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Quantum information processing is a key technology in the ongoing second quantum revolution, with a wide
variety of hardware platforms competing toward its realization. An indispensable component of such hardware
is a measurement device, i.e., a quantum detector that is used to determine the outcome of a computation.
The act of measurement in quantum mechanics, however, is naturally invasive as the measurement apparatus
becomes entangled with the system that it observes. This always leads to a disturbance in the observed system, a
phenomenon called quantum measurement backaction, which should solely lead to the collapse of the quantum
wave function and the physical realization of the measurement postulate of quantum mechanics. Here we demon-
strate that backaction can fundamentally change the quantum system through the detection process. For quantum
information processing, this means that the readout alters the system in such a way that a faulty measurement
outcome is obtained. Specifically, we report a backaction-induced population switching, where the bare presence
of weak, nonprojective measurements by an adjacent charge sensor inverts the electronic charge configuration
of a semiconductor double quantum dot system. The transition region grows with measurement strength and
is suppressed by temperature, in excellent agreement with our coherent quantum backaction model. Our result
exposes backaction channels that appear at the interplay between the detector and the system environments, and
opens new avenues for controlling and mitigating backaction effects in future quantum technologies.

DOI: 10.1103/PhysRevResearch.5.023028

I. INTRODUCTION

Quantum information processing relies on coherently con-
trolling and coupling individual quantum bits (qubits) [1].
Examples of qubit hardware include electron and nuclear
spins in quantum dots [2–5], localized charge states [6], super-
conducting devices [7,8], internal states of trapped ions [9,10],
and even Majorana modes in topological materials [11], each
system bearing its own advantages and challenges. Regardless
of the specific implementation, sensitive detectors are required
to extract information about the system under investigation
[1,12].

A quantum detector couples to the system it measures such
that their respective quantum states become correlated during
the measurement process. In turn, reading out the state of
the detector collapses the system toward the outcome of the
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measurement, in a process known as backaction [12,13]. On
a theoretical level, such a detection process of a quantum
state |ψ〉 relies on the measurement postulate, where a quan-
tum mechanical operator Â is applied onto the state Â|ψ〉 =∑

i ai〈ai|ψ〉|ψ〉 and collapses it to one of its eigenstates with
probability |〈ai|ψ〉|2 when read out.

The physical realization of the measurement postulate,
however, requires a detector device that coherently couples
to the quantum system over some time period, e.g., using
the von Neumann Hamiltonian λ(t )X̂ Â, with λ(t ) the time-
dependent coupling rate and X̂ the coordinate of the detector
[12,14]. Reading out the detector coordinate collapses the
state |ψ〉, whereas depending on λ weak or strong backaction
manifests, leading in the latter case to the required realization
of the measurement postulate. Alternatively, repeated weak
measurements also lead to the required goal via so-called
continuous measurements [15,16]. These are commonly real-
ized with transport devices where impinging particles perform
individual weak measurements, and the flux rate controls the
overall measurement strength [17–23].

Regardless of the realization, an ideal detector operates
close to the quantum limit [15,16,24], namely, close to where
the backaction it imparts is equal to the rate of information
gain about the system’s state. Yet, as detector realizations in-
volve coherent coupling between impinging particles and the
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quantum system, the combined out-of-equilibrium dynamics
of the system-detector evolution is an active field of research,
which touches upon the foundations of quantum mechan-
ics. Its broad set of achievements include weak values [25],
quantum feedback circuits [16,26], high-precision amplifiers
[27], quantum state discrimination [28] and stabilization [16],
as well as detector-assisted transport [24,29–31]. The latter
implies that quantum systems, which are coupled to particle
reservoirs, always experience additional many-body energy-
exchange channels of backaction beyond those considered in
an ideal detector.

Quantum detectors can be alternatively thought of as
out-of-equilibrium environments whose internal dynamics de-
pends on the measured system. As a result, a plethora of
backaction channels manifests beyond the ideal quantum de-
tector description [17–24,29,32–36]. Indeed, even standard
dissipative environments can fundamentally influence quan-
tum many-body systems and their steady states in often
counterintuitive ways [37,38]. Correspondingly, the envi-
ronment can even trigger abrupt changes in the system’s
observable properties; i.e., it can induce phase transitions or
sharp crossovers [39–43]. As a result, new universality classes
[44] and novel topological effects [45,46] emerge in driven-
dissipative systems.

In this work, we report on a measurement-induced many-
body population switching. We observe this transition in an
open many-body quantum system, i.e., a double quantum dot
(DD) where the two dots are coupled to each other only capac-
itively, and each dot is tunnel-coupled to a lead. An adjacent
charge sensor dot (CSD) measures the charge state of the DD.
The DD exhibits different phases that are characterized by the
charge configuration on the quantum dots. In the absence of
the detector, these phases are determined by the ground-state
energetics of the DD with the leads supplying the charges.
We observe that the detector imparts backaction that induces a
distinct change in the observed charge configuration. Specifi-
cally, we observe that the system now preferentially populates
an energetically high-lying state, in close analogy to theoret-
ical predictions for population switching in related systems
[47]. We systematically analyze the dependence on measure-
ment strength and temperature of this transition, and develop
a concise theory that reproduces the features of the measured
data. The backaction-induced population switch highlights the
extreme sensitivity of quantum systems to out-of-equilibrium
fluctuations: for a qubit fully in state |0〉 this would correspond
to a change into state |1〉 by the measurement backaction.

