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Here we show additional measurements of our two phase-driven hole spin qubits in two different
devices. We also provide a derivation of the suppression of the main Rabi oscillations and the
emergence of sidebands due to simultaneous phase and Rabi drives. Finally, we discuss in detail the
noise resilience of the fundamental Rabi oscillations upon phase driving based on Floquet theory.

I. ADDITIONAL MEASUREMENTS OF OUR FIRST AND SECOND DEVICES

(a) (b)

Figure 1. Phase-driving-induced slowing down of Rabi oscillations in qubit 2 (Q2). Measurements (a) and simulations (b)
match well, similarly to the case reported in the main text for Q1; see Fig. 1(b),(c). Here ωx/2π = ωq/2π = 3.115 GHz,
λx/2π = 11 MHz, and λz/2π = 6.1 MHz.

(a) (b)

Figure 2. Phase-driving-induced sideband Rabi oscillations in qubit 1 (Q1). Measurements (a) and simulations (b) are
in good agreement. These sidebands are analogous to the ones reported in the main text for Q2, see Fig. 2(b),(e). Here
ωq/2π = 4.5 GHz, λx/2π = λz/2π = 30 MHz, and ωz/2π = 90.5 MHz, corresponding to Z = 0.33.

Here we present here additional data from our two qubits, Q1 and Q2, encoded in two different devices. In Fig. 1,
we show the slowing down of Rabi oscillations by phase driving Q2. Compared to Figs. 1(b),(c) in the main text,
we observe a similar trend, with lower Rabi and phase driving amplitudes. The measurement in Fig. 1(a) matches
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well the numerical simulation in Fig. 1(b). In Fig. 2, we show phase-driving-induced sideband oscillations appearing
at finite detuning in Q1. These results are similar to the ones for Q2 shown in Figs. 2(b),(e) of the main text. We
observe a good agreement between measurements (a) and simulations (b).

II. DYNAMICS OF THE PHASE-DRIVEN QUBIT

Here we present a more detailed analysis of the sideband Rabi resonances and discuss the origin of the noise resilience
for phase-driven qubits within the Floquet formalism.

A. Two-tone Hamiltonian

We consider the two-tone Hamiltonian

H =
~ωq
2
σz + ~λxσx cos(ωxt+ ϕx) + ~λzσz cos(ωzt+ ϕz) , (1)

with arbitrary phase shifts φx,z. Equation (1) is slightly more general than Eq. (1) in the main text for which
φx = φz = 0. Moving to the rotating frame defined by the transformation

Ur(t) = e−iσz [ωxt+ϕx+2Z sin(ωzt+ϕz)]/2 , with Z = λz/ωz , (2)

results in the effective Hamiltonian

H̃ =
~∆

2
σz +

~λx
2

[
e2iZ sin(ωzt+ϕz) + e2i[ωxt+ϕx+Z sin(ωzt+ϕz)]

]
σ+ + h.c. ≈ ~∆

2
σz +

~λx
2
e2iZ sin(ωzt+ϕz)σ+ + h.c. , (3)

with σ± = (σx ± iσy)/2 and ∆ = ωq − ωx. The approximate sign in Eq. (3) indicates a rotating wave approximation
(RWA), valid when the phase driving frequency is much smaller than the transverse driving frequency, i.e. ωz � ωx.
This is the regime of interest in our work; additional resonances can be found when ωx ∼ ωz, and these effects are
discussed in Ref. [1]. We also point out that Eq. (3) coincides with Eq. (2) in the main text. This can be shown by
using the equalities

e2iZ sin(ωzt+ϕz) =

∞∑
n=−∞

ein(ωzt+ϕz)Jn(2Z) , and Jn(2Z) = (−1)nJ−n(2Z) . (4)

Note that at Z = 0 (corresponding to no phase driving λz = 0) we recover the usual Rabi Hamiltonian in the
rotating frame and in the RWA,

H̃(Z = 0) =
~∆

2
σz +

~λx
2
σx , (5)

as expected from Eq. (1) (see discussion Following Eq. (2) in the main text). On the other hand at Z → ∞
(corresponding to ωz = 0), we find a constant shift of the qubit frequency by 2λt cos(ϕz) resulting in a over-rotation
of the driving term

H̃(Z →∞) =
~∆

2
σz +

~λx
2
e2iλz cos(ϕz)tσ+ + h.c. . (6)

Upon a transformation back to the lab frame, Eq. (6) reduces to the ωz = 0 of Eq. (1), as can be readily checked.
We also remark that in taking the Z → ∞ limit, we removed the divergent exponential e2iZ sin(ϕz) by the trivial
time-independent coordinate transformation eiZ sin(ϕz)σz , which does not affect the dynamics of the system.

