − δbx−iδby√
2

cos(γ2 ) b̄z 0
b̄x−ib̄y√

2
δbx+iδby√

2
sin(γ2 )

δbx+iδby√
2

cos(γ2 ) 0 −b̄z b̄x+ib̄y√
2

δbz sin(
γ
2 ) δbz cos(

γ
2 )

b̄x+ib̄y√
2

b̄x−ib̄y√
2

0


.

(9)

Since the couplings between S+ and the triplet states are small, i.e. ∝ δb sin(γ/2), we can restrict

our Hilbert space to the lowest 4 states {S−, T↑↑, T↓↓, T0}, obtaining the effective Hamiltonian to

linear order in B that accounts exactly for the tunnel coupling, as

H4×4 =


−J0 − δbx+iδby√

2
cos(γ2 )

δbx−iδby√
2

cos(γ2 ) δbz cos(
γ
2 )

− δbx−iδby√
2

cos(γ2 ) b̄z 0
b̄x−ib̄y√

2
δbx+iδby√

2
cos(γ2 ) 0 −b̄z b̄x+ib̄y√

2

δbz cos(
γ
2 )

b̄x+ib̄y√
2

b̄x−ib̄y√
2

0

 , (10)

where the neglected couplings to the higher singlet only give perturbative corrections to the Hamil-

tonian in Eq. (10) that are O[δb2/(U0− ϵ+J0)]. Therefore, in the case of sufficiently weak Zeeman
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field anisotropy [δb ≪ (U0 − ϵ + J0)], Eq. (10) remains accurate throughout the singlet-singlet

anticrossing. On the contrary, one would need to resort to perturbation theory in t/(U0 − ϵ) ≪ 1,

when the 5 × 5 Hamiltonian is written in the lab frame, causing significantly larger errors in the

approximation because of the large spin-flip tunnelling terms.

From Eq. (10) it is apparent that the singlet-hybridization simply renormalizes the relative

Zeeman field by a factor of cos(γ/2). In order to find the renormalized Zeeman fields of the left

and right QDs, we write them in terms of the average and the renormalized relative fields to get

b′
1 = b1 − sin2(γ/4)(b1 − b2) and similarly b′

2 = b2 + sin2(γ/4)(b1 − b2). In the cases considered

in this work, sin2(γ/4) ≲ 0.004, and thus we disregard the singlet-hybridization corrections and use

b′
1 ≈ b1 and b′

2 ≈ b2. We note also that this approximation is rather accurate in general, because

the these corrections are bounded by sin2(γ/4) < 0.15 since |γ| < π/2 by definition.

In the weak tunnelling regime S− ≈ S(1, 1) and the Hamiltonian of Eq. (10) is restricted to the

(1, 1) charge sector. One can then introduce the localized spin operators σso
1 , and σso

2 , where the

subscript ’so’ refers to the spin-orbit transformation in Eq. (5). The Hamiltonian in the spin-orbit

frame can be rewritten in terms of these operators as

Hso
(1,1) =

1

2
µBB · ĝso

1 · σso
1 +

1

2
µBB · ĝso

2 · σso
2 +

1

4
J0σ

so
1 · σso

2 . (11)

Using the language of localized spin operators allows us to use simple rotations to transform the

Hamiltonian (i) back to the lab frame, where the g-tensors are symmetric and (ii) to the qubit

frame where the single-qubit part of the Hamiltonian is diagonal, allowing us to identify which

matrix elements of the exchange matrix lead to the observed splitting.