II. EXPERIMENT

We perform our experiments on a gate-defined lateral
GaAs device [35] with an electron temperature Tel ≈ 65 mK
at the base temperature of our dilution refrigerator. By apply-
ing voltages to the gate electrodes of our device, we locally
deplete the underlying two-dimensional electron gas to form
a DD (mint) adjacent to a CSD (pink), as shown in the inset
of Fig. 1(a). These gate electrodes are also used to control
the tunnel couplings in the system. Each single dot in the DD
is tunnel-coupled to a separate lead on each side, both with
tunneling rate �DD ∼ 100 kHz. Additionally, Coulomb repul-
sion between the dots (mutual charging energy) U ≈ 215 µeV

L
(V

L
,V

R
)

R(VL, VR)0 −U

−U

0

δS
iii

ii

i

U ≈ 215μeV

R(VL, VR)0 −U

VRVLVM

Γdd

IM

250nm

3−33−3

eVM = 0.35U(a) (b)

FIG. 1. Charge stability of a double dot with and without the
effects of measurement backaction. (a) DD backaction imbalance as
a function of the dot energies εL and εR for the case of negligible
backaction. Since measuring at very low bias is very noisy, we
measure at a larger measurement bias VM = 150 µeV and turn on
the interdot tunneling to mimic the canonical DD charge stability
diagram as obtained in the absence of backaction. Full (mint) and
empty (white) circles illustrate the ground state in each region of the
observed charge stability map. Inset: Scanning electron micrograph
of the device. The population of the DD (mint circles) is monitored
by a nearby charge sensor dot (pink circle). (b) Same as (a), using
a measurement bias VM = 75 µV (0.35U/e). The interdot tunneling
is completely suppressed such that the effects of backaction become
apparent in a distortion of the boundary between left and right oc-
cupied states. Marked regions (i), (ii), (iii) are governed by different
physical mechanisms (see details in the text). Both measurements
(a) and (b) were performed at an electronic temperature T ≈ 65 mK.

imposes an energy penalty on the doubly occupied states and
thus acts to diminish the occupancy of the DD. Crucially to
this work, interdot tunneling is negligibly small in the DD (see
Appendix A for further experimental details). The plunger
gate voltages VL and VR are used to tune the left- and right-dot
energies εL and εR. These in turn tune the DD populations
(NL, NR ), i.e., the number of electrons of the left and right
dots, respectively. We perform our experiment in a parameter
region where only four distinct charge states of the DD are
relevant, i.e., empty (0,0), left occupied (1,0), right occupied
(0,1), or doubly occupied (1,1). In the absence of interdot
tunneling, the metastability in the canonical charge stability
diagram [35] becomes measurable with the CSD and, simulta-
neously, all transitions in the DD necessarily involve the reser-
voirs which serves an important role in the following. The
corresponding charge stability map displays sharp crossovers
between distinct DD population configurations; see Fig. 1(a).

The population states (NL, NR ) have probabilities P(NL,NR )

to be observed. The detector has a bandwidth of 15 kHz
which allows us to measure this probability distribution by
real-time monitoring of its tunneling current IM in response
to an applied bias voltage VM across the CSD [35]. This
enables direct observation of the population imbalance � =
2P(1,0) − 2P(0,1) + 3P(1,1) − 3P(0,0) (see Appendix A), which
serves as an order parameter for our system. Microscopically,
each charge tunneling event through the detector realizes a
weak measurement kick onto the system through the DD-CSD
capacitive interactions. The interplay of such a flux of imping-
ing detector electrons with the double dot and its reservoirs is
inherently an out-of-equilibrium many-body effect. Varying
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FIG. 2. Scaling of δS. Measured maximal deviation δS (circles)
as a function of (a) the measurement bias voltage VM at kBT/U =
0.026 (T = 65 mK) and (b) temperature T at eVM/U = 0.35 (eVM =
75 µeV). Error bars include the uncertainty in determination of
the charge-degeneracy curve at � = 0 and the uncertainty in the
relationship between the fridge temperature and electronic temper-
ature. The theoretical model (cf. Fig. 3), with backaction-induced
Lorentzian broadening, reproduces the observed temperature and
measurement bias dependence of the effect. The horizontal solid line
indicates the maximal possible deviation δS predicted by our model
for α = 2.2, while in the infinite-α limit the saturation is limited by
the mutual repulsion and a geometric factor δmax

S (α → ∞) = U/
√

8.
Vertical dashed lines mark points that characterize the two fit param-
eters χ and ξ of our model.

VM modifies the current through the detector, thus adjusting the
strength of the population measurement [15,16,30,31]. Apply-
ing a small bias voltage, VM 	 U/e, results in a conventional
charge stability diagram, similar to the one shown in Fig. 1(a),
where backaction has no clear effect.

We increase the measurement strength by increasing the
bias voltage (to VM = 0.35U/e), and observe a qualitative
change in the measured charge stability diagram; see Fig. 1(b).
The diagonal equilibrium phase boundary that separates the
(1,0) and (0,1) states transforms into an S shape, with max-
imal deviation δS from the diagonal. In the area enclosed
between the S and the equilibrium phase boundary [region
(iii) in Fig. 1(b)], the population of the DD is switched; i.e., a
high-energy state is preferentially occupied.

We systematically study the size of the population-
switching area as a function of applied measurement voltage
VM and electronic temperature T ; see Fig. 2. At low tempera-
ture, we find that the S shape grows, and finally saturates with
the bias voltage VM. In contrast, an increase in temperature
washes out the effect. We conclude that at low temperatures
and large bias, backaction of the detector on the DD dominates
the behavior of the DD. This is the main result of this work,
and highlights how sensitive the stationary state of a quantum
system can be on the measurement strength. Specifically, the
quantum measurement induces a population switch in the state
of the DD and its leads. As the DD is coupled to large leads
that absorb and emit particles and there is no interdot tun-
neling, the switch necessitates particle and energy exchange
with the leads [47]. Furthermore, we extract the width of the
transition in the charge stability diagram. We observe that
even though the amplitude of the S feature is determined by
the backaction strength, the width of this curve, remarkably,
is independent of the sensor bias. Instead it reflects the ther-
mal broadening of the reservoirs [19], indicating a constant
electron temperature, independent of sensor bias VM; see also
Appendix A 3.
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FIG. 3. Effective model. (a) Illustration of the rate equation de-
scribing the system dynamics (DD coupled to its leads). Sequential
tunneling rates raise (orange arrows) or lower (red arrows) the DD’s
population by a single electron. Direct or virtual left-to-right charge
tunneling is negligible in our system (crossed-out gray arrows) (see
Appendix A). (b) The measurement backaction from the nearby
charge sensor dot (pink circle) effectively imparts a different width
γi to each dot, i = L, R.

