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Shubnikov-de Haas (SdH) oscillations are the fingerprint of the Landau and Zeeman splitting
level structure on the resistivity in presence of a moderate magnetic field before full quantization
is manifest in the integer quantum Hall effect. These oscillations have served as a paradigmatic
experimental probe and tool for extracting key semiconductor parameters such as carrier density,
effective mass m∗, Zeeman splitting with g-factor g∗, quantum scattering time and Rashba α and
Dresselhaus β spin-orbit (SO) coupling parameters. Analytical descriptions of the SdH oscillations
are available for some special cases, but the generic case with all three terms simultaneously present
has not been solved analytically so far, seriously hampering the analysis and interpretation of experi-
mental data. Here, we bridge this gap by providing an analytical formulation for the SdH oscillations
of 2D electron gases (2DEGs) with simultaneous and arbitrary Rashba, Dresselhaus, and Zeeman
interactions. We use a Poisson summation formula for the density of states of the 2DEG, which
affords a complete yet simple description of the oscillatory behavior of its magnetoresistivity. Our
analytical and numerical calculations allow us to extract the beating frequencies, quantum lifetimes,
and also to understand the role of higher harmonics in the SdH oscillations. More importantly, we
derive a simple condition for the vanishing of SO induced SdH beatings for all harmonics in 2DEGs:
α/β = [(1 − ∆̃)/(1 + ∆̃)]1/2, where ∆̃ ∝ g∗m∗ is a material parameter given by the ratio of the
Zeeman and Landau level splitting. This condition is notably different from that of the persistent
spin helix at α/β = 1 for materials with large g∗ such as InAs or InSb. We also predict beatings in
the higher harmonics of the SdH oscillations and elucidate the inequivalence of the SdH response
of Rashba-dominated (α > β) vs Dresselhaus-dominated (α < β) 2DEGs in semiconductors with
substantial g∗. We find excellent agreement with recent available experimental data of Dettwiler et
al. Phys. Rev. X 7, 031010 (2017), and Beukman et al., Phys. Rev. B 96, 241401 (2017). The
new formalism builds the foundation for a new generation of quantum transport experiments and
spin-orbit materials with unprecedented physical insight and material parameter extraction.

I. INTRODUCTION

The spin-orbit (SO) interaction couples the orbital and
spin degrees of freedom, not only forms the basis for a
range of spin related effects such as the spin Hall effect1–4

and the persistent spin helix5–7, but also underlies the
physical mechanisms of new phases of matter, e.g., topo-
logical insulators, quantum spin Hall materials 8–10, and
Majorana11–13, Dirac and Weyl fermions14. Accordingly,
advancing techniques and methods to measure and ex-
tract SO couplings from experimental data are crucial
for the development of these fields.

Shubnikov-de Haas (SdH) oscillations16,17 are among
the best techniques to probe simultaneously spin- and
charge-related quantities associated to electrons in semi-
conductors, including effective masses, gyromagnetic ra-
tios, quantum scattering times, densities and SO cou-
plings. Most recently, they have been crucial to the
study and understanding of new materials, as for exam-
ple, 2D-materials, transition metal dichalcogenides, van
der Waals heterostructures18–25, and also materials host-
ing new phases of matter e.g., topological insulators26,
unconventional superconductivity27 and correlated insu-
lator behavior28. It has also been used to establish the
presence of nodal-lines29, Berry’s phase30,31, and differ-

ent topology of Fermi surfaces32. SdH oscillations are
magneto-oscillations in the resistivity and originate from
the sequential crossings of the discrete Landau Levels
(LLs) through the Fermi energy. Without SO coupling
and in the low-field regime, the period of the SdH oscilla-
tions can be related to the density of the electron gas33.
In the presence of SO interaction, on the other hand,
the energy spectrum changes dramatically thus leading
to additional frequencies in the magnetoresistivity and
hence beatings, Figs. 1(a). This was first theoretically
described semiclassically by Das et. al.,34. In the so-
called Onsager’s picture, different sub-bands possess dif-
ferent Sommerfeld quantized orbits (playing the role of
the LLs), which cross the Fermi energy with different fre-
quencies in B−1. The spin-split bands give rise to two
distinct oscillating frequencies in the magnetotransport.
The standard experiment relies on Fourier analyzing the
measured SdH oscillations. An experimental method in-
troduced in Refs. 35–37 has often been used to estimate
the strength of the Rashba coupling via the splitting of
the Fourier frequency peaks. However, these methods
have been criticized for not accounting for the Zeeman
splitting (through the g-factor g∗) nor for the additional
Dresselhaus SO coupling15.

There have been some attempts to analyze the SdH os-
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FIG. 1. Magnetoresistivity for a) pure Rashba α =
7.0 meV nm and b) pure Dresselhaus β = 7.0 meV nm with
m∗ = 0.019mo and n2D = 3.3× 1011 cm−2 from Ref. 15. The
curves in a) and b) are not the same due to the large g–
factor g∗ = −34. The insets display the normalized FFT in-
cluding the 2nd harmonic. The presence of beating nodes in
δρxx are clearly visible in a) the fundamental and b) the 2nd
harmonic, see Fig. 8. The condition for the absence of beat-
ings (single peak for each harmonic) is α = 7.0 meV nm and
β = 5.0 meV nm, shown in c), but not α = β = 7.0 meV nm,
the persistant spin helix case, shown in d), clearly exhibiting
a beating (here a splitting of 2nd harmonic peak).

cillations taking into account both α, β and g∗. However,
these mostly involved qualitative comparison with the en-
ergy spectrum of pure Rashba and pure Dresselhaus38,39.
In Ref. 40, fully numerical calculations of magneto-
oscillations were performed but for relatively high mag-
netic fields and low electron densities, far away from the
regime of recent experimental works41. Moreover, it was
realized that in the absence of the Zeeman interaction,
important features are absent. More specifically, without
accounting for the spin mixing generated by the mag-
netic field (via the Zeeman interaction), predictions be-
come imprecise42, and even fail to describe phenomena
such as magnetic inter-subband scattering43 and mag-
netic breakdown44. In general, full quantum mechani-
cal numerics are generally done in order to check agree-
ment with experiments, which are neither very practical
nor elucidate much of the physics happening in those
systems41,45. Finally, all the previous works have ne-
glected the influence of higher harmonics, recently seen
experimentally46.