B. Sideband Rabi resonances

We begin by examining the qubit dynamics when λx � ωz. In this case, only the lowest order Bessel functions in
Eq. (4) determine the time-evolution of the qubit. As discussed in the main text, at ∆ = 0 the dominant contribution
to the dynamics comes from the static term and results in a Rabi frequency ωR = λxJ0(2Z); consequently for small
phase-driving amplitudes λz � ωz, the Rabi oscillations are slowed down as ωR ≈ λx(1−λ2

z/ω
2
z). Additional sideband
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Figure 3. Additional simulations of sideband Rabi oscillations. Here we fix Z = λz/ωz = 1.2 such that the central Rabi
resonance at ∆ = 0 vanishes. In (a) and (b) we use ωz = 2λx (similar to our current experiments) and ωz = 5λx, respectively.
We note that because the sidebands have a bandwidth ∼ λx and occur at frequencies mωz, with integer m, they become
increasingly well-resolved as the ratio ωz/λx increases. This effect is illustrated in (c) and (d), where we show the first subband
oscillations for the two different values of ωz/λx, corresponding to the black lines in (a) and (b), respectively. For reference,
we also show (gray line) the expected value of these oscillations sin2[λxJ1(2.4)t/2]. In (c) we observe additional wiggles in the
vicinity of PR(t) ≈ 0.5 that are caused by corrections beyond the RWA. These corrections are suppressed in (d) and become
negligible at larger values of λz. For the simulations we used ωq = 103λx.

Rabi oscillations appear at ∆ = mωz with frequency λxJm(2Z). Because the central contribution at ∆ = 0 vanishes
at Z ≈ 1.2 (root of J0(2Z)), the dynamics becomes dominated by higher harmonic components. This condition has
been realized in the experiments presented in the main text.

In Fig. 3, we report additional simulations for our system at Z = λz/ωz = 1.2, but for different values of ωz.
Because the sidebands have a bandwidth ∼ λx, as the ratio ωz/λx increases they become increasingly well separated
in frequency and approach the ideal function PR(t) = sin2[λxJ1(2.4)t/2]. For this reason, larger values of phase
driving amplitude λz, such that the condition Z = 1.2 is fulfilled for larger frequencies ωz, will enable high-fidelity
sideband Rabi oscillations.

C. Floquet theory

We now consider a different case with λx ∼ ωz in which the higher harmonics become relevant also at ∆ = 0.
The time-evolution operator of the system can be written in the form:

U(t) = Ur(t)UTO(t)U†r (0) , with UTO = T e−i
∫ t
0
dτH̃(τ)/~ , (7)

where Ur is given in Eq. (2). Because in the RWA H̃ oscillates in time with period T = 2π/ωz, the time-ordered
exponential in UTO(t) can be conveniently decomposed in the Floquet theory, see e.g. Ref. [2], as

UTO(t) = e−iK(t)e−iHF t . (8)
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We define the Floquet Hamiltonian HF from the relation e−iHFT = UTO(T ) and the kick operator as e−iK(t) =
UTO(t)eiHF t. The usefulness of these operators is discussed below. This decomposition factorizes UTO(t) into a
stroboscopic time-evolution operator dependent on HF that captures the dynamics at times t = nT and a kick
operator satisfying K(t) = K(t+T ) that captures the dynamics within a single period. We also fix the Floquet gauge
by specifying the initial condition of the kick operator K(0) = 0.

Using the decomposition in Eq. (8) we introduce the Floquet time-dependent modes

|ϕj(t)〉 = e−iω
j
F t|uj(t)〉 , (9)

where the state |uj(t)〉 is given by

|uj(t)〉 = e−iK(t)|jF 〉 , (10)

and is periodic in time with period T , i.e. |uj(t)〉 = |uj(t + T )〉. The |ϕj(t)〉 are analogous to Bloch states. The

time-independent states |jF 〉 = |uj(0)〉 = |ϕj(0)〉 and their quasi-energy ωjF [defined mod(2π/T )] are found from the
eigensystem of the Floquet time-evolution operator UTO(T ) = e−iHFT :

UTO(T )|jF 〉 = e−iω
j
FT |jF 〉 . (11)