III. MODEL

We develop a concise theoretical model, which provides
an intuitive picture of the processes at stake, and reproduces
the key features of the experiment. The open many-body dy-
namics of the DD system are effectively described using a rate
equation, ∂t P = �P, where P is a vector containing the charge
configuration probabilities, and � is the matrix of transition
rates between the charge configurations [35,48]. In our case,
each transition between the DD charge states involves a lead to
which a dot is tunnel-coupled. To lowest order, transitions be-
tween charge states of the DD occur through single electrons
that hop between the DD and the leads [35]; see Fig. 3(a).
We thus neglect direct (1, 0) ↔ (0, 1) transitions and cotun-
neling between the left and right dots (see Appendix A).
Hence, apparent left-to-right switching rates involve either
the (0,0) or (1,1) as intermediates and a motion of charges
in the DD necessarily involves the leads. Without detector
backaction, the transition rate �±

i f from an initial (i) to a final
( f ) charge configuration is �±

i f = �DDnF(ε f − εi ), where +
or − mark raising or lowering the number of electrons in
the DD, respectively. Here, we introduced the Fermi-Dirac
distribution nF, and the energies εi/ f of the initial/final state
(see Appendix B 2). We note that the Fermi-Dirac distribution
of the electrons in the DD leads is the only place where the
temperature enters our model.

The motion of charges through the detector capacitively
modulates the energy levels in the DD. Using a quantum
mechanical analysis of the transport in the system given such
an out-of-equilibrium measurement, some of us have shown
that the detector imparts backaction onto the DD in the form
of an effective broadening of its levels [30]. Specifically, using
a simple model of a quantum point contact measuring a single-
level dot, high-order (coherent) energy exchange processes
between the system and the detector manifested as transport
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rates in the former with a Lorentzian level broadening of the
dot. Crucially, our model includes direct capacitive interac-
tions between the impinging electrons in the detector and
the DD electrons, leading to distinctively different backac-
tion signatures than those discussed in Ref. [22], where the
detector is effectively described as a semiclassical phononic
resonator. The Lorentzian broadening is proportional to the
measurement strength and thus to VM, which we write in our
case as γS,L = αχVM for the left dot and γS,R = χVM/α for
the right dot. The dimensionless fit parameter χ depends on
the microscopic details of the detector-DD interaction [30];
see also Appendix B. Since the distance between the detec-
tor and each of the two dots is not equal, we expect the
backaction-induced broadening to be different for each dot;
see Fig. 3(b). We quantify this asymmetry through the param-
eter α = 2.2 ± 0.2, which we independently extract from the
measurement data (see Appendix A 4). Note that the asym-
metry α is necessary to enable the current through the charge
sensor dot to differentiate between the left and right occu-
pied states. Contrarily, other competing environmental effects,
such as charge noise, induce an equal broadening on each
level on the order of ∼1 µeV [49]. We include these effects
through a fitting parameter ξ that encodes the (dimensionful)
width and assume that the total width of the DD levels is equal
to its largest contribution, such that γ j = max(ξ, γS, j ) with
j = L, R.

The level broadening γ j modifies the system’s transi-
tions rates to �±

i f = �DDnL(ε f − εi, γ j ), where nL(ε, γ ) is
a Fermi function filtered by the broadened dot level (see
Appendix B 2). Using these modified rates, we compute the
steady-state population imbalance �, and extract the maximal
deviation δS as a function of VM. The theoretical results in
Fig. 2, are obtained with fit parameters χ = 9.4 × 10−3 and
ξ = 2.5 × 10−3U (ξ = 0.55 µeV).

IV. PHYSICAL INTERPRETATION

The appearance of the the S-shaped charge stability dia-
gram is a direct result of the measurement-induced imbalance
α between the broadening of each dot, i.e., due to the stronger
coupling between the dot closer to the sensor compared to the
more distant one. To better illustrate the details of this many-
body effect, we divide the transition rates as � = �Tail + �Center,
where �Center are standard thermally activated rates arising
from the center of the level’s spectral weight distribution;
see Fig. 4. Thermal contributions to the effective broadening
decrease equally for both the left and right dots as they are
detuned from the chemical potential. The backaction, on the
other hand, broadens the tails of the levels by a different
amount for the left and right dots, leading to a more rapid
reduction of the tails in the right dot when compared to the left
one. In the tails (�Tail) the backaction dominates over thermal
effects, and the DD population can be controlled by the differ-
ence between left and right dot level broadening. Specifically,
when the dot levels are far detuned from one another, or are
close to the leads’ chemical potentials [regions (i) and most
of (ii) in Fig. 1(b)], the thermal parts dominate the rates and
the tails are unimportant. Conversely, when the dots’ levels
are nearly degenerate and far from the chemical potentials
[regions (iii) and (ii) close to the transition in Fig. 1(b)], the

μ

left
right

empty

FIG. 4. Population switching due to an asymmetric detector-
induced broadening. Because both levels are well below the chemical
potential μ, the thermal transition rates into both levels (solid yellow
arrows) are roughly equivalent. However, the thermal rates out of
the quantum dots (solid orange arrows) are much larger for the right
dot because its broadened level has a higher weight at the chemical
potential. This imbalance, in the absence of level broadening, would
lead to the left level being preferentially occupied. However, the
broad tail of the left level provides an additional rate (dashed) out
of the left level that causes a switch in the population; i.e., overall the
probability flows from the left to right occupied state (dotted arrow).
Such a configuration is found in the lower left switching region of
Fig. 1(b).

tails dominate the occupation probability, leading to a switch
in the population, with the high-energy state preferentially
occupied; see Fig. 4.

In the literature, various detector-induced backaction
mechanisms have been discussed and presented in similar
double dot systems [17–24,29,32–36]. Deviations from an
ideal detector performance were reported at large detector
bias, where absorption of energy led to signals beyond the
equilibrium setting. The majority of results discuss detector-
assisted direct interdot transitions. In our work, the detector
is not driven sufficiently strongly to justify direct induced
transitions in the system due to energy exchange with the
detector, thus differentiating our result from previous obser-
vations of backaction. This is due to the fact that the two dots
are not tunnel coupled to one another; i.e., direct detector-
induced transition rates (cf. Ref. [24]) are effectively zero in
our experiment. This implies that our “charge-qubit flipping”
transitions are induced by the detector through the interaction
of the double dot with its leads. We thus base the effective
model on this type of process. Note, however, that this process
could have contributions due to out-of-equilibrium detector
charge fluctuations that do not require quantum coherence in
the detector. Nevertheless, as the fluctuations enter into the
exchange between the dots and their leads, they automatically
enter as a higher-order diagram, i.e., level broadening in our
effective rate model. Indeed, the quenching with temperature
further motivates that our backaction stems from a higher-
order exchange process with the detector.