Here, we present a detailed investigation of SdH oscil-
lations in the presence of SO couplings of both Rashba α
and Dresselhaus β types and Zeeman interaction with g-

factor g∗. Our main result is the derivation, for the first
time in the literature, of a simple analytical expression for
the SdH oscillations in the presence of simultaneous arbi-
trary couplings α and β in addition to g∗. We note that
earlier analytical descriptions of SdH magnetoresistivity
oscillations considered particular cases, namely, when ei-
ther only one of the parameters α, β or g∗ was nonzero
or any two of these parameters were nonzero, with the
exceptions (α 6= β 6= 0, g∗ = 0) and (α = β, g∗ 6= 0).

Interestingly, our analytical formula generalizes previ-
ous results44 for g∗ = 0 and predicts a new condition for
the vanishing of the SdH magneto-oscillation beatings in
all harmonics [e.g., Figs. 1(c)] in Rashba-Dresselhaus cou-
pled 2DEGs with substantial Zeeman splittings, namely,

α

β
=

√
1− ∆̃

1 + ∆̃
, (1)

where ∆̃ is a material parameter given by the ratio be-
tween the Zeeman splitting and the Landau-level spacing.
As we discuss later on, Eq. (1) is not associated with a
conserved quantity in our system; this contrasts with the
persistent-spin-helix condition α = β, which predicts spin
conservation along particular axes5–7. We stress that this
case with α = β and generic g∗ 6= 0 leads to beating in
the frequency spectrum of our system, Figs. 1(d), as op-
posed to our new condition in Eq. 1. As we discuss below,
our numerical and analytical approaches show excellent
agreement with available data from Refs. 41 and 46.

Our approach combines a semiclassical formulation for
the resistivity of 2DEGs with a trace formula for the den-
sity of states (DOS) in a quantizing magnetic field. The
trace formula expresses the DOS using the usual Poisson
summation formula47. This formulation brings out the
oscillatory part of the DOS, thus allowing us to clearly
identity the higher harmonics of the SdH oscillations. It
enables us to conveniently separate the frequency scales
into “fast” and “slow” oscillations thus allowing for a
clearer interpretation of the underlying physical phenom-
ena, e.g., the slow beating SdH oscillations due to the SO
coupling.

Our main results for the oscillatory part of magnetore-
sistivity δρxx(1/B) and its frequency spectra I(f) [panel
insets] are show in Fig. 1. For pure Rashba [α 6= 0, β = 0,
Fig. 1a)] and pure Dresselhaus [α = 0, β 6= 0, Fig. 1b)],
but non-zero Zeeman term (g∗ 6= 0), the frequency spec-
tra, as usual, show two main peaks, which correspond to
the first two Fourier components of δρxx(1/B). These
two cases, however, exhibit a marked contrast: while
the pure Rashba shows a peak splitting at the funda-
mental frequency, the pure Dresselhaus exhibits a peak
splitting in the second harmonic. As we explain in de-
tail in Sec. V D, this contrasting behavior arises from
the interplay between the Zeeman and SO interactions,
which makes the SdH magneto-responses with nonzero g-
factors g∗ inequivalent for Rashba-dominated (α > β) vs.
Dresselhaus-dominated (α < β) 2DEGs. For g∗ = 0, the
pure Rashba and pure Dresselhaus cases give identical
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results.

Figure 1(c) illustrates our prediction in Eq. (1) thus
showing no peak splitting in the frequency spectra –
at any harmonic – when this condition is satisfied. To
emphasize this condition emulates a situation with no
SO coupling (i.e., no beating), we plot in Fig. 1(c) the
α = β = 0 (with g∗ 6= 0) case [dashed curve in 1(c)],
which shows complete overlap with the case satisfying
Eq. (1). In contrast and for completeness, Fig. 1d) shows
the α = β 6= 0 case with g∗ 6= 0, which exhibits peak
splitting in the second harmonic.

We have applied our analytical description to low-
density GaAs-based quantum wells for which there are
experimental data46 showing several harmonics in the
SdH magneto-oscillations. Figure 2 shows the excellent
agreement obtained, thus illustrating that our semiclas-
sical formulas can satisfactorily capture the higher har-
monics of the SdH oscillations. Moreover, we have ap-
plied our analytical approach to low-density InSb-based
2DEGs15,39 where, unlike GaAs-based 2DEGs, a strong
SO coupling manifests itself as beatings in the measured
SdH oscillations, and find good agreement. We have also
implemented a detailed numerical calculation for high-
density InAs-based 2DEGs for which an analytical de-
scription is not adequate. Here again we find very good
agreement with available data41 and are able to extract
SO coupling parameters.

Next (Sec II), we present a description of the Hamil-
tonian of our system. In Sec. III we discuss how to ob-
tain the “F–function”, the central quantity in our for-
mulation, from the Landau-quantized energy spectrum of
our system and its connection with the density of states
(DOS). The formalism for obtaining the Shubnikov-de
Haas oscillations in terms of the Poisson summation for-
mula and the F-function is described in Sec. IV. Finally,
in Sec. V we present and analyze different particular cases
of SdH oscillations and, more important, derive the new
condition in Eq. (1) for the complete absence of beatings
(all harmonics) in the SdH oscillations, for 2DEGs with
non-zero Rashba, Dresselhaus, and Zeeman couplings.
The appendices present relevant details of our theoret-
ical formulation.

II. 2DEG HAMILTONIAN

Our starting point is the Hamiltonian for a 2DEG
confined in a quantum well (xy plane) grown along the
[001] crystallographic direction, taken as z axis. In
the presence of a perpendicular external magnetic field
B = (0, 0, B) and both Rashba48 and Dresselhaus49 spin
orbit interactions, the Hamiltonian reads

H =
1

2m∗
(
Π2
x + Π2

y

)
+

1

2
g∗µBBσz

+
α

~
(Πxσy −Πyσx) +

β

~
(Πxσx −Πyσy) , (2)

where g∗ is the g-factor, m∗ is effective mass, Π = p−qA
is the canonical momentum, q is the electric charge, µB is
the Bohr magneton, ~ the reduced Planck’s constant and
σx, σy, σz denote the usual Pauli matrices. The parame-
ters α and β denote the linear-in-k Rashba and Dressel-
haus SO couplings, respectively. The β coupling includes
a density dependent correction arising from the cubic
Dresselhaus term. As we discuss later on [Sec. VI A],
our numerical results will account for the full cubic Dres-
selhaus term.