Lab frame. The formulation of Eq. (11) facilitates to transform the effective Hamiltonian to the

lab frame by means of real-space rotation matrices. A rotation can be applied on both left and

right spin operators, independently as R̂so(−θso) ·σso
1 = σ1, and R̂so(θso) ·σso

2 = σ2. The rotations

bring the g tensors back to the symmetric form, and the lab frame Hamiltonian reads

H lab
(1,1) =

1

2
µBB · ĝ1 · σ1 +

1

2
µBB · ĝ2 · σ2 +

1

4
σ1 · Ĵ · σ2 , (12)

where Ĵ = J0R̂so(−2θso) is the exchange matrix in the lab frame. From the nonperturbative treat-

ment of the SOI in the two-site Hubbard model, we obtained that the anisotropy of the exchange

interaction is given by a 3D rotation in accordance with Refs. [8, 9]. However, more elaborate

models might lead to corrections to the exchange that cannot be written as a simple rotation

matrix [5, 10]. If one would account for the effect of higher orbital states in each QD, for the
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effect of a SOI cubic in momentum or the orbital effects of the magnetic field on the lowest 4 × 4

subspace perturbatively, the Zeeman terms would only be renormalized, but the exchange matrix

could obtain additional anisotropies, e.g., Ising anisotropy. Later we consider this correction on

the phenomenological level, and show that the inclusion of an additional Ising anisotropy does not

significantly improve the fit and therefore we conclude that the corresponding corrections must be

negligible compared to the rotational anisotropy.

Qubit frame. In order to find which matrix elements of the exchange interaction are responsible

for the splitting observed in the double QD spectrum, we move to the frame where the Zeeman

terms are diagonal, and consider the exchange interaction as a perturbation. Starting from the lab

frame Hamiltonian of Eq. (12), using independent rotations R1 and R2 on Q1 and Q2, respectively

the Hamiltonian can be rewritten in the qubit frame. In this frame the single particle terms of the

Hamiltonian are diagonal, i.e.,

HQ
(1,1) =

1

2
EZ,1σ

Q
z,1 +

1

2
EZ,1σ

Q
z,2 +

1

4
σQ
1 · Ĵ Q · σQ

2 , (13)

where µBR̂1 · ĝ1 · B = EZ,1e
Q
z is the Zeeman splitting on Q1 and µBR̂2 · ĝ2 · B = EZ,2e

Q
z is the

Zeeman splitting of Q2, with eQz being the qubit quantization axis. The exchange matrix in this

frame incorporates also the rotations of the qubit bases, i.e., Ĵ Q = J0R̂1 · R̂so(−2θso) · R̂T
2 . Note

that the exchange matrix can still be characterized as a single rotation matrix as Ĵ Q = J0R̂ñ(−2θ̃),

where θ̃ and ñ can be expressed in terms of the g-tensors, the magnetic field and the spin-orbit

vectors. This frame is used here to obtain the experimentally measured exchange splitting J∥. As

it will be shown below, the splitting J∥ is given by the diagonal matrix element of the exchange

matrix Ĵ Q in the direction of the qubit quantization axis.

The exchange splitting J∥ is defined as a difference between two transitions where one of the

spins (either Q1 or Q2) is flipped while the other one is in either the |↑⟩ or the |↓⟩ state. In order

to obtain an estimate for this quantity we write the Hamiltonian of Eq. (13) in the matrix notation

and neglect every coupling that would contribute to the eigenvalues in O(J2
0/EZ) to obtain

HQ
(1,1) =


EZ + 1

4J
Q
zz 0 0 0

0 1
2∆EZ − 1

4J
Q
zz

1
2J⊥ 0

0 1
2(J⊥)

∗ −1
2∆EZ − 1

4J
Q
zz 0

0 0 0 −EZ + 1
4J

Q
zz

 , (14)

where the order of the basis states is {↑↑, ↑↓, ↓↑, ↓↓} and we defined J⊥ = [JQ
xx + JQ

yy + i(JQ
xy −

JQ
yx)]/2. In our work J0/EZ ∼ 0.02, rendering the effect of the off-diagonal terms negligible. The
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eigenenergies of the Hamiltonian in Eq. (14) are then simply given by