We observe clear dependence of the backaction as a func-
tion of the applied voltage in a relatively weak bias regime
and are able to quench this backaction channel by increasing
the temperature of the experiment. Our theoretical treatment
brings forth the core of the measurement backaction ef-
fect, and remarkably, it already quantitatively reproduces the
scaling behavior of the observed phenomena. Our experimen-
tal and theoretical results imply that the backaction-induced
asymmetry in the level width induces the population switch-
ing. Simultaneously, we find that the type of broadening
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controls the exact phase boundaries and the width of the
transitions. This suggests a sharper than Lorentzian broad-
ening, which could be due to, for example, either energy-
dependent widths or higher-order charge correlations in the
CSD; see Appendix B 3. Similarly, we observe particle-hole
asymmetry in the S shape, which we associate to the spin of
electrons on the dots; see Appendix B 4. These observations
motivate further experimental and theoretical studies of such
setups to better reveal the impact of the microscopic details of
the detector.

V. CONCLUSIONS

Changing the nature of a many-body state simply by ob-
serving it is a major shift in how we understand and employ
the act of measurement in quantum mechanics. By broad-
ening the system’s levels, the detector backaction amplifies
the inevitable coupling of the quantum system with its en-
vironments, leading in turn to a complete switch in the
system’s electron populations. Our result goes well beyond
the paradigm of ideal detectors and highlights the difficulty
of keeping a system isolated yet still measurable, thus pos-
ing new challenges for quantum applications. We expect
such detector-induced effects to appear in a wide variety of
experimental systems, ranging from quantum dots to super-
conducting systems, as well as to photonic microcavities. As
such, our results lay a foundation for controlling and mitigat-
ing backaction effects in future quantum technologies, e.g.,
by proposing limits on the allowed inbound flux of particles
in the detector. Beyond applications, we open the door to the
domain of many-body phases that are accessible solely due to
the impact of an observer.

The data supporting this study are available in a Zenodo
repository [50].
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APPENDIX A: EXPERIMENTAL SETUP

The measurements are performed in a surface-gate de-
fined double quantum dot device fabricated on top of a GaAs

two-dimensional electron gas (2DEG) with a nominal density
n = 2.6 × 1011 cm−2 and a mobility μ = 4 × 105 cm2/V s.
The device is described in more detail in Ref. [35] and the gate
layout is adapted from Ref. [51]. The device is cooled down
to a base temperature of 25 mK in a 3He / 4He dilution refrig-
erator equipped with home-built microwave filters resulting
in a sample electron temperature Tel ≈ 65 mK [52]. Applying
negative voltages to surface gates allows us to locally deplete
the underlying 2DEG and form two quantum dots in the
center of the device; see inset of Fig. 1(a). Each quantum
dot is tunnel-coupled to its respective lead with coupling rates
�DD on the order of 100 kHz (see Fig. 6), while the interdot
coupling is reduced to a few Hz. For such small coupling
strengths, direct (left ↔ right) tunneling and cotunneling pro-
cesses through the reservoirs are strongly suppressed. We thus
discard cotunneling and direct tunneling [crossed out arrows
in Fig. 3(a)] as these rates are very small. We can enable direct
tunneling to wash out the asymmetric effect of backaction.
This is how we obtained the reference charge stability diagram
of Fig. 1, where the interdot coupling washes out the backac-
tion effect, despite a relatively large measurement bias VM =
150 µV (0.70U/e). Note that, in comparison to similar exper-
iments, we generally apply a relatively small sensor bias VM,
and eVM is well below the orbital energies of the DD and CSD.

The charge state of the double quantum dot (DD) is contin-
uously monitored by the capacitively coupled sensor quantum
dot operating as a charge sensor dot (CSD) on the left side of
the device; see inset Fig. 1(a). The charge sensor bandwidth
of about 15 kHz is limited by the capacitance of the low-pass
microwave filters [52] on the input of the current-to-voltage
converter (Basel Precision Instruments LNHS LSK389A). We
tune the double dot close to the (1,0)-(0,1) charge degeneracy;
see Fig. 1(a). Here, due to a low interdot tunnel-coupling com-
pared with the coupling to the leads, a diamond-shaped region
bounded by the extension of the lead-dot transitions appears,
where metastable (1, 0) ↔ (0, 1) charge state switching oc-
curs [35]. At each position within the diamond, the charge
state switching is recorded in real time over a large number
of switching events and digitized [35]. From such real-time
traces, the average state-occupation probabilities (Fig. 5), as
well as the switching frequency and associated transition rates
(Fig. 6), are calculated from the accumulated times spent in
each level [35]. We then use the real-time data to map the
conductance of the CSD to the population imbalance �. In
turn, this allows us to extract the amplitude of δS over a large
set of parameters T,VM.

The charge stability diagrams are obtained by scanning
the voltage on gate VL vs VR; see Fig. 5(a). Upon changing
these gate voltages, a linear feedback is applied to the sensor
plunger gate to compensate for capacitive crosstalk with the
charge sensor. This correction bears no relevance to the effects
discussed in this work and simply keeps the detector in a
sensitive configuration.

Using an affine transformation(
εL

εR

)
=

(
lLL lLR

lRL lRR

)(
VL − V 0

L

VR − V 0
R

)
(A1)

the two-dimensional maps in the voltages VL and VR are trans-
formed into the basis of εL and εR, i.e., the energy of the left
and the right quantum dot, respectively; see Fig. 5(b). The
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FIG. 5. Extracting the amplitude of the S shape. Measured charge state probabilities around the (1,0)-(0,1) charge degeneracy. (a) A scan
as a function of the left plunger gate voltage VL versus the voltage on the right plunger gate VR. Probabilities inside the dashed diamond were
obtained by analyzing real-time data traces of sensor conductance [35]. For the data outside the diamond, the sensor conductance was mapped
to charge state configurations. The resulting occupation imbalance � maps are identical but the real-time measurements give more information
such as the switching rate (see Fig. 6). The zero-detuning line εL = εR is emphasized as a dashed line stretching between the triple points
(TPs). The latter, labeled by TP00 and TP11, mark degeneracy between three possible charge configurations. (b) The same data rotated into
the εL-εR basis, i.e., as a function of the energy of the left and right quantum dots, respectively. As the electron has a negative charge, positive
voltages correspond to negative energies. The red dotted line indicates a cut, perpendicular to the transition line, used to compute the transition
widths in Fig. 8. In total for Fig. 8 we use four cuts distributed along the length of the transition line. (c) Extracted S shape where its maximal
amplitude δS is obtained by fitting a sine model to this data (red curve). The pronounced amplitude offset is discussed in Appendix A 2.

voltage offsets V 0
L and V 0

R are introduced such that the triple
point TP00 associated with the empty state occurs at εL = εR =
0. The lever arms li j have units of charge and quantify the en-
ergy shift in the i = L, R level due to a change in the j = L, R
gate voltage. The relative magnitudes of the lever arms are
found by ensuring that (i) the (1,0)-(0,1) degeneracy line lies
along εL = εR, and (ii) the degeneracy lines that involve only
a transition in the left (right) dot are horizontal (vertical). We
calibrated the lever arm by fitting a Fermi-Dirac function to
the lead transitions at elevated temperatures [23,35].