Let us introduce the annihilation and creation opera-
tors associated to the Landau level |n〉

a =
`c√
2~

(Πx − iζΠy) , (3)

a† =
`c√
2~

(Πx + iζΠy) , (4)

obeying
[
a, a†

]
= 1, a |n〉 =

√
n |n− 1〉,

a† |n〉 =
√
n+ 1 |n+ 1〉, ζ = −sign (qB), with the

magnetic length and the center of the Landau orbit

denoted by `c =
√

~
|qB| and y0 = ekx

|qB| , respectively. In

this work, we have q = −e, where e > 0 is the absolute
value of the elementary electronic charge, and we choose
B > 0, yielding ζ = 1. Using Eqs. (3) and (4), our
Hamiltonian [Eq. (2)] becomes

H = ~ωc(a†a+ 1/2) +
∆

2
σz −

iα√
2`c

(a†σ− − aσ+)

+
β√
2`c

(a†σ+ + aσ−), (5)

where the cyclotron frequency is ωc = eB/m∗,
∆ = g∗µBB, which inherits its sign from g∗, and σ± =
σx ± iσy, with σx and σy denoting Pauli matrices. We

now perform the canonical transformation H̃ = UHU†
with U = e−i

π
4 (σz2 +a†a), which yields

Uσ±U† = σ±e
∓iπ4 , (6)

UσzU† = σz, (7)

Ua†U† = ei
π
4 a†, (8)

and finally

H̃
~ωc

= (a†a+ 1/2) +
∆̃

2
σz + αB(a†σ− + aσ+)

+βB(a†σ+ + aσ−), (9)

where we have introduced the real valued, dimensionless
quantities αB = α√

2~ωc`c
, βB = β√

2~ωc`c
and ∆̃ = ∆

~ωc =
g∗m∗

2m0
.

Analytical solutions for the above Hamiltonian
[Eq. (9)] can be found for the cases with either pure
Rashba or pure Dresselhaus48,50. The specific cases of
α = ±β turn out to be of great physical interest, where
persistent spin helix (PSH)5,6,46 and persistent Skyrmion
lattice (PSL)7 were predicted. Interestingly, the case
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with α = ±β maps to the Rabi model in quantum optics
and was recently solved exactly51. The exact solution
relies on obtaining zeros of a transcendental function.
Moreover, previous studies of the Rabi model have impor-
tant implications for our system. For instance, we have
shown that the Rabi parity symmetry51,52 remains valid
in our problem for arbitrary α and β (See Appendix B).
This enables us to separate the Hilbert space in two sub-
spaces with different parities, which can be individually
analyzed and compared. As for general couplings α and
β, similar systems have been studied before in the frame-
work of Landau levels, using either variational (Hartree-
Fock) methods53, second order perturbation54,55 or ob-
taining the spectrum in terms of solutions of transcen-
dental equations56. A perturbation scheme based on 4th
order Schrieffer-Wolff transformation has also been used
to find approximate analytical solutions57. However, we
are unaware of any exact analytical solution for general
Rashba, Dresselhaus and Zeeman coupling.

III. F -FUNCTION AND ITS CONNECTION
WITH THE ENERGY SPECTRUM AND DOS

For our 2DEG in the presence of perpendicular mag-
netic field, the low magnetic field regime corresponds
to having a very large number of Landau levels below
the Fermi energy εF (taken as constant and equal to its
zero-field value), i.e., many occupied states. The system
is thus assumed to be far away from the integer quan-
tum Hall regime where few Landau levels are occupied
and the effects of electron-electron interaction become
important33. Let us denote the eigenenergies of our di-
mensionless Hamiltonian Eq. (9) by εn,s, where n ∈ N0

represents the LL number and s = ± represents a pseudo-
spin associated to the presence of two spin-split bands
(due to the Zeemann and SO interactions). With this
notation, the density of states (DOS) reads

D(ε,B) =
D̃

A

∑
n,s

δ(ε− ~ωcεn,s), (10)

where D̃ = A/2π`2c is the LL degeneracy and A the 2DEG
area. This LL degeneracy is the same for all 2DEGs
studied here in the presence or absence of Zeemann and
SO interactions.

As we show in the next section, the magnetotransport
properties of the system can be determined by the Lan-
dau levels sequentially crossing εF . The rate at which
these crossings happen will determine a periodic behav-
ior of the magnetotransport properties of the system as
the magnetic field is varied. In order to describe this pe-
riodicity, we introduce the F -function33 (see Appendix A
for details), which is defined by the relation

εn,s(B) = ε↔ n = Fs(ε,B). (11)

The F -function gives the Landau level index n of the

state that has energy ε and pseudo-spin s at magnetic
field B.47,58 It is important to notice that the equation
for n [Eq. (11)] can also return non-integer values for n.
In such cases the F -function provides a measure of how
close a Landau level n is to the energy ε, for a given
pseudo-spin s and magnetic field B.

Since one can relate transport phenomena with the
density of states, we rewrite the DOS of our system in a
way that highlights its oscillatory behavior dependence
on both α and β. First we introduce the Fs function into
Eq. (10)

D(ε,B) ≈ m∗

2π~2

∑
n,s

δ(n− Fs(ε/~ωc, B)), (12)

which neglects terms O[(αm∗`c)
2/~] + O[(βm∗`c)

2/~)].
This holds for typical values of α, β, m∗ and small mag-
netic fields B . 1T. Using the Poisson summation for-
mula

∑∞
n=0 δ(n−Fs) = 1 + 2

∑∞
l=1 cos(2πlFs) and defin-

ing the relevant quantities

F± =
1

2
(F+ ± F−), (13)

we obtain

D(ε,B)− 2D0

2D0
≈ 2

∞∑
l=1

cos(2πlF+) cos(2πlF−), (14)

where D0 = m∗

2π~2 is the (constant) density of states per
spin for the 2DEG at zero magnetic field (see Appendix
A for details). As we are going to see later, F+ contains
the fast oscillations with respect to 1/B, which is is pro-
portional to the electron density n2D. On the other hand,
F− contains the slow oscillations that are determined by
the spin-orbit coupling terms, α and β. Moreover, the
fast oscillations arising from the terms with l > 1 cor-
respond to the higher harmonics, and have be seen in
experiments46.