E↑↑ = EZ +
1

4
JQ
zz , E↓↓ = −EZ +

1

4
JQ
zz , (15a)

E↑̃↓ =
1

2
∆ẼZ − 1

4
JQ
zz , E↓̃↑ = −1

2
∆ẼZ − 1

4
JQ
zz , (15b)

where ∆ẼZ =
√
∆E2

Z + |J⊥|2. The exchange splitting is defined as J∥ = E↑↑ − E↑̃↓ − (E↓̃↑ − E↓↓)

leading to J∥ = JQ
zz. Writing the matrix element JQ

zz in a basis-independent form we arrive at

J∥(B) = J0 ez · R̂1 · R̂so(−2θso) · R̂T
2 · ez = J0 n1 · R̂so(−2θso) · n2 , (16)

that straightforwardly accounts for spin-orbit interaction and the anisotropy of the g-tensors. Note

that nj = ĝj · B/|ĝj · B| provides an explicit dependence on the magnetic field orientation for

given g-tensors. The g-tensors can be related to measurable quantities (transition energies) as

E↑↑−E↓̃↑+(E↑̃↓−E↓↓) = 2EZ +∆ẼZ ≈ 2µB|ĝ1 ·B| and E↑↑−E↑̃↓+(E↓̃↑−E↓↓) = 2EZ −∆ẼZ ≈

2µB|ĝ2 · B|, where we use the approximation EZ,1, EZ,2 ≫ ∆ẼZ − ∆EZ . This approximation

allows us to extract ĝ independently from Ĵ , avoiding iterative processes. Hence, spectroscopy

measurements for different magnetic field orientations (see Supplementary Section 2) suffice to de-

termine the g-tensors (see Supplementary Section 3). Finally, inserting the g-tensors into eq. (16),

a fitting formula is obtained that allows to straightforwardly extract the exchange matrix Ĵ from

the same spectroscopy measurement used to extract ĝ. In the main paper we use this formula to

fit 5 independent parameters, where 3 fitting parameters are in R̂so(−2θso), i.e. αso, βso (defining

nso) and λso = θso/d, and 2 fitting parameters are in J0, i.e. t and U0.

Additional anisotropies. The relevance of the neglected higher-orbital corrections can be in-

vestigated by allowing for additional Ising anisotropy effects in the exchange interaction Ĵ , e.g.

zero-field splitting of triplet states [4, 5]. As explained in Ref. [5], the Ising anisotropy of the ex-

change can be written as δĴ = D nso ◦ nso, where the anisotropy axis is the spin-orbit axis nso,

and D is the zero-field splitting. If such an effect is present, the fitting formula of Eq. (16) can be

extended by the term

δJ∥ = D (nso · nL)(nso · nR) , (17)

leading to a single fitting parameter in addition to J0, nso, and θso. For the present data set

we obtained D = 13 ± 2MHz for the zero-field splitting, while the other fitting parameters have
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only changed within their respective error-bars. The exchange matrix and its zero-field splitting

correction then read

Ĵ = J0


−0.87 0.41 −0.28

−0.49 −0.60 0.64

0.10 0.69 0.72

 , δĴ = J0


0.00 0.00 −0.01

0.00 0.02 0.05

−0.01 0.05 0.12

 . (18)

Since the overall quality of the fit remained unchanged, we conclude that the simplified form of the

exchange matrix used in the main text is indeed capturing the main source of exchange anisotropy,

that is the direct Rashba SOI (linear in momentum).

S6. EXCHANGE MATRIX FOR ELECTRON QDS IN SILICON

Our analysis can be straightforwardly extended to the case of electron QDs in silicon where the

SOI is induced by the gradient field of a micromagnet [11–13]. The inhomogeneous magnetic field

induced by the magnet is fixed in the lab frame as opposed to the external magnetic field, the

direction of which needs to be changed in order to map out the g-tensors and the exchange matrix.

The low-energy Hamiltonian of such a double QD system with two-electron occupation in the (1, 1)

charge configuration is similar to Eq. (12) but needs to be extended by the magnetic field of the

micromagnets as

H(1,1) =
1

2
µB(B+M1) · ĝ1 · σ1 +

1

2
µB(B+M2) · ĝ2 · σ2 +

1

4
σ1 · Ĵ · σ2 , (19)

where Mi is the magnetic field induced by the micromagnet on site i, and the exchange matrix

is still anisotropic due to the spin-flip tunnelling process induced by the spatially inhomogeneous

magnetic field between the two QDs. In analogy with the case of SOI, the spin rotation angle can

be estimated as tan(θso) ∼ µB|M1−M2|/ℏω0, where ℏω0 is the orbital splitting of the QD. Because

this angle is typically small, the exchange interaction is roughly isotropic, in agreement with the fact

that no exchange anisotropy was reported in recent works with micromagnets [12, 13]. The strong

exchange anisotropy to date is unique to hole systems with strong SOI. As it will be presented in

the next section, this anisotropy can be the key to achieve fast and high-fidelity two-qubit gates for

holes that keep up with the exceptionally fast single-qubit gates in these systems.