The effect of sensor-dot backaction results in a deviation of
the (1,0)-(0,1) charge degeneracy line from the conventional

equilibrium phase boundary of a standard double quantum
dot; see Fig. 1. To quantify this backaction effect, the energy
difference between the measured and the conventionally ex-
pected (1,0)-(0,1) degeneracy line is extracted along its full
extent, i.e., between the two triple points where a degeneracy
occurs also with the (0,0) or the (1,1) states; see Fig. 5(c). The
maximal amplitude of this deviation, δS, is obtained by fitting
a sine model to this extracted data; see Appendix A 1. This
amplitude δS is extracted for different biases over the sensor
quantum dot and temperatures; see Fig. 2.

While not discussed in the main text, we notice a dif-
ference in the magnitude between two amplitudes of the
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FIG. 6. Estimation of tunnel-coupling rates between the dots and their respective leads. (a) Charge stability diagram using the measured
conductance through charge sensor (black-red-yellow color scale) with the four main different values corresponding to the four double dot
charge states; cf. Fig. 9. The switching rate is extracted by analyzing individual real-time traces for each pixel and is overlaid on top of the
conductance data (gray-green-blue color scale); see Ref. [35]. The pink dashed line indicates the cut along the zero-detuning line shown in (b).
The range of switching-rate data available is limited by the finite bandwidth of the charge sensor. (b) Cut of the switching-rate map along the
zero-detuning line; cf. the pink dashed line in panel (a) (gray-green-blue colored data points). To estimate the bare tunnel rate of the quantum
dots �DD, the exponential region of the switching rate is fitted and extrapolated to the triple points TP0,0 and TP1,1, respectively (orange dashed
curves). From this fit, we estimate �DD between 10 and 200 µV. The saturation of the switching rate appearing between the exponential region
(∼ 200 to 400 µV) is understood in terms of higher-order electron exchange effects (cotunneling) via the leads [35] and is neglected in our
model as it is very small. The switching rate flattens off for the highest rates measured due to finite sensor bandwidth. This error-prone regime
is ignored for the exponential fit.
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FIG. 7. Asymmetry in the backaction-induced S shape.
(a) Charge stability diagram taken at a sensor bias VM = 135 µV
which exhibits a pronounced asymmetry of the two amplitudes of the
S features labeled δS,1 and δS,2. (b) Dependence on the sensor bias
voltage VM of the two amplitudes δS,1 and δS,2. Each measurement
is shown with an individual color with triangles pointing upward
(downward) for the amplitudes δS,1 (δS,2). In the lower graph, the
ratio δS,1/δS,2 is shown. This ratio remains about constant with bias
voltage VM. The red dashed line indicates the calculated average ratio
(δS,1/δS,2)avg = 0.72 ± 0.03 for the 6 black data points. Data for
VM < 50 µV (grayed-out markers) were excluded for the calculation
of (δS,1/δS,2)avg (see Appendix A 2). This asymmetry (δS,1/δS,2 �= 1)
is a result of spin which breaks the particle-hole symmetry (see
Appendix B 4).

S feature: the deviation of the (0,1) charge state into the
conventional (1,0) region generally shows a smaller amplitude
compared to the deviation into the (0,1) region; see Fig. 5(c).
This asymmetry is further discussed in Appendices A 2 and
B 4. There we show that the spin degeneracy of the electronic
levels can explain this asymmetry. In the main text, δS is
extracted from the amplitude of the sine fit without taking the
asymmetry of the S feature into account. As a consequence,
δS of the main text is the average of the two amplitudes.

1. Quantifying δS of the S shape

We extract the contour curve at which the (1,0) and (0,1)
charge states have equivalent probability [dashed curve in
Fig. 5(b)]. For a system without any quantum-sensor backac-
tion, this equiprobability line coincides with the zero-detuning
(εL = εR) line. Here, however, we observe a measurement-
induced S-shaped deviation. In Fig. 5(c), we show a plot
of the extracted difference between the zero-detuning line to
the extracted S-shaped contour curve. Such plots are used
to quantify the amplitudes of the S-shaped feature. We then
obtain δS, the maximal amplitude of the S-shaped feature, by
fitting the extracted data with a sine model. Note that there
is an offset present in the data, due to the asymmetry of the
S feature discussed in Appendix A 2, which we ignore in the
main article. We obtain the error bars in δS in Fig. 2 by estimat-
ing the uncertainty when extracting the S feature in the occu-
pation imbalance map: Therefore, we compare δS for � = 0
(charge degeneracy) with δS for � = 0.2 and � = −0.2. This
corresponds to a 10% uncertainty of the ratio P(1,0)/P(0,1).

2. Asymmetry of the S shape

We find an asymmetry of the S shape for larger sensor-
bias voltages VM: the amplitude of the deviation from the
zero-detuning line (εL = εR) closer to (0,0), labeled δS,1 in
Fig. 7(a), is smaller than the deviation δS,2 located closer to

the (1,1) state. In Fig. 7(b), the triangles represent δS,2 (filled
upward triangles) and δS,1 (empty downward triangles) for the
individual measurements of the bias dependence. Individual
measurements are presented in different colors. A clear trend
is recognized in the data: a stronger quantum measurement
backaction (larger sensor-bias voltage) leads to a larger ab-
solute difference of the two amplitudes. However, the ratio
δS,1/δS,2, also shown in Fig. 7(b), remains approximately con-
stant. In the low-bias regime (VM < 50 µV), the deviation from
the zero-detuning line is small, and it is difficult to extract the
amplitudes δS,1,2. Therefore, the ratio δS,1/δS,2 becomes error-
prone in this regime. The outlier at VM = 50 µV is attributed
to these difficulties. For that reason, we exclude the low-bias
data when calculating the average ratio (δS,1/δS,2)avg = 0.72 ±
0.03 for the data with VM > 50 µV. Note that (δS,1/δS,2)avg �= 1
indicates that there is a systematic asymmetry of the S shape.
As discussed in Appendix B 4, this asymmetry suggests that
the particle-hole symmetry of the system is broken by the spin
degree of freedom.