IV. SDH OSCILLATIONS IN THE
MAGNETORESISITIVITY

As already mentioned, the oscillations in the magne-
toresistivity as a function of the magnetic field are called
SdH oscillations33. They appear as a consequence of the
sequential depopulation of the LLs when the magnetic
field is increased. For low magnetic fields where multiple
LL are occupied, i.e., far from the integer quantum Hall
regime33, a semi-classical description of the magneto-
oscillations can be used.

In experiments, the measurement of the SdH oscilla-
tions is accessed via the longitudinal differential resistiv-
ity. In general, the resistivity tensor is defined as the
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inverse matrix of the conductivity tensor,

ρ =

(
σxx σxy
σxy σxx

)−1

. (15)

The relevant magnetoresistivity component for us is

ρxx =
σxx

σ2
xx + σ2

xy

, (16)

where

σxx(xy)(B, T ) =

∫
dε

(
−df0(ε)

dε

)
σxx(xy)(B, ε, T = 0),

(17)
where f0(ε) is the Fermi-Dirac distribution. Using a
semi-classical approach, we account for the magnetic field
dependence of the conductivity via the electron scat-
tering time τ(ε,B), which is proportional to the DOS
D(ε,B) via Fermi’s golden rule. Accordingly, up to lin-
ear order on the deviation of the DOS, we obtain

τ(ε,B) ≈ τ0 (ε)

[
1− D(ε,B)−D0(ε)

D0(ε)

]
, (18)

with D0(ε) = D(ε,B = 0) and τ0(ε) = τ(ε,B = 0). Us-
ing the Drude semi-classical equations for the frequency-
independent current33, the normalized longitudinal resis-
tivity reads

δρxx(B) =
ρxx(B)− ρxx(B = 0)

ρxx(B = 0)
(19)

=

∫
dε

(
−df0(ε)

dε

) D(ε,B)−D0(ε)

D0(ε)
. (20)

For the DOS in the presence of Landau level broaden-
ing due to scattering processes, the relation in Eq. (10)
is replaced by

D(ε,B) =
D̃

A

∑
n,s

LΓ(ε− ~ωcεn,s), (21)

where LΓ(x) describes the broadening function, e.g.,
Lorentzian or Gaussian, and Γ is parameter defining the
broadening of the levels (see Appendix A for details).
After applying the Poisson summation formula, we ob-
tain a result that resembles Eq. (14), apart from the ap-
pearance of the the cosine Fourier transform of LΓ(x),

denoted with L̃Γ(x),

D(ε,B)−D0(ε)

D0(ε)
≈ 2

∞∑
l=1

L̃Γ

(
l

Γ

~ωc

)
cos(2πlF−) cos(2πlF+).

(22)

The so-called Dingle factor L̃Γ(x)33 sets the limit of
validity of the semi-classical approximation, i.e., that
the oscillatory part of the resistivity should be much
smaller than the constant term. It also gives the regime
where it is valid to consider only the lowest harmonic.

Higher harmonics have been observed in magnetoresis-
tivity measurements46 in GaAs-based 2DEGs. The F−
function can be related to the envelope of the SdH oscil-
lations. The general form of the temperature-dependent
normalized resistivitity reads

δρxx(B, T ) = 2

∞∑
l=1

∫
dεL̃Γ

(
l

Γ

~ωc

)(
−df0(ε, T )

dε

)
(23)

× cos(2πlF−) cos(2πlF+).

Even though we only consider the zero-temperature limit
in the present work, for completeness, below we present
the temperature-dependence of δρxx(B, T ) valid in the
relevant parameter range considered in this work and for
all the systems studied here. As show in Appendix G, we
find

δρxx(B, T ) ≈ 2

∞∑
l=1

L̃Γ

(
l

Γ

~ωc

)
Al(T )

× cos(2πlF−) cos(2πlF+)|ε=εF , (24)

where the temperature-dependent coefficient

Al(T ) =
2π2lkBT/~ωc

sinh (2π2lkBT/~ωc)
(25)

accounts for the temperature dependence of the SdH os-
cillations. In the limit of vanishing α and β this reduces
to the result in Ref. 59, and in the case of both vanishing
β and broadening (Γ = 0) gives the result in Ref. 50
[Eq. (9.28)]. Here we assume that ε is close to the zero
magnetic field Fermi energy εF = ~2k2

F /2m.

A widely used method to extract spin-orbit couplings
and electronic densities is to analyze the oscillations by
calculating the quantity

I(f) =

∣∣∣∣∣
∫ B−1

1

B−1
2

d

(
1

B

)
ρxx(B)− ρxx(B1)

ρxx(B1)
ei2πf/B

∣∣∣∣∣
2

,

(26)
which defines the power spectrum of the normalized
magneto-resistivity with a trivial background value
ρxx(B = B1) removed. Note that B1 should be small
enough such that the semiclassical regime of a constant
ρxx(B → 0) is reached.

In Fig. 2 the power spectrum is shown for data from
Fig. S11a in Ref. 46, where magnetoresistivity SdH oscil-
lations were measured in a GaAs 2DEG over a magnetic
field interval [0.20, 1.5] T. The power spectrum shows a
SdH peak at f ≈ 10.5 T (the fundamental frequency),
and higher harmonics are clearly visible at 21.0 T and
31.5 T, corresponding to the first and second harmonic,
respectively. The experimental data was fitted with Eq.
(30) with one fit parameter: τq. The resulting fit matches
very well the harmonics of the SdH signal. To acccount
for the small background shift in the experimental data
as seen in the inset a more elaborate modeling of the data
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FIG. 2. The power spectrum I(f) for δρxx measurements on
a GaAs 2DEG in Ref. 46 obtained using Eq. (26). The cal-
culated results used Eq. (30) with one fitting parameter: τq.
The inset shows the magneto-resistivity data and the corre-
sponding calculated δρxx.

would be required. The fitting was done using six har-
monics, and resulted in τq = 0.8 ps, using standard GaAs
parameters m = 0.067m0 and g∗ = −0.44. Note that we
have used Eq.(30), which does not include SO coupling,
for our fitting procedure here. This is justifiable be-
cause GaAs-based 2DEGs have relatively small SO cou-
plings, not accessible via SdH measurements. Weak anti-
localization measurements can access the SO parameter
in these systems41. However, GaAs-based 2DEGs have
relatively high mobilities thus making it possible to see
many harmonics.