In the case of electrons, fitting the parameters of the model in Eq. (19) involves an additional

step due to the field of the micromagnet. This field can be mapped out component by component,

by changing the strength of the magnetic field along a given direction and determining the offset

of the minimum of the Zeeman splitting with respect to B = 0. Accounting for this fixed magnetic
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field on each QD, one could proceed to fit the g-tensors and the exchange matrix as presented in

Sec. S5 using nj = ĝj · (B+Mj)/|ĝj · (B+Mj)|.

S7. THEORETICAL LIMIT OF THE CNOT GATE FIDELITY

In this section we numerically calculate the fidelity of a CNOT gate, implemented via a con-

trolled rotation (CROT) and additional correction gates. For this purpose, we extend the qubit

Hamiltonian including anisotropic exchange with a driving term. Using the rotating wave approxi-

mation (RWA), we show that Rabi oscillations for Q1 can be controlled by the state of Q2. We find

sequences of single- and two-qubit gates to transform a CROT into a CNOT and simulate CNOT

fidelites for anisotropic and isotropic exchange interaction. We show that for anisotropic exchange

and certain magnetic field orientations, the CNOT gate errors are strongly reduced in comparison

to isotropic exchange and faster gate speeds are possible. Further, we show that the CNOT gate

fidelity for isotropic exchange is strongly limited by J⊥.

Starting from Eq. (14) we add the drive HMW = νR sin(ωMWt)σx,1 to Q1, where νR = hfR is

the strength of the drive for zero frequency detuning and ωMW is the frequency of the drive, and

obtain

HQ
(1,1)(t) =


EZ + 1

4J∥ 0 νR sin(ωMWt) 0

0 1
2∆EZ − 1

4J∥
1
2J⊥ νR sin(ωMWt)

νR sin(ωMWt)
1
2(J⊥)

∗ −1
2∆EZ − 1

4J∥ 0

0 νR sin(ωMWt) 0 −EZ + 1
4J∥

 . (20)

The gate operation that is applied to the qubits in the experiment is found by numerically calculating

the time evolution of the Hamiltonian in Eq. (20)

CROTnum = T exp
[
− i

ℏ

tπ∫
0

dtHQ
(1,1)(t)

]
, (21)

where tπ is the time needed to perform a spin-flip on the target qubit and T indicates the time-

ordered exponential. Next, we want to compare the numerically computed CROT gate operation

to a perfect CNOT gate. For this purpose, we need to apply a sequence of correction gates that

turn a CROT into a CNOT, which can be identified by analyzing the Hamiltonian (20) analytically.

First, we move to a rotating frame to eliminate the time-dependence in HQ
(1,1)(t), in which the

Hamiltonian is given by

Hrot = −iℏU †
rotU̇rot + U †

rotH
Q
(1,1)(t)Urot , (22)
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where Urot(t) = diag[exp(−iωMWt), 1, 1, exp(iωMWt)] is the transformation between the rotat-

ing frame and the qubit frame. Using the RWA we drop the rapidly oscillating terms, e.g.,

∝ exp(−i2ωMWt), and find

HRWA =


EZ + 1

4J∥ − ℏωMW 0 i
2νR 0

0 1
2∆EZ − 1

4J∥
1
2J⊥

i
2νR

− i
2νR

1
2(J⊥)

∗ −1
2∆EZ − 1

4J∥ 0

0 − i
2νR 0 −EZ + 1

4J∥ + ℏωMW

 . (23)