Note that in Fig. 2, the average values of the individual
measurements of Fig. 7(b) are shown.

3. Transition width

To better understand the nature of the measurement back-
action transition which we have observed, we investigate the
scaling properties of the transition width. First, we extract
δγ , the broadening of the (1,0)-(0,1) transition, by analyzing
cuts through the transition in the charge stability diagram [see
Fig. 5(b)]. We present an example of such a cut in Fig. 8(a).
These data indicate a typical broadening in � of the transition
from the charge state (1,0) to (0,1). To obtain δγ , we fit this
data with a scaled Fermi-Dirac function

F (ε, δγ ) = 4[1 + e(ε−λ)/δγ ]−1 − 2, (A2)

where λ is an irrelevant free parameter that shifts the distribu-
tion left or right. We then repeat this procedure for several cuts
across the transition and average the result, before repeating
the procedure for each charge stability diagram associated
with a data point in Fig. 8.

We find no dependence of δγ on the sensor bias VM as
presented in Fig. 8(b), which indicates that the measurement
backaction does not dominate the broadening whereas it dom-
inates the amplitude δS. The data in Fig. 8(b) were obtained at
a base temperature of the dilution refrigerator, corresponding
to an electronic temperature T ≈ 65 mK (0.026U/kB). Next,
we investigate the temperature dependence of δγ at a fixed
sensor bias voltage VM = 75 µV (0.35U/e); see Fig. 8(c).
When we increase the temperature, we find a linear depen-
dence of the broadening δγ upon increasing the electron
temperature T . Furthermore, we find that the transition width
δγ as a function of temperature T is in good agreement with
the thermal energy δγ ≈ kBT [19].

As the width shrinks linearly with diminishing tempera-
ture, the experiment is in agreement with a phase transition.
A saturation of the width at lower temperatures δγ (T →
0) > 0 is still possible and would indicate the presence of
an abrupt crossover, with a small but finite width [47]. The
transition width is strongly tied to the nature of the tails, see
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FIG. 8. Transition width. (a) Population imbalance � along a cut perpendicular to the (1,0)-(0,1) transition in the charge stability diagram,
such as the one in Fig. 5. Here, ε is the Euclidean distance along the cut. We obtain the interdot transition broadening δγ by fitting the data to
a Fermi-Dirac distribution. For each charge stability diagram, we average the width over three cuts in the energy basis (ε) and one cut in the
voltage basis (V ). (b) The width δγ shows no clear dependence on the sensor bias voltage VM and, therefore, does not depend on the backaction.
The dashed line indicates the thermal energy kBT associated with the electronic temperature T = 65 mK. (c) Temperature dependence of the
width δγ at fixed measurement bias voltage VM = 75 µV. Over the entire temperature range in our experiments, the extracted width is similar
to the thermal energy kBT (dashed black line).

Appendix B 3, motivating further studies to investigate the
microscopic details of the broadening mechanism.

4. Estimation of α

We now describe the estimation of the ratio between
the Coulomb interaction of sensor-to-left dot (ULM) and
the sensor-to-right dot (URM): α2 = ULM/URM . Starting from
an empty DD charge configuration, (0,0), the change in
sensor conductance g� when adding an electron to the left dot
|g(0,0) − g(1,0)| is different from that observed when adding an
electron to the right dot |g(0,0) − g(0,1)|. Under the assumption
that, in the region of interest, the sensor conductance is linear
in sensor quantum dot energy, we obtain an approximation
of α by comparing the magnitudes of g� for different charge
transitions; see Fig. 9.

Generally, we observe four main values of conductance
g through the charge sensor, corresponding to the four rele-
vant charge configurations of the DD. This is demonstrated
in Fig. 9: here a histogram of the charge sensor signal
for a charge stability diagram around the (1,0)-(0,1) double

dot transition is presented. From the specific data shown in
Fig. 9, we obtain α2 = ULM/URM ≈ (g(0,0) − g(1,0))/(g(0,0) −
g(0,1)) = 5.4. Repeating the process for several distinct experi-
mental parameters we obtain an estimate α = 2.2 ± 0.2 which
we use in the theoretical model.

APPENDIX B: MODEL

1. Microscopic model

The full microscopic model describing the system-detector
setup can be written using the Hamiltonian

H = HDD + Hleads + Htun + HM + Hint, (B1)

including the double quantum dot HDD, its leads Hleads, tunnel-
coupling between the dots and their respective leads Htun, the
detector model HM, and the system-detector interaction Hint

terms. The double dot Hamiltonian HDD = HL + HR + Hcoupl

is in turn described by the Hamiltonians HL and HR of the
left and right dots, and a coupling Hamiltonian Hcoupl. As-
suming at most a single orbital mode in each of the dots
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FIG. 9. Measuring the asymmetry α of the level widths. (a) Sensor conductance g of the charge stability diagram around the (1, 0)-(0, 1)
charge state configurations of the double dot. Due to different capacitive coupling of the DD to the charge sensor, the four charge states are
distinguishable by their characteristic sensor conductances. (b) Histogram of the charge stability diagram shown in (a). Each charge state in
panel (a) appears at different but roughly constant sensor conductance which results in peaks when plotted as a histogram. The parameter α is
estimated by the ratio of the difference g� in conductance g of the charge states involved.
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and in the absence of magnetic field, we write the left dot
Hamiltonian as