The time-dependent states |ψ(t)〉 generated from UTO(t) can be decomposed in terms of Floquet time-dependent
modes |ϕj(t)〉 as

|ψ(t)〉 = UTO(t)|ψ0〉 =
∑
j

cj |ϕj(t)〉 . (12)

The initial condition |ψ(0)〉 = |ψ0〉 enters via the time-independent coefficients cj , obtained from the decomposition
of the state |ψ0〉 in the time-independent Floquet eigenbasis |jF 〉, i.e.,

cj = 〈jF |ψ0〉 . (13)

Next we consider in detail the two cases studied in the main text, where the phase driving frequency ωz is either off
or on resonance with the Rabi frequency λx and the phase-driving amplitude λz is small compared to ωz, i.e., Z � 1.
In both cases, we assume that the transverse drive is resonant with the qubit frequency, i.e. ∆ = 0.

1. Off-resonant phase driving at λx � ωz

For small off-resonant phase-driving and assuming Z � 1 and ∆ = 0, Eq. (3) simplifies to

H̃ ≈ ~λx
2
σx − ~λxZ sin(ωzt+ ϕz)σy . (14)

Since the phase-driving frequency ωz is much larger than λx, and we can use a Magnus expansion [3] to derive the
effective time-evolution operator

UTO(t) = e−i
λxt

2 [σx−2Z
cos(ϕz)−cos(ωzt+ϕz)

ωzt
σy] and Floquet Hamiltonian HF =

λx
2
σx . (15)

This is similar to the case describing the usual Rabi oscillations in which we find that the two Floquet modes are
coherent superpositions of the spin states, i.e.

|0F 〉 =
| ↑〉+ | ↓〉√

2
, |1F 〉 =

| ↑〉 − | ↓〉√
2

and ω0,1
F = ±λx

2
mod(ωz) . (16)

2. Resonant phase driving at λx ∼ ωz

A different situation occurs at resonance λx ∼ ωz where the Magnus expansion is not applicable. Here we still
consider ∆ = 0 and Z � 1. In this case, we first move to a doubly rotating frame by

U1(t) = e−i(ωzt+ϕz)σx/2 , (17)
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that eliminates the usual Rabi oscillation term. We then obtain

H1 =
~
2

(λx − ωz)σx −
~λxZ

2
σz +

~λxZ
2

[cos(2ωzt+ 2ϕz)σz − sin(2ωzt+ 2ϕz)σy] , (18)

where we can safely use a lowest-order Magnus expansion [3], because λxZ � ωz, to obtain the time-evolution operator

UTO(t) = U1(t)e−i
(λx−ωz)t

2 σx+iλxZt2 σz+iλxZt2
sin(ωzt)
ωzt

[sin(ωzt+2ϕz)σy−cos(ωzt+2ϕz)σz ]U†1 (0) . (19)

At the stroboscopic time t = T = 2π/ωz, the time-evolution operator significantly simplifies and we can rewrite it as

UTO(T ) = U1(T )ei(θ−
π
4 )σye−i

ω̃F T

2 σze−i(θ−
π
4 )σyU†1 (0) with tan(2θ) =

λxZ

|λx − ωz|
and ω̃F =

√
(λx − ωz)2 + λ2

xZ
2 .

(20)
Diagonalizing UTO(T ), by using the above we immediately find the Floquet eigensolutions

ω0,1
F = ±

(
ωz
2

+
ω̃F
2

)
mod(ωz) and 〈s|jF 〉 =

[
U1(0)ei(θ−

π
4 )σy

]
s,j

, with s = {↑, ↓} , jF = {0F , 1F } . (21)

These equations correspond to Eqs. (4) and (5) in the main text up to an irrelevant global phase factor. As shown in
the main text they agree well with the numerical solution obtained by computing the eigenvalues of the time-evolution
operator of the Hamiltonian H in Eq. (1). We emphasize that the phases ϕx,z can be used to prepare a coherent
superposition of Floquet eigenstates (see Fig. 3 in the main text).