Then, we transform to the eigenbasis of the Hamiltonian (14). This transformation accounts for

the mixing of |↑↓⟩ and |↓↑⟩ basis states by J⊥ and is defined as H̃RWA = U †
ϕ,ξHRWAUϕ,ξ, where the

transformation matrix is given by

Uϕ,ξ =


1 0 0 0

0 cos ϕ
2 −e−iξ sin ϕ

2 0

0 eiξ sin ϕ
2 cos ϕ

2 0

0 0 0 1

 , (24)

with exp(iξ) = J⊥/|J⊥| and the mixing angle ϕ = arctan(|J⊥|/∆EZ). Note that this transformation

commutes with Urot(t). We obtain

H̃RWA =


−1

2∆ẼZ − 1
4J∥

i
2e

iξνR sin ϕ
2

i
2νR cos ϕ

2 0

− i
2e

iξνR sin ϕ
2

1
2∆ẼZ − 1

4J∥ 0 i
2νR cos ϕ

2

− i
2νR cos ϕ

2 0 −1
2∆ẼZ − 1

4J∥ − i
2e

−iξνR sin ϕ
2

0 − i
2νR cos ϕ

2
i
2e

−iξνR sin ϕ
2

1
2∆ẼZ + 3

4J∥

 , (25)

where we substituted the resonance condition for the transition that we want to drive, i.e. |↓↑⟩ →

|↑↑⟩, as ℏωMW = EZ + 1
2∆ẼZ + 1

2J∥. We note that, depending on the sign of J∥, we obtain a CROT

or a not-controlled rotation (NCROT). In the RWA Hamiltonian we call the off-diagonal terms

that connect degenerate states resonant transitions, i.e. |↓↑⟩ → |↑↑⟩, whereas terms connecting two

states that are not degenerate are the off-resonant transitions. Off-resonant transitions are highly

suppressed by the energy mismatch, hence we neglect all off-resonant terms. Note that off-resonant

terms that include sin(ϕ/2) vanish completely for ϕ = 0, i.e. J⊥ = 0, reducing the error introduced

by the approximation for this specific case.

Next, we calculate the complete time evolution of the qubit states. Within the rotating frame and

the RWA, the time evolution of a state in the qubit frame is given by |ψ(t)⟩ = Urot(t)URWA(t) |ψ(0)⟩,
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where URWA(t) is the free time evolution according to the RWA Hamiltonian (23). Because

Uϕ,ξ commutes with the rotating frame transformation Urot, one may write Urot(t)URWA(t) =

Uϕ,ξUrot(t) exp(−i/ℏH̃RWAt)U
†
ϕ,ξ = Uϕ,ξUrot(t)ŨRWA(t)U

†
ϕ,ξ. The full time evolution under the

Hamiltonian in the mixed basis is then

C̃ROT =Urot(tπ)ŨRWA(tπ) =

0 0 e
iπκ

(
−EZ

J∥
− 1

4

)
0

0 e
iπκ

(
−∆ẼZ

2J∥
+ 1

4

)
0 0

−e
iπκ

(
∆ẼZ
2J∥

+ 1
4

)
0 0 0

0 0 0 e
iπκ

(
EZ
J∥

− 1
4

)


,

(26)

where the operation time for a π-rotation is tπ = h/(2νR cos(ϕ/2)) and we imposed νR cos(ϕ/2) =

J∥/κ with κ =
√
16k2 − 1 and k is an integer as in Ref. [14]. These conditions restrict the maximal

driving strength to νR = J∥/
√
15, but ensure that no net spin rotation of Q1 occurs for the |↓⟩-state

of the control qubit Q2. This is standard practise to reduce fidelity loss due to off-resonant driving

effects [12].

The controlled rotation in the mixed basis in Eq. (26) is now compared to an ideal CNOT, which

is controlled by Q2 and targeted on Q1, in the basis {↑↑, ↑↓, ↓↑, ↓↓}

CNOT =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 . (27)

This allows us to find a sequence of elementary single-qubit gates such that

C̃ROT = eiπ(∆EZ/2νR+J∥/4νR−EZ,1/νR+3/2) Z
EZ,2/νR+1/2
2 Z

EZ,1/νR−1/2
1 CNOTZ

−J∥/2νR+1/2

1 . (28)

Here, Zi is the Z-gate with the convention Za
i = diag(1, eiπa) acting on the ith qubit. We consider

the gate Za
i as directly accessible for spin qubits, since arbitrary Z-rotations can be implemented e.g.

by an arbitrary detuning pulse [1, 15] or by virtual phase gates [12]. Note that the decomposition

into correction gates is not unique.