HL =
∑

σ

εLd†
Lσ dLσ + ULd†

L↑d
L↑d†

L↓d
L↓, (B2)

where d†
Lσ (dLσ ) creates (annihilates) an electron with spin σ

and energy εL in the left dot. The on-site Coulomb repulsion
UL, which is on the order of a few meV, is much larger than
all relevant energy scales in the system such that the doubly
occupied state of the left dot is energetically forbidden. Due to
the absence of magnetic field the two spin states are degener-
ate, such that in our analysis the difference between including
and excluding spin is the inclusion of a degeneracy factor; see
Appendix B 4. The right dot Hamiltonian is obtained in an
analogous way to HL but with the substitution L → R. In the
following we drop the spin degree of freedom and associated
index σ for simplicity. The left and right dot Hamiltonians
then become

Hi = εi d†
i di (B3)

for the left i = L and right i = R dots. The two dots are
only electrostatically coupled, as the tunneling barrier be-
tween them is very large, such that the coupling Hamiltonian
becomes

Hcoupl = Ud†
L dL d†

R dR , (B4)

where the mutual charging energy (experimentally estimated
U ≈ 215 µeV) penalizes the simultaneous occupancy of the
left and right dots. The total double dot Hamiltonian is thus

HDD = εL d†
L dL + εR d†

R dR + Ud†
L dL d†

R dR , (B5)

which has the empty, left-, right-, and doubly occupied states
as eigenstates.

The left and right leads are described by

Hleads =
∑

k,i=L,R

εikc†
ikcik, (B6)

where k indexes the different momenta of the leads and c†
ik

(cik) creates (annihilates) an electron with energy εik in the
left i = L or right i = R leads. Each of these leads is further
associated with a tunable chemical potential μL,R, which is
kept constant and at equilibrium, serving as the energy ref-
erence for the experiment, μL = μR = 0. This is described by
the tunneling Hamiltonian

Htun =
∑

k,i=L,R

t (d†
i cik + H.c.), (B7)

where the tunneling amplitude t is taken to be momentum
independent and equal for both dots, as is the case in the
experiment.

The detector Hamiltonian is built up in a similar fashion
but with a single dot

HM = εMd†
MdM +

∑
k,i=s,d

[εikc†
ikcik + tM(d†

Mcik + H.c.)]. (B8)

Here all quantities are defined analogously to the double dot
and its leads, but with new indices for the detector dot (M),
as well as for the source (s) and the drain (d) detector leads.
A bias voltage across the detector VM is directly proportional

to the difference between source and drain chemical potential
μsd = μs − μd. Finally, the interaction Hamiltonian describes
capacitive coupling between the measurement dot and both
the left and right dots:

Hint = (ULMd†
L dL + URMd†

R dR )d†
MdM. (B9)

Here, we introduced the two Coulomb interaction strengths
ULM and URM between the left or right dot and the measurement
dot. Essential to our work, these interaction terms are not
equal due to the different distances between the detector and
the two dots. We define their ratio as

α2 = ULM/URM. (B10)

As shown in Appendix A 4, this value is experimentally deter-
mined to be α = 2.2 ± 0.2.

2. Rate equation with backaction

We analyze transport through the DD using a rate equation.
To this end, we assume a sufficiently small tunnel coupling
between the dots and their leads ρi|t |2 	 U with ρi the den-
sity of states of lead i. We then perturbatively derive the
corresponding sequential tunneling rates using Fermi’s golden
rule [48]. In the absence of the detector, Fermi’s golden rule
for the symmetrically coupled DD reads [35]

�i f = �DD

∫
dεδ(ε − εi + ε f )nF(ε) = �DDnF(ε f − εi ),

(B11)

where i, f denote initial and final states [described by different
charge configurations (NL, NR ) of the DD], �DD = 2πρ|t |2/h̄
is the bare tunneling rate with ρi = ρ, and we introduced the
Fermi-Dirac distribution

nF(ε) = 1

1 + exp(ε/kBT )
. (B12)

One of the central results of Ref. [30] is that, when calcu-
lating such transport rates through the system, a continuous
charge measurement of a quantum dot enters as an effective
width for the dot’s energy level. Using this result, we effec-
tively trace out the detector and incorporate its impact directly
in a slightly modified expression for the rates

�i f = �DD

∫
dε

1

π

γ f −i

ε2 + γ 2
f −i

nF(ε f − εi + ε), (B13)

where the width γ f −i depends on the relevant dot level asso-
ciated to the specific rate. For example, if f = (1, 1) and i =
(1, 0) then γ f −i = γR because only the right dot is involved in
the tunneling process. Performing the integral we obtain

�i f = �DDnL(ε f − εi, γ f −i ), (B14)

where we have introduced the modified Fermi-Dirac
distribution

nL(ε, γ ) = 1

2
+ Im ψ

(
1

2
+ γ − iε

2πkBT

)
, (B15)

and ψ is the digamma function. These rates have algebraic
tails which decay as ∼γ /ε for large ε [48]. We use this
phenomenological approach motivated by previous works
[30,31], and leave more detailed calculations for future work.
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FIG. 10. Theoretically calculated imbalance � using the rate
equation, while including the effect of measurement backaction.
We use the same parameters as in the experimental plot Fig. 1(b).
The measurement bias is VM = 0.35U , the temperature is T =
0.026U/kB, and the asymmetry in the coupling is α = 2.2. (a) Using
the Lorentzian broadening (B14) of the DD due to backaction, with
the fit parameters χ = 9.4 × 10−3 and ξ = 2.5 × 10−3U . (b) Using a
Gaussian broadening (B17) of the DD due to backaction, with the fit
parameters χG = 0.099 and ξG = 0.084U . We notice that the shape
of the anomaly is more similar to the experiment in the Lorentzian
case, while the width of the transition is better captured by the
Gaussian approach. Here, the Gaussian broadening is merely used as
a sufficiently distinct counterexample to the Lorentzian broadening
but is not suggested by any theory.

We substitute the rates (B14) into a rate equation, describ-
ing the time evolution of the occupation probability of each
charge state i,

∂t Pi =
∑

j

Pj�i j − Pi

∑
j

�i j, (B16)

leading to a Markovian chain as illustrated in Fig. 3(a).
Solving for the steady state ∂t Pi = 0, we obtain the
mean/observable charge states of the DD and thus the imbal-
ance �; see Fig. 10. We can then extract δS from these charge
stability diagrams and use the result to fit χ and ξ ; see Fig. 2.