For small values of Z, we can also extend our model to include a finite detuning ∆ between the transversal driving
and the qubit frequency. In this case, the transformation U1(t) in Eq. (17) can be generalized to

U1(t)→ U1(t) = e−iεσye−i(ωzt+ϕz)σx/2 , (22)

with ε = arctan(∆/λx)/2, where the additional term performs an initial rotation of the state to include the detuning.
This transformation modifies only the first term of the Hamiltonian H1 in Eq. (23) as

~
2

(λx − ωz)σx →
~
2

(√
λ2
x + ∆2 − ωz

)
σx , (23)

and results in the Floquet eigensystem

ω0,1
F = ±

(
ωz
2

+
ω̃∆
F

2

)
mod(ωz) and 〈s|jF 〉 =

[
e−iεσye−iϕzσx/2ei(θ

∆−π4 )σy
]
s,j

, (24)

with renormalized quantities

tan(2θ∆) =
λxZ

|
√
λ2
x + ∆2 − ωz|

and ω̃∆
F =

√(√
λ2
x + ∆2 − ωz

)2

+ λ2
xZ

2 . (25)

First, we note that at small detuning the minimal Floquet band gap is shifted towards smaller values of λx =√
ω2
z −∆2. Interestingly, the Floquet eigenstates coincide with the spin up and down states at a different value of

λx, namely at λx = ωz + Z∆ when the Rabi and phase driving are in-phase ϕ = 0 and at λx = ωz − Z∆ when they
are completely out-of-phase and ϕ = π.

3. Rabi oscillations

We now reinterpret our Rabi oscillations in terms of Floquet eigenmodes. When |ψ0〉 = | ↑〉, the spin flip probability
is given by

PR(t) = |〈↓ |ψ(t)〉|2 = 1− |〈↑ |ψ(t)〉|2 = 1−

∣∣∣∣∣∣
∑
jj′

cjc
∗
j′e
−iωjF t〈j′F |uj(t)〉

∣∣∣∣∣∣
2

. (26)
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Focusing on the stroboscopic evolution, we find at times nT , with integer n,

PR(nT ) = 1−

∣∣∣∣∣∣
∑
j

|cj |2e−inω
j
FT

∣∣∣∣∣∣
2

= sin2(Θ) sin2 (ω̃FnT ) , (27)

where in the last line we introduced a convenient parametrization of the coefficients |c0|2 = cos2(Θ/2) and |c1|2 =
sin2(Θ/2), as well as the frequency gap ω̃F = (ω0

F − ω1
F )/2.

For a weak off-resonant phase driving ωz � λx, Z � 1, and ∆ = 0, we obtain Θ = π/2, corresponding to
|c0|2 = |c1|2 = 1/2, i.e., equal probability of occupation of Floquet eigenmodes [see Eq. (16)]. In this case, we observe
fully developed Rabi oscillations with period 2ω̃F = λx � ωq.

However, when phase driving is resonant, i.e., ωz = λx, there is another possible way to obtain fully-developed Rabi
oscillations. As shown in the main text, phase driving with ϕx = ϕz = 0 enables the case Θ = 0 [or, equivalently,
Θ = π], see also Eq. (21), such that at t = 0 the single Floquet mode |0F 〉 = | ↑〉 [|1F 〉 = | ↓〉] is prepared and

PR(t) = |〈↓ |ψ(t)〉|2 = 1− |〈0F |u0(t)〉|2 = |〈1F |u0(t)〉|2 . (28)

Note that u0(t) is periodic with period T = 2π/ωz and thus PR(nT ) = 0. The Rabi oscillations in this case directly
probes the temporal structure of the Floquet eigenmode u0(t), and does not need to be sinusoidal, as shown in Fig. 3
of the main text. This distinction makes an important difference when noise is included.

D. Noisy Rabi oscillations

Here we discuss the effects of noise on our hole qubit and how phase driving can mitigate its effects.

1. Noise model and parameter estimates

We now discuss the possible noise sources in our device. We consider an ensemble of defects that produce a small
random field V(t) coupling to the Zeeman and driving vectors as

HN =
~ωq
2
ηηηq(t) · σσσ + ~λxηηηx(t) · σσσ cos(ωxt+ ϕx) + ~λzηηηz(t) · σσσ cos(ωzt+ ϕz) . (29)

We introduce the dimensionless random vectors ηηηq(t) = V(t)∂V[ωqez]/ωq, ηηηx(t) = V(t)∂V[λxex]/λx, and ηηηz(t) =
V(t)∂V[λzez]/λz that describe the relative variations of Zeeman and driving vectors caused by the defects. In general
cases, we expect the absolute values of the relative variations to be of the same order of magnitude and thus assume
for simplicity ηηηq(t) = ηηηx(t) = ηηηz(t) ≡ ηηη(t) = [η1(t), η2(t), η3(t)].