If Uϕ,ξ = 1 at ϕ = 0, hence the mixed basis is equal to the qubit basis, the CNOT gate can

be constructed from the CROT gate using Eq. (28). However, having a finite mixing angle ϕ,
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i.e. J⊥ ̸= 0, we also have to account for the additional transformation CROT = Uϕ,ξ C̃ROTU †
ϕ,ξ.

Hence, we have to decompose Uϕ,ξ into elementary gates

Uϕ,ξ = Z
−ξ/π−1/2
1 X1 (CZ)ϕ/2πX1X2 (CZ)ϕ/2πX2 (SWAP)−ϕ/π Z

ξ/π+1/2
1 , (29)

where the controlled-Z gate (CZ) is controlled by Q1 and targeted on Q2 andXi is theX-gate acting

on the ith qubit. Note that this decomposition contains in addition to elementary single-qubit gates

also multiple two-qubit gates. Introducing additional two-qubit gates creates new sources for errors,

that can lower the overall-fidelity of the CNOT gate. Additionally, this creates a large overhead of

correction gates, making it desirable to work in the regime of ∆EZ ≫ J⊥, where Uϕ,ξ ≈ 1. Further,

since SWAP and CZ gates typically require opposite regimes of ∆E ≪ J⊥ and ∆E ≫ J⊥, these

correction gates are not practical in any experimental realization and will only be considered here

to investigate the sources of errors.

Finally, we define CNOTnum as the numerically simulated CROT gate from Eq. (21) after

applying single-qubit correction gates as described in Eq. (28). The fidelity of this two-qubit gate

is then calculated by comparing it to the ideal CNOT gate:

F =
1

4
|Tr

[
CNOTnumCNOT†

]
| , (30)

Analogously, we define CNOTϕ,ξ
num as the numerically simulated CROT gate from Eq. (21) after

applying both the single-qubit correction gates from Eq. (28) as well as the single- and two-qubit

correction gates from eq. (29) and calculate the fidelity analogously.

We present numerical simulations of the fidelity in Fig. S4 for four different cases, which differ

by the exchange interaction (isotropic vs anisotropic exchange) and the correction gates that are

applied (only single-qubit corrections or both correction sequences). The simulation is performed

by calculating the time evolution operator U with the full time-dependence of Eq. (21). Due to

discretization of time, a small numerical error caused by the numerical precision is added in every

time step (dt = 10−7 ns). This contribution is not unitary and leads to |Tr[U †U ]/4| ≲ 1. Therefore,

we associate 1−|Tr[U †U ]/4| with the precision of our calculations and plot it as error bar in Fig. S4.

We present the CNOT fidelity as a function of J∥/∆EZ . Since J∥ =
√
15νR was fixed for maximal

driving strength without inducing unwanted off-resonant driving, this can be seen as evaluating the

fidelity as a function of gate speed. We note that for a small gate speed, requiring more time steps,

the error bars are increased. Overall, we see a drop of fidelity with gate speed, which is much more

pronounced for isotropic than anisotropic exchange. For the case of isotropic exchange, the fidelity

drops rapidly for large J∥/∆EZ , even when applying all correction gates (CNOTϕ,ξ
num). This loss of
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FIG. S4. CNOT gate fidelities as a function of J∥ and driving strength (νR = J∥/
√
15) using (i) anisotropic

exchange interaction (green) for the configuration used in Fig. 4; (ii) and isotropic exchange interaction (or-

ange) e.g. for electrons in silicon. CNOT gates obtained using single-qubit correction gates only (CNOTnum)

are shown as solid lines, while CNOT gates also corrected for basis mixing errors (CNOTϕ,ξ
num) are shown as

dashed lines. Red line and blue points indicate the working point of the present experiment and fidelities

measured in Ref. [12], respectively. The horizontal gray line marks a fidelity of F = 99%. The shaded

regions indicate the precision of the numerics.