V. RESULTS AND DISCUSSIONS

In this section we present the energy spectrum, F–
function and magnetoresistivity SdH oscillations for dif-
ferent parameter regimes of our Hamiltonian, Eq. (9).
Additionally, we discuss in detail the interpretation of
the SdH oscillations within the trace formula description
(e.g., contribution of higher harmonics) and show how to
extract relevant spin-orbit couplings from it. The results
are presented in order of simplicity, i.e., from the simplest
to the more complex case.

A. Landau levels with only Zeeman interaction

In the presence of Zeeman and no Rashba and Dres-
selhaus SO couplings, i.e., α = β = 0, the eigenenergies
of our Hamiltonian [Eq. (9)] are given by

εn,s
~ωc

= n+
1

2
+

∆̃

2
s. (27)

6.0

5.5

5.0

4.5

4.0
1.0 1.5 2.0 2.5 3.00.5

FIG. 3. Landau levels n = 4, 5 [Eq. (27)] as a function of
1/B for a 2DEG with only Zeeman interaction and no SO
couplings (α = β = 0). The dotted line shows εF /~ωc. Here,
we use m∗ = 0.019mo, g∗ = −34 and n2D = 3.3× 10−3 nm−2

for InSb-based wells15,39.

with n ∈ N0 and s = 1 (s = −1) representing the pure
spin state |↑〉 (|↓〉). In Fig. 3 we plot the four energy
levels corresponding to n = 4, 5 and s = ±1, along with
εF /~ωc, using the following InSb QW parameters from
Refs. 15 and 39: m∗ = 0.019mo, g

∗ = −34 and electron
density n2D = 3.3 × 10−3 nm−2. For these parameters,
the ordering of the energies obeys εn+1,−1 > εn+1,1 >
εn,−1 > εn,1. Figure 3 shows how successive levels cross
the Fermi energy as a function of the magnetic field.
This, in turn, will reflect on the oscillations of the resis-
tivity once for εF ≈ εn,s, an increase on the conductivity
will happen due to the resonance condition between the
corresponding LL and the Fermi energy.

From the energy expressions above [Eq. (27)], we can
obtain the F–functions through Eq. (11), namely,

Fs (ε) =
ε

~ωc
− ∆̃

2
s− 1

2
, with

dFs(ε)

dε
=

1

~ωc
, (28)

yielding the fast and slow components [Eq. (13)]

F+ (ε,B) =
ε

~ωc
− 1

2
, F− (ε,B) = −∆̃

2
. (29)

At ε = εF these can be expressed (to a very good approx-

imation) as F+ = hn2D

2e
1
B − 1

2 and F− = − g4 m
∗

m0
, where

we assume that n2D =
k2
F

2π is the 2DEG electron density
at B = 0.

The corresponding resistivity can now be determined
through Eq. (22) and reads
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δρxx(B) = 2

∞∑
l=1

e−lπ
~/τq
~ωc

2π2lkBT/~ωc
sinh (2π2lkBT/~ωc)

cos

[
2πl

(
fSdH

B
− 1

2

)]
cos

(
πlg∗

m∗

m0

)
, (30)

where fSdH = hn2D

2e and we have assumed a Lorentzian
form for the LΓ broadening. For small magnetic fields,
both effective mass and g-factor nominal values do not
depend on the magnetic field60. As a result, the 1/B-
dependence of the resistivity in a 2DEG with only Zee-
man coupling, displays oscillations with frequencies mul-
tiple of fSdH, and absence of beating. This can be
seen from Fig. 4, where we plot δρxx(B) vs 1/B for
the harmonics l = 1, 2, 3 and clearly see oscillations
with the respective frequencies fSdH,2fSdH, and 3fSdH.
The solid (dotted) curves correspond to g∗ = −34 and
m∗ = 0.019mo (g∗ = 0 and m∗ = 0.019mo)

15,39. Note
that the higher harmonics have smaller resistivity am-
plitudes. This occurs due to the Dingle factor ∝ e−l/B ,
which suppresses the higher harmonic components.

0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.0

FIG. 4. Magnetoresistivity deviation δρxx(B) as a function
of 1/B for a 2DEG with only Zeeman coupling and no SO
couplings. The lowest curve corresponds to δρxx(B) and the
curves labelled by l are the individual frequency components
in Eq. (30). The solid (dashed) line corresponds to g∗ = −34
(g∗ = 0), m∗ = 0.019mo and n2D = 3.3 × 10−3 nm−2. These
parameters are for InSb-based wells 15,39.

We should stress that the effects of the Zeeman cou-
pling within the plot of δρxx(B) are not immediately
obvious. For instance, it can be seen that for g∗ = 0
and g∗ 6= 0, the corresponding δρl=1

xx (B) (blue curves de-
picting the first harmonic) only differ from themselves

by the amplitude of the oscillation. For ∆̃ = −0.323,
cos(2π∆̃/2) is smaller than one, thus yielding a reduc-
tion of the total amplitude for g∗ 6= 0 as compared to

g = 0. As a consequence, the presence of Zeeman is not
readily evident from the oscillations of δρl=1

xx (B). Con-
versely, the Zeeman is only manifested within the resis-
tivity when one considers many harmonics, as we discuss
below.