We also assume that the noise is isotropic and uncorrelated, such that 〈ηi(t)ηj(0)〉 = δij
∫
dωe−iωtS(ω)/2π, where

we introduced the noise spectral function S(ω). Because the fluctuations of the field V(t) produced by typical noise
sources are peaked at low frequencies, below we will consider the two common cases of quasistatic SQS(ω) = 4πη2δ(ω)
and pink noise, SPN(ω) = η2/|ω|1−ε, with ε→ 0 and η being the average amplitude of the fluctuations.

In the rotating frame defined by Ur(t) in Eq. (2), we find

H̃N =
~ωq
2

[
η3(t)σz + η−(t)eiωxte2iZ sin(ωzt)σ+ + h.c.

]
(30)

+
~λx

2

[
2η3(t) cos(ωxt)σz + η−(t)

(
1 + e2iωxt

)
e2iZ sin(ωzt)σ+ + h.c.

]
(31)

+
~λz
2

[
2η3(t) cos(ωzt)σz + η−(t)

(
ei(ωx−ωz)t + ei(ωx+ωz)t

)
e2iZ sin(ωzt)σ+ + h.c.

]
, (32)

where η± = η1 ± iη2 and we set ϕx = ϕz = 0 for simplicity.
Moving in the interaction picture by considering also the time-evolution operator UTO in Eq. (7), we obtain

HI
N = U†TO(t)H̃NUTO(t) ≡ hN (t) · σσσ

2
, (33)
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where we introduced the noise vector hN (τ). In the two cases of interest discussed in Sec. II C, i.e. the off-resonant
(ωz � λx) and resonant (ωz = λx) cases, we find for ωq � ωz, ∆ = 0, and Z � 1, respectively,

hωz�λxN ≈ ~ωq
(
η1 cos(ωqt) + η2 sin(ωqt), η3 sin(λxt), η3 cos(λxt)

)
(34a)

+ ~λx
(
η1, η2 cos(λxt), −η2 sin(λxt)

)
(34b)

+ ~λz
(
η1 cos[(ωq − ωz)t] + η2 sin[(ωq − ωz)t], η3 sin[(λx − ωz)t], η3 cos[(λx − ωz)t]

)
, (34c)

hωz=λx
N ≈ ~ωq

(
− η3 cos[(λx − λz)t]/2, η3 sin[(λx − λz)t]/2, η3 cos(λxt)

)
(34d)

+ ~λx
(
η1 cos(λzt), η1 sin(λzt), −η2 sin(λxt)

)
(34e)

+ ~λz
(
− η3 cos[(2λx − λz)t]/2, η3 sin[(2λx − λz)t]/2, η3

)
, (34f)

where we kept only the dominant components for each noise source, i.e. the ones oscillating at the lowest frequencies.

For small noise amplitudes, the total time-evolution operator for a single noise realization is well-approximated by
a lowest-order Magnus exapansion [3] of the Hamiltonian HI

N in the interaction picture. Going back to the lab frame,
this expansion results in the operator

UN (t) = U(t)e−iφφφ(t)·σσσ/2U†(0) , with φφφ(t) =

∫ t

0

dτhN (τ)/~ , (35)

describing the total time-evolution of the spin state including a single realization of noise.

Our current devices have a limited measurement-time window ≈ 2 µs that is determined by our dc transport
readout technique. Within this window we do not observe visible decay of Rabi oscillations and thus we cannot
precisely characterize TR2 ; this limitation can be overcome by dispersive readout techniques [4]. However, from our
previous measurements in Ref. [5], we can still estimate TR2 . In particular, noise with exponent ε ≈ 0.1 has been
reported in our devices [5]. This exponent is measured at temperature ∼ 1.5 K, and because ε shows a clear trend
of decreasing at lower temperatures, and our current devices are operated ∼ 100 mK, we expect ε . 0.1. From the
measured values of T ∗2 ∼ 0.3 µs [5], and by using the standard formula T ∗2 =

√
2πε/ωqη [6] with ωq/2π = 8.8 GHz [5],

we estimate η ≈ 5 × 10−5 in our current devices. We note that the estimated parameters agree with the value
TCPMG

2 ∼ 1.5 µs measured with two applied π-pulses [5]; we used in this case TCPMG
2 ≈ 4/ωqη [6].