3. Nature of the tails

In Ref. [30], backaction was predicted to cause a
Lorentzian broadening of the delta function in Fermi’s golden
rule (B11), leading to the broadened rates (B14). Here, we
point out that the shape of the tails has a strong influence on
the exact form of the population-switching region, or S shape,
and the width of the transition. We use a Gaussian widening
of the level as a counterweight to the Lorentzian ones. While
there are no works suggesting such a broadening, it is useful
as an extreme example, completely opposed to the Lorentzian.
Here, we look at the not physically motivated Gaussian broad-
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FIG. 11. Fitting the imbalance with Gaussian broadenings. Mea-
sured maximal deviation δS (circles) as a function of the measurement
bias voltage VM (a) and temperature T (b) as in Fig. 2. A Gaus-
sian broadening of the levels leads to a qualitatively similar scaling
(dotted line) of the maximal deviation δS as both the experiment
and the Lorentzian broadening; cf. Fig. 2. Unlike the Lorentzian
broadening, there is no clear saturation for a given α in the case of
Gaussian broadening.

ening to conclude that our Lorentzian-broadening model is
incomplete.

These distributions have very different properties, which
manifest in the shape and contrast of the charge stability
diagrams; see Fig. 10. However, the qualitative behavior of the
population switching and the scalings with temperature and
bias remain the same; see Fig. 11. This motivates future work,
which will investigate the nature of the population-switching
transition at low temperatures, to determine among other
things whether this is a phase transition or abrupt crossover.
A likely contribution to the specific shapes is also that the
Lorentzian widths γ may in general depend on the parameters
εL, εR, T of the system.

To include a Gaussian width we replace the delta function
δ in the rate calculation (B11) through

δ(ε − εi + ε f ) → 1√
πγ f −i

exp

[
−(ε − εi + ε f )2

γ 2
f −i

]
, (B17)

and then evaluate the integral numerically. Recall that γ f −i

is either γ G
L or γ G

R depending on which level is involved
in the transition i → f (we use G to indicate parameters
that belong to the Gaussian model). We can then use the
rate equation (B16) to compute the steady state by imposing
∂t P = 0, for both the Lorentzian and Gaussian broadenings;
see Fig. 10. From there, we extract a width δS for a given set
of fitting parameters χ , ξ and the experimental parameters
VM, T , and α. In the main text, for the Lorentzian we used
only the largest of the background or bias induced widths
γ j = max(ξ, γS, j ), which is functionally similar to root square

addition γ j =
√

ξ 2 + γ 2
S, j of the widths, which is typical of

Lorentzian line broadening. However such an approach to the
Gaussian widths cannot be expected to capture the experimen-
tally observed signatures. Specifically, the growth of one of
the widths while the other remains constant causes the rapid
formation of a very large δS, due to the rapid decay in the tails
of the Gaussian. Instead of simply using the larger of the two
rates, we therefore add the two contributions linearly for the
Gaussian, such that

γ G
j = ξ G + γ G

S, j, (B18)
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FIG. 12. Effect of spin. A theoretical prediction for the S shape
for a model with spin-degenerate levels, for both Lorentzian (a) and
Gaussian (b) broadenings. In the Lorentzian case we notice a signif-
icant particle-hole symmetry breaking, while in the Gaussian case
it is barely visible (distance between the S shape and the black
cross). Parameters as in Fig. 10, except for the inclusion of spin; see
Eq. (B19).

where γ G
S,L = αχGVM and γ G

S,L = χGVM/α. Of course a micro-
scopic investigation of the exact nature of the tails must
also provide a prescriptive way of adding the widths. Here,
however, we aim to qualitatively understand the physical pro-
cesses at stake and thus leave these details to future works.
We calculate the imbalance � as a function of T and VM to
fit χG = 0.099 and ξ G = 0.084U ; see Fig. 11. Note that the
resulting value for ξ is nearly an order of magnitude larger
than the expected value ∼1 µeV [49].

In a typical experimentally relevant situation, cf. Fig. 1(b)
and Fig. 10, we notice that the shape of the S feature is better
captured by the Lorentizian broadening, while the width is
better described by the Gaussian. We conclude that the precise
form of the broadening can be investigated using the com-
plete charge stability diagrams. While our brief description
here suggests an intermediate between a Lorentzian and a
Gaussian, this can be achieved in a multitude of ways, e.g.,
parameter (ε) dependent broadenings (γ ) or different power

law decays. Furthermore, as (part of) the CSD level lies in
the measurement bias window we expect resonant effects,
which must be resummed to be accounted for properly. The
dependence of region (iii) in Fig. 1(b) on these effects will be
the focus of future studies.

4. Asymmetry in the S shape

As discussed in Appendix A 2, the experimental data show
an asymmetry in the S shape, which breaks the particle-hole
symmetry of the εL = −U/2, εR = −U/2 configuration. If
both left and right levels are allowed to be spin degenerate
(as expected in the zero magnetic field experiment) this leads
to overall degeneracies of 1,2,2,4 for the empty, left-, right-,
and doubly occupied states, respectively. The fact that the
empty and doubly occupied states have different degeneracies
manifestly breaks particle-hole symmetry. We conclude that
spin degeneracy is a candidate for the asymmetry seen in the
experiment. To further investigate this property, we include
the degeneracies in our rate equation, which leads to a trans-
formation

�+ → 2�+, �− → �−, (B19)

in the rates which add or remove electrons from the DD.
The result of performing this substitution is very differ-

ent in the case of Lorentzian broadening when compared to
Gaussian broadening; see Figs. 12(a) and 12(b), respectively.
In the latter case, the decay of the rates as a function of εL

and εR is exponential. Thus as the widths are relatively small
the factor of two in the rates causes only a small shift in the
intersection between the diagonal and the S shape. On the
other hand, the tails of the Lorentzian are algebraic and do not,
therefore, have a characteristic scale on which they decay. The
intersection between the diagonal and the S shape can thus
shift significantly even for small broadenings. This shift leads
to a bias-dependent asymmetry of the S-shape amplitudes δS,1

and δS,2 as observed in the experiment; see Fig. 7.
We conclude that spin is a likely candidate for

the experimentally observed particle-hole asymmetry; see
Appendix A 2. Furthermore, the very large (small) asymmetry
in the Lorentzian (Gaussian) case compared to the experi-
mental evidence in Fig. 7 again indicates that the broadening
is sharper than Lorentzian. This strong dependence of the
asymmetry on the type of tails, see Fig. 12, shows that it can
be used as a signature to investigate the precise nature of the
tails.
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