The definition of DOS in Eq. (21) gives broadened Lan-
dau levels separated by ~ωc , which are in turn spin
split by the Zeeman term ∆̃ [See Eq. (27) and Fig. 3].
This spin splitting can only be seen in the resistivity
[Eq. (30)] when the contributions from the first and

second harmonics, cos(2πfSdH/B − π) cos(2π∆̃/2) and

cos(4πfSdH/B − 2π) cos(4π∆̃/2), respectively, have op-

posite signs. For the parameters of Fig. 3 ∆̃ = −0.323
the Zeeman term significantly affects the maximum of the
resistivity. This can be seen in Fig. 4, where the resistiv-
ities associated to harmonics l = 1 and l = 2 (blue and
cyan solid curves, respectively), interfere in a destructive
way, producing the double-peak feature in the total resis-
tivity (purple solid lines), characteristic of the incipient
spin splitting in such data. We emphasize, however, that
this feature can be absent depending on the broadening
of the energy levels (due to the overlap of the spin-split
levels). This is the reason why the double-peak feature
is not seen on the other maximum peaks.

Although the g∗-factor term does not depend explicitly
on magnetic field, it can manifest itself in the magneto-
oscillations. More specifically, Zeeman-only effects can
have a pronounced effect on the magneto-oscillations,
controlling the amplitude and sign of how subsequent
harmonics are added, either constructively or destruc-
tively, before being damped by the quantum life time.
Furthermore, it is important to say that the Zeeman
can give rise to interesting features and affect drasti-
cally the understanding of the magneto-oscillations. For
instance, if one could engineer a material61 such that

∆̃ = g∗

2
m∗

mo
= 0.5 +m with m ∈ Z, then the main weight

of the resistivity would be due to the second harmonic
with SdH frequently 2fSdH as cos(lπ∆̃) = 0 for l = 1.

B. Landau Levels with Zeeman and Rashba
interactions

We now analyze the case where we have the presence
of both Zeeman and Rashba terms, i.e., ∆̃ 6= 0, α 6= 0
and no Dresselhaus coupling β = 0 in Eq. (9). In the spin
basis {|↑〉 , |↓〉}, the corresponding Hamiltonian assumes
the following matrix form

H̃
~ωc

=

(
a†a+ 1

2 + ∆̃
2 2αBa

2αBa
† a†a+ 1

2 − ∆̃
2

)
. (31)
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TABLE I. Definitions of the Zeeman and SO-related quantities used is this work.

Zeeman (g∗) ωc = eB
m∗ `c =

√
~
eB ∆ = g∗µBB ∆̃ = ∆

~ωc = g∗m∗

2m0

Rashba (α) εR = α2m∗

2~2 =
~2k2

R

2m∗ αB = α√
2~ωc`c

εR
~ωc = α2

B

Dresselhaus (β) εD = β2m∗

2~2 =
~2k2

D

2m∗ βB = β√
2~ωc`c

εD
~ωc = β2

B

SO parameters γ = αB + βB δ = αB − βB Ω = 2εR/~ωc
1−∆̃

+ 2εD/~ωc
1+∆̃

Λ = 2εR/~ωc
1−∆̃

− 2εD/~ωc
1+∆̃

Interestingly, the operator N+ = a†a + σz/2 com-

mutes with the Hamiltonian above, i.e., [H̃,N+] = 0,

and hence H̃ and N+ share the same eigen-
states. Hence we have N+ |n, ↑〉 = (n+ 1/2) |n, ↑〉 and
N+ |n+ 1, ↓〉 = (n+ 1/2) |n+ 1, ↓〉 , i.e., for n ∈ N, |n, ↑〉
and |n+ 1, ↓〉 are degenerate with respect to the op-
erator N+, except for |0, ↓〉 with corresponding energy
ε0,↓
~ωc = 1

2 (1 − ∆̃). As a consequence, a linear combina-

tion of |n, ↑〉 and |n+ 1, ↓〉 is also an eigenstate of our
Hamiltonian Eq. (31). This motivates us to rewrite the
total Hamiltonian as a direct sum of 2× 2 block Hamil-
tonians in the basis {|n, ↑〉 , |n+ 1, ↓〉}(H̃|n,↑〉;|n+1,↓〉), in
addition to the non-degenerate decoupled Hamiltonian
(H̃|0,↓〉), namely

H̃ = H̃|0,↓〉 ⊕
∞⊕
n=0

H̃|n,↑〉;|n+1,↓〉, (32)

with H̃|0,↓〉 = ε0,↓ and

H̃|n,↑〉;|n+1,↓〉 = ~ωc

(
n+ 1

2 + ∆̃
2 2αB

√
n+ 1

2αB
√
n+ 1 n+ 1 + 1

2 − ∆̃
2

)
.

(33)
The diagonalization of the Hamiltonian Eq. (33) yields
energies

εn,s
~ωc

=

(
n+

1

2
+
s

2

)
(34)

− s

2

1− ∆̃

|1− ∆̃|

√(
1− ∆̃

)2

+ 16α2
B

(
n+

1

2
+
s

2

)
,

with s = ± and n ∈ N0, which already incorporates
the energy of the decoupled state |0, ↓〉, ε0,− ≡ ε0,↓
(ε0,+ ≡ ε0,↓) if 1− ∆̃ > 0 (1− ∆̃ < 0). These LLs are
plotted in Fig. 5 as a function of 1/B for parameters
α = 10 meV nm, m∗ = 0.019mo and g∗ = −34 15,39.
Due to the spin-orbit coupling, the energy levels

εl,s
~ωc are

no longer equidistant, and their separation changes as
function of 1/B. On this scale, the energy dispersion

appears linear in 1/B. In fact, for ∆̃ < 0 (∆̃ > 0)
the spin-splitting is enhanced (suppresses) relative to the
case with α = 0 (See Fig. 3). This can be seen through

the expansion of the term (1−∆̃)2 within the square root

of Eq. (34), yielding −2∆̃, which enhances the Zeeman
splitting in the presence of Rashba SO coupling.39

Accordingly, for this case we obtain

F+(ε,B) =
ε

~ωc
− 1

2
+ 2α2

B , (35)

F−(ε,B) = −1

2
+

1

2

1− ∆̃

|1− ∆̃|

√
(1− ∆̃)2 + 16α2

B

(
α2
B +

ε

~ωc

)
.

(36)

Differently from the results in the previous section, here
both F± functions depend on the magnetic field. As a
consequence, we will have more complex oscillations in

ρxx(B) as compared to the case without Rashba coupling
[Fig. 4].