We also remark that because in our devices ε→ 0 at low temperatures, resulting in a noise spectrum that is strongly
peaked at low frequencies, the quasi-static noise approximation discussed in the main text reasonably approximates
the response of the system. For quasi-static noise, η = 5× 10−5 results in a similar value of T ∗2 ≈ 1/ωqη ≈ 0.35 ns.

2. Noise and Floquet eigenstates

The Floquet theory introduced in Sec. II C provides a convenient and straightforward framework to describe noisy
Rabi oscillations. In terms of the Floquet eigenmodes in Eq. (12) and using Eq. (35), the time-evolved state for a
single noise realization is given by

|ψN (t)〉 =
∑
jj′

|ϕj(t)〉Djj′(t)cj′ , with Djj′(t) = 〈jF |e−iφφφ(t)·σσσ/2|j′F 〉 , (36)

resulting in the Rabi probability [see Eq. (26)]

PNR (t) = |〈↓ |ψN (t)〉|2 = 1−

∣∣∣∣∣∣
∑
jj′j′′

cjc
∗
j′e
−iωj

′′
F t〈j′F |uj′′(t)〉Dj′′j(t)

∣∣∣∣∣∣
2

. (37)

As discussed below, the above formulation allows us to explain the phase-driving-induced enhancement of Rabi
oscillations by considering the effect of dephasing and relaxation of Floquet eigenmodes.
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Figure 4. Decay of Rabi oscillations. (a) Decay of Rabi oscillations at fixed λz for several ratios ωz/λx for quasi-static
noise SQS(ω) ∝ δ(ω). By adding a small phase drive satisfying ωz = λx, the attenuation of the Rabi oscillations can be
suppressed. The results are obtained by numerically computing the time-evolution generated by the Hamiltonian in Eq. (1),
with λx = λz/0.3 = 2π × 30 MHz, ωq = ωx = 103λx, and ϕx = ϕz = 0. We include here only the leading term (∝ λx) of
disorder in Eq. (29), and, consistently with the quasi-static noise approximation, we consider a Gaussian-distributed vector of
random variables ηηη, with standard deviation σ = 0.05. Black, blue, and red lines in (a) are obtained for ωz = 5λx, ωz = 2λx,
and ωz = λx, respectively. Note the slowdown of the damped Rabi oscillations (see blue and red lines). The results are obtained
by averaging over 103 random realizations of noise. (b) Decay of Rabi oscillations at ωz = λx. By turning on phase driving, the
decay of the Rabi oscillations can be controllably suppressed. The results are obtained at resonance λx/2π = ωz/2π = 30 MHz
and by using ωq = ωx = 103λx, and ϕx = ϕz = 0 in analogy to (a). Black, blue, and red lines in (b) correspond to λz = 0.05λx,
λz = 0.1λx, and λz = 0.3λx, respectively, and show that as the Floquet gap becomes larger than the noise (λz & λxσ), Rabi
oscillations are restored. (c) Double logarithmic plot of the infidelity 1 − F of Rabi oscillations showing their decay due to
dephasing and relaxation of Floquet eigenmodes and assuming pink noise SPN(ω) ∝ 1/|ω|1−ε. Dephasing of the Floquet modes
is the dominant cause of the decay of Rabi oscillations for ωz � λx. It comprises two leading contributions estimated in

Sec. II D 3. The red solid (dashed) line corresponds to the Gaussian decay F = e−[t/TxPN]2 , with T xPN = 25 µs (T xPN = 85 µs)
obtained for the low (high) temperature estimation of ε, see Eqs. (43) and (44). The blue line shows the slower exponential

decay F = e−t/T
q
PN with T qPN ∼ 28 ms. These contributions do not affect the qubit when a sufficiently large phase driving

is applied at ωz = λx. In this case, the decay is determined by relaxation between Floquet eigenmodes (black line), with

F ∼ 1/
√

1 + (4t/Trel)2, and Trel = 530 µs, see Eqs. (46) and (48).