fidelity can be understood as the effect of the off-resonant terms that were neglected in eq. (25),

which become relevant at large driving strength. When looking at isotropic exchange and only

single-qubit correction gates (CNOTnum), we see a further reduction of fidelity, which originates

from the strong mixing of qubit basis states due to large J⊥ = J∥. This is the dominant effect for

the loss of fidelity of the CNOT gate at small driving speeds J∥/∆EZ < 0.5. Note that the wiggle

features in the fidelity probably originate from an interplay of the single-qubit correction gates

and the unwanted effects of Uϕ,ξ that are not corrected here. Comparing the theoretical fidelity

to current experimental realizations of CROT gates with isotropic exchange, e.g. Noiri et al. [12],

we find that the fidelity seem to be limited mainly by the experimental implementation. Further,

these experiments are performed at very small driving strength, where the maximum theoretical

CNOT fidelity is not significantly limiting the fidelity of the implemented gate.

In the anisotropic case, the fidelity depends on the magnetic field orientation, since it determines

J⊥. Here, we look at the case of the magnetic field orientation and J of the CROT experiment

in Fig. 4 of the main paper. In Fig. S5 we show J∥ and J⊥ as a function of magnetic field

orientation and indicate the orientation that was used with a red star, showing a large |J∥| = 0.902J0

and small |J⊥| = 0.049J0. We note that there is a large range of orientations, where such a
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★ ★

FIG. S5. Exchange interaction |J∥| and |J⊥| as a function of magnetic field orientation (α, β), using the

experimental g-tensors, spin rotation angle θso and SOI orientation nso. Red stars denote the magnetic field

direction used for the implementation of the CROT gate in the main paper and for calculating the gate

fidelity in Fig. S4.

combination of |J∥|/|J⊥| ≫ 1 can be found. In this case, the fidelity stays above 99% up to

strong driving of J∥/∆EZ ∼ 1. There is almost no difference between CNOTnum and CNOTϕ,ξ
num,

indicating that the basis mixing by Uϕ,ξ is not limiting the fidelity. This is expected, since for the

chosen magnetic field orientation |J⊥| ≪ ∆EZ and thus Uϕ,ξ ∼ 1. The main reduction in fidelity

originates from neglecting the off-resonant terms and the rapidly oscillating terms in the RWA.

Hence, two-qubit correction gates, which are relevant in the isotropic case already at small driving

strength, are not needed here. For much stronger driving J∥/∆EZ ≳ 0.5 the benefits for fidelity

of anisotropic exchange become even stronger: In this regime, even when using the impractical

two-qubit correction gates, the fidelity for isotropic exchange is limited to much smaller values than

for anisotropic exchange.

The red dashed line in Fig. S4 indicates the value of J∥/∆EZ ∼ 0.2 that was used in this

experiment, showing that the fidelity of our CROT implementation is not significantly limited

by the maximum theoretical fidelity. However, for isotropic exchange this diving strength would

already induce a significant reduction of fidelity, unless the very hard to realize and computationally

demanding two-qubit correction gates are implemented. Hence, this experiment already benefits

from the anisotropic exchange interaction.
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S8. ADDITIONAL INFORMATION TO FIG. 2

In this section, we present additional information to Fig. 2 of the main paper, where Eq. 1 is

fitted to measurement data. The lever arms for the plunger gates are αQ1
P1 = 0.12 and αQ2

P2 = 0.06,

while the lever arms for the barrier gates are αQ1
B = 0.21 and αQ2

B = 0.21. A charging energy of

U = 13.2meV was extracted from a charge stability measurement. In our fitting routine, for each

barrier gate voltage an energy offset U0 was fitted, capturing the electric tunability of the charging

energy. U0 as function of VB is presented in Fig. S6.
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FIG. S6. Fitting parameter U0 as function of VB. The VB error bars represent the estimated errors due to

a device tuning uncertainty, and the U0 error bars the standard errors for the best-fit values.
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