In Fig. 6, we plot the total differential magneto-
resistivity δρxx(B), and the independent contributions
from harmonics l = 1, 2 and l = 3. Here we use
α = 10 meV nm, m∗ = 0.019mo, g

∗ = −34 and n2D =
3.3 × 10−3 nm−215,39. Similarly to the case with α = 0
(dashed line in Fig. 6), here we also see oscillations
for the l = 1, 2, 3 harmonics with respective frequencies
fSdH, 2fSdH and 3fSdH. However, for l = 1 we observe
beating, which can be expected as both F−(ε,B) and
F+(ε,B) frequencies now depend on 1/B. More specifi-
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1.0 1.5 2.0 2.5 3.00.5

FIG. 5. Landau levels n = 4, 5 [Eq. (34)] as a function of 1/B
for a 2DEG with non-zero Zeeman and Rashba interactions
but no Dresselhaus coupling (β = 0). The dotted line denotes
εF /~ωc. The parameters here are α = 10 meV nm, m∗ =
0.019mo, g∗ = −34 and n2D = 3.3 × 10−3 nm−2 for InSb-
based wells15,39. The dashed lines show the corresponding
levels for α = 0.

cally, this beating appears here because in the magnetic
range considered we have 2πlF−(B) = π

2 , which leads
to a node in δρxx as δρxx ∝ cos [2πlF−(B)]. Note that
this only occurs for l = 1, since for higher harmonics this
condition is not satisfied. Due to the larger amplitude of
the harmonic l = 1, this beating is also seen in the total
magneto-resistivity.

C. Landau Levels with Zeeman and Dresselhaus
interaction

In the case of Zeeman with pure Dresselhaus, i.e., ∆̃ 6=
0, α = 0 and β 6= 0, the Hamiltonian Eq. (9) in the spin
basis is given by

H̃
~ωc

=

(
a†a+ 1

2 − ∆̃
2 2βBa

†

2βBa a†a+ 1
2 + ∆̃

2

)
. (37)

Differently from the case of pure Rashba, here the oper-
ator N− = a†a − σz/2 commutes with the Hamiltonian
above. For this case we have N− |n, ↓〉 = (n+ 1/2) |n, ↓〉
and N− |n+ 1, ↑〉 = (n+ 1/2) |n+ 1, ↑〉, i.e., for n ∈ N,
|n, ↓〉 and |n+ 1, ↑〉 are degenerate with respect to the
operator N−, except for the state |0, ↑〉 with correspond-

ing energy
ε0,↑
~ωc = 1

2 (1 + ∆̃). As a consequence, a linear

combination of |n, ↓〉 and |n+ 1, ↑〉 is also an eigenstate
of our Hamiltonian. Therefore, differently from the pre-
vious case here the Hamiltonian reads,

H̃ = H̃|0,↑〉 ⊕
∞⊕
n=0

H̃|n,↓〉;|n+1,↑〉, (38)

with H̃|0,↑〉 = ε0,↑ and

1.0 1.5 2.0 2.5 3.00.5

1.0

1.2

0.8

0.6

0.4

0.2

0.0

-0.2

FIG. 6. Magnetoresistivity deviation δρxx(B) as a function of
1/B for a 2DEG with Zeeman and Rashba interactions and
no Dresselhaus coupling (β = 0). The lowest curve corre-
sponds to δρxx(B) and the curves labelled by l are the indi-
vidual frequency components (i.e., harmonics) in Eq. (30).
The solid lines are obtained with g∗ = −34, α = 10 meV nm,
m∗ = 0.019mo and n2D = 3.3 × 10−3 nm−215,39; the dotted
lines show the corresponding α = 0 case.

H̃|n,↓〉;|n+1,↑〉 = ~ωc

(
n+ 1

2 − ∆̃
2 2βB

√
n+ 1

2βB
√
n+ 1 n+ 1 + 1

2 + ∆̃
2

)
.

(39)
The diagonalization of the Hamiltonian Eq. (39) yields
energies

εn,s
~ωc

=

(
n+

1

2
− s

2

)
(40)

+
s

2

1 + ∆̃

|1 + ∆̃|

√(
1 + ∆̃

)2

+ 16β2
B

(
n+

1

2
− s

2

)
,

with s = ± and n ∈ N0, which already incorporates the
energy of the decoupled state |0, ↑〉, ε0,+ ≡ ε0,↑ (ε0,− ≡
ε0,↑) if 1 + ∆̃ > 0 (1 + ∆̃ < 0). Here, it is important
to notice the opposite sign of s with respect to Eq. (33).
This happens because the pure Dresselhaus Hamiltonian
Eq. (39) has opposite basis ordering of the spin states
as compared to the pure Rashba Hamiltonian Eq. (33).
Accordingly, the F± functions change slightly and read

F+(ε,B) =
ε

~ωc
− 1

2
+ 2β2

B , (41)

F−(ε,B) =
1

2
− 1

2

1 + ∆̃

|1 + ∆̃|

√(
1 + ∆̃

)2

+ 16β2
B

(
β2
B +

ε

~ωc

)
.

(42)
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FIG. 7. Landau levels n = 4, 5 [Eq. (40)] as a function of 1/B
for a 2DEG with Zeeman and Dresselhaus interations but no
Rashba coupling (α = 0). The dotted line denotes εF /~ωc.
The parameters here are β = 10 meV nm, m∗ = 0.019mo,
g∗ = −34 and n2D = 3.3× 10−3 nm−215,39 dashed lines show
the corresponding levels for β = 0.