3. Dephasing of Floquet modes

We first focus on pure dephasing of Floquet modes and consider Ddeph
ij (t) = δije

−iφj(t)/2. In this simple case, the
Rabi probability simplifies to

PNR (t) = 1−

∣∣∣∣∣∣
∑
jj′

cjc
∗
j′e
−iωjF t〈j′F |uj(t)〉e−iφj(t)/2

∣∣∣∣∣∣
2

. (38)

In conventional Rabi experiments, dephasing dominates the decay of the oscillations. We now distinguish between
the off-resonant phase driving (ωz � λx), where the Floquet modes are equally populated, and the resonant phase
driving (ωz = λx), where a single Floquet mode is occupied [see the discussion in Sec. II C]. In these two cases,

Ddeph(t) accounts for the noise contributions [hωz�λzN ]x and [hωz=λz
N ]z in Eq. (34), respectively.

a. Off-resonant phase driving ωz � λz. From the discussion in Sec. II C 3, when ωz � λx, here the Floquet modes
are equally populated. By defining φ(t) = (φ0(t) − φ1(t))/2, the Rabi probability for a single disorder realization at
the stroboscopic times nT reduces to [see Eq. (27)]

PNR (nT ) = sin2

[
λxnT + φ(nT )

2

]
. (39)

Assuming a usual Gaussian distribution of the phase with standard deviation σ(nT ) and zero mean-value, we obtain
after averaging over many realizations

〈PNR (nT )〉 =
1

2
− 1

2
e−

σ2(nT )
2 cos(λxnT ) . (40)
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The exponential factor e−σ
2(nT )/2 causes the conventional decay of Rabi oscillations. In this case, we find

σ2(nT ) ≈ 1

2π

∫ ∞
−∞

dωS(ω)
[
λ2
xf(ω, 0, nT ) + ω2

qf(ω, ωq, nT ) + λ2
zf(ω, ωq − ωz, nT )

]
, (41)

where we introduce the function

f(ω, ωq, t) =
2
(
ω2
q + ω2

)
(1− cos(ωt) cos (ωqt))− 4ωωq sin(ωt) sin (ωqt)(

ω2 − ω2
q

)2 ≈

{
4 sin2(ωt/2)/ω2 ωq = 0

πt
[
δ(ω − ωq) + δ(ω + ωq)

]
ωq � 1/t

,

(42)
and for high-frequency noise we used the conventional long-time approximation of f(ω, ωq, t) valid when t� 1/ωq.

For quasi-static noise SQS(ω) = 4πη2δ(ω), and pink noise SPN(ω) = η2/|ω|1−ε, we find, respectively,

σ2
QS(t)

2
≈ η2λ2

xt
2 =

t2

T 2
QS

, and
σ2

PN(t)

2
≈ η2λ2

x

2πε
t2 +

η2ωq
2

t =
t2

(T xPN)2
+

t

T qPN

. (43)

We neglect here the small contribution from the fluctuations of λz, which is suppressed by a factor ∼ λ2
z/ω

2
q . Explicitly,

the three time-scales are

TQS =
1

ηλx
, T xPN =

√
2πε

ηλx
, T qPN =

2

η2ωq
=

λ2
x

πωqε
(T xPN)2 . (44)

We can now estimate the TR2 in our devices. Because at λz = 0 and in our limited measurement-time window of
≈ 2 µs, we do not observe any visible decay of our Rabi oscillations, we expect TR2 & 10 µs, for which we would observe

a decay of the Rabi amplitude of 1− e−(2/10)2 ≈ 4% of the Rabi amplitude. Considering pink noise with ε = 0.1 and
η = 5× 10−5, as discussed in Sec. II D 1, and using the measured values of λx/2π = 30 MHz and ωq/2π = 4.5 GHz in
our current devices, we obtain T xPN ≈ 85 µs, and T qPN ≈ 28 ms. Pure quasi-static noise instead results in TQS ≈ 100 µs.

The infidelity of the Rabi oscillations in the two cases is shown in Fig. 4(c). The estimates in the previous paragraph
and the faster Gaussian decay caused by T xPN suggests that the dominant source of noise in our devices is the low-
frequency fluctuation of λx. This also completely determine the Rabi decay in the quasi-static noise case S(ω) ∝ δ(ω).

This result is also qualitatively consistent with the constant value of the quality factor Q = λxT
R
2 /2π ≈

√
2ε/2πη

that is experimentally measured in other hole spin qubits, e.g. in germanium-silicon core-shell nanowires [7]. For this
reason in the main text we focus on quasi-static noise.

We note that the value TR2 ≈ 85 µs is estimated with an upper bound of ε = 0.1; at lower temperatures, we expect
ε to become shorter [5], thus reducing TR2 because T xPN ∝

√
ε, see Eq. (44). For example, at ε = 0.01 (reported e.g.

in electrons in silicon [8], and compatible with our measured temperature dependence), we find TR2 ≈ 25 µs. We
also emphasize that TR2 becomes shorter for faster Rabi oscillations. For example, at λx/2π = 150 MHz, recorded in
silicon finFET qubits [5] and using ε = 0.01, one find TR2 ≈ 5 µs. This term is suppressed by preparing the initial
state to be a Floquet eigenstate, as we show next.

b. Resonant phase driving ωz = λz. A different case occurs when a pure Floquet mode is initialized. This occurs
when ωz = λz and phase and transverse driving are in-phase. In this case, pure dephasing has no influence on the
system, and one obtains from Eq. (27) PNR (nT ) = 0. However, we easily observe that

PNR (t) = 1− |〈↑ |u0(t)〉|2 = 〈PNR (t)〉 = PR(t), (45)

independently of the random phase φ(t), remains unchanged upon averaging over a Gaussian distribution of phases.
Thus by populating a single Floquet mode having fully developed oscillations in a period T , pure dephasing is
suppressed. This suppression accounts for all the contributions [hωz=λz

N ]z in Eq. (34), including the quasi-static noise
coming from fluctuations in λz.

This result is illustrated in Fig. 4(a), where we show how the dominant quasi-static noise source is suppressed
when the resonant condition ωz = λz is approached. We note that as expected in analogy to Bloch band theory,
the suppression of Rabi oscillations requires the noise level to be below the gap, i.e. η . 1. This effect is shown in
Fig. 4(b), where we use the quasi-static noise approximation to show how the opening of the gap affects the qubit
decay.

4. Relaxation of Floquet modes

We now consider pure relaxation of the Floquet modes. We restrict ourselves to the case where a single Floquet
mode is prepared, i.e. when the phase driving is resonant, i.e., ωz = λz. In this case, the noise originates from the
x, y components of hωz=λx

N in Eq. (34); here the matrix Drel
ij (t) = e−i(φx(t)σx+φy(t)σy)/2.
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We focus on the long-time limit such that the covariance matrix of the phases φx,y is isotropic, with diagonal
components

σ2(t)

2
≈ 1

4π

∫ ∞
−∞

dωSPN(ω)
ω2
q

4
f(ω, λx − λz, t) ≈

t

Trel
,with Trel =

8(λx − λz)
ω2
qη

2
, (46)

where we consider only the largest contribution of the term proportional to ωq. With the parameters estimated in
Sec. II D 1 and for Z = 0.3, we find Trel ≈ 530 µs. Here we also restrict ourselves to the analysis of pink noise, which
gives a finite result at lowest order in perturbation theory. In particular, we note that in the case of quasi-static
noise the decay rates coming from Eq. (46) vanish, but higher-order corrections in the Magnus expansion in Eq. (35),
results in a finite relaxation time and in a power law decay of Rabi oscillations, see e.g. Refs. [9–11].

The Rabi probability for a single disorder realization for pure relaxation is

PNR (t) = 1−

∣∣∣∣∣∣
∑
j

e−iω
F
j t〈0F |uj(t)〉Drel

j0 (t)

∣∣∣∣∣∣
2

, (47)

and by averaging over an isotropic Gaussian distribution we find

〈PNR (t)〉 = 1− |〈↑ |u0(t)〉|2 +
(
|〈↑ |u0(t)〉|2 − |〈↑ |u1(t)〉|2

)σ(t)√
2
F

(
σ(t)√

2

)
(48a)

= 1− |〈↑ |u0(t)〉|2|+ 〈↑ |u1(t)〉|2

2
+
|〈↑ |u0(t)〉|2| − 〈↑ |u1(t)〉|2

2σ2(t)
+O(σ−3) . (48b)

Here F (x) is the Dawson function; we expanded it in the long-time limit, where Eq. (46) holds. At the stroboscopic
times nT and for large n, 〈PNR (nT )〉 → 1/2 as expected, and, interestingly, the attenuation caused by relaxation is a

power-law decay ∝ 4Trel/t. We note that a similar relaxation-induced power-law decay ∝ 1/
√

1 + (4t/Trel)2 → 4Trel/t
also appears for quasi-static noise in the conventional Rabi oscillations [9–11].

The relaxation contribution to TR2 is plotted (via the fidelity) in Fig. 4(c) along with other sources. In our current
devices, relaxation results in ∼ 10 times slower decay of oscillations. Because the dominant contribution to dephasing
TR2 ∝

√
ε/λx, see Eq. (43), becomes shorter for larger λx and for pure 1/ω noise, we expect relaxation to be increasingly

negligible for faster qubits.
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