Due to the: i) similarity of the Dresselhaus expression
Eqs. (40), (41) and (42) to the ones arising from the
pure Rashba case, Eqs. (34), (35) and (36); ii) cosine
dependence of the F± functions within the resistivity
Eq. (22); all the results and equations in the last sec-

tion also holds here by making αB → βB , ∆̃ → −∆̃
and s → −s. This can also be seen on the level of the
Hamiltonian in Eq. (2) where applying the unitary trans-
formation W = ei

π
2 σxei

π
4 σz results in

W
H̃
~ωc

W † = (a†a+ 1/2) +
(−∆̃)

2
σz + βB(a†σ− + aσ+),

+αB(a†σ+ + aσ−), (43)

which is the expected result. This mapping from (α, ∆̃)

to (β,−∆̃) has visible consequences on the energy lev-
els. In Fig. 7 we plot the corresponding LLs [Eq. (40)]
as a function of 1/B for parameters β = 10 meV nm,
m∗ = 0.019mo and g∗ = −3415,39. Due to the spin-orbit
coupling, the energy levels

εl,s
~ωc are no longer equidis-

tant, and their separation changes as function of 1/B.
However, differently from the pure Rashba case, now the
Dresselhaus competes with the Zeeman coupling, even
leading to LL-dependent crossings. This can be seen
through the expansion of (1+∆̃)2 within the square root

[Eq. (40)], which will give rise to 2∆̃ < 0, thus suppress-
ing the spin splitting in the presence of Dresselhaus SO
coupling.

In Fig. 8 we plot the total differential magneto-
resistivity δρxx(B), and the individual contributions
from the harmonics l = 1, 2 and l = 3. We use β =
10 meV nm, m∗ = 0.019mo, g∗ = −34 and n2D =
3.3 × 10−3 nm−215,39. First, similarly to the previous
cases, here we can also clearly see oscillations with fre-
quencies fSdH, 2fSdH, 3fSdH. Differently from the pre-

vious case with α = 10 meV nm and β = 0, now we see
no beating for the l = 1 harmonic but find beating for
l = 2. This happens as 2πlF−(B) = π

2 – the condition
to observe beating – is only satisfied for l = 2. Even
though the beating appears within the second harmonic,
it is not manifested in the total differential magneto-
resistivity δρxx(B) for our choice of parameters. This
is due to the smaller oscillation amplitude of l = 2 with
respect to l = 1.

D. Beatings in the SdH oscillations with nonzero
Zeeman and in the presence of either Rashba or

Dresselhaus: a unified description

In this section we will discuss more thoroughly the con-
ditions for the appearance of beatings. The two functions
F+ and F−, Eq. (13), determine the fast and slow com-
ponent, respectively, of the SdH oscillations. To highlight
this point and its connection to the power spectrum in
Eq. (26), we start by rewriting Eqs. (35)- (36), and Eqs.

0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

FIG. 8. Magnetoresistivity deviation δρxx(B) as a function
of 1/B for a 2DEG with Zeeman and Dresselhaus interac-
tions and no Rashba coupling (α = 0). The lowest curve
corresponds to δρxx(B) and the curves labelled by l are the
individual frequency components in Eq. (30). The solid lines
are calculated for g∗ = −34, β = 10 meV nm, m∗ = 0.019mo

and n2D = 3.3 × 10−3 nm−215,39; the dotted line shows the
corresponding β = 0 case.
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(42)- (42) in a unified way

F+(ε,B) = fSdH
R(D)

1

B
− 1

2
, (44)

F−(ε,B) = ∓1

2
±1

2

1∓ ∆̃

|1∓ ∆̃|

√
(1∓∆̃)2 + 4

(
fR(D)

1

B

)2

,

(45)

where we have introduced the magneto-oscillation fre-
quencies

fSdH
R(D) =

h

2e

(
n2D +

k2
R(D)

π

)
, (46)

fR(D) =
h

2e

√
2k2
R(D)

π

√
n2D +

k2
R(D)

2π
, (47)

where the R (D) index refers to either pure Rasbha

(Dresselhaus) case, with kR = mα
~2 (kD = mβ

~2 ). Here,
the upper (lower) sign refers to the Rashba (Dressel-
haus) case. In the case where n2D � k2

R(D)/2π, and

4 6 8 10 12
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FIG. 9. Frequency response
√
I(f) for α = 10.0 meV nm

and β = 0.0 [red curve], and α = 0.0 and β = 10.0 meV nm
[blue curve]. Other parameters are m∗ = 0.019mo, g∗ =
−34 and n2D = 3.3× 10−3 nm−215,39. The solid black shows
corresponds to no spin-orbit coupling (α = β = 0) and black
dashed corresponds to α = β = g = 0.

fR(D)/B � 1, the beating frequency takes the stan-

dard form fR(D) = h
2e

√
2k2
R(D)n2D/π, in which case

∆̃ becomes irrelevant for the magnitude of the beating
frequency36.

The frequency fSdH
R(D) [Eq. (46)] is the main SdH fre-

quency of the magneto-resistance oscillations, usually
extracted from experiments to infer the 2D electronic
density n2D. On the other hand, the frequency fR(D)

[Eq. (47)] is the one allowing for possible beatings in
the magneto-oscillation. As previously discussed in the
last two sections, the presence of beating happens when

2πlF−(B) = π
2 is satisfied, which depends on the value

of both fR(D) and ∆̃.

The presence or absence of beatings can also be visu-
alized through the power spectrum defined by Eq. (26).
From interference of waves, we know that the presence of
beatings correspond to sum of cosines waves with slightly
different frequencies. Accordingly, the power spectrum
for this case would show two peaks located at slightly
different frequencies. In Fig. 9 we plot

√
I(f) for

m∗ = 0.019mo and n2D = 3.3 × 10−3 nm−2, using dif-
ferent spin-orbit parameters and g-factor values. For all
different sets of parameters, we always have the pres-
ence of two main peaks located at both 1/B ≈ 6.8 T−1

and 1/B ≈ 13.6 T−1. These correspond to the main
SdH frequencies for the first and second harmonics, fSdH

R(D)

and 2fSdH
R(D), respectively. In the absence of both Rashba,

Dresselhaus and g-factor (dashed yellow curve), we ob-
serve no beating in the δρxx (Fig. 4).

On the other hand, for the case of pure Rashba α =
10 meV nm with g = −34 (solid red curve), the presence
of the beating in Fig. 6 is made clear by the splitting
of the peak of the power spectrum around f = fSdH

R
in Fig. 9. Interestingly, for α = 10 meV nm with g =
0 (dashed red curve), the splitting of the peak is not
seen anymore, thus highlighting the important role of
the Zeeman on the visualization of beatings. For the
pure Dresselhaus case with β = 10 meV nm and g = −34
(solid blue line), we do not see a peak splitting at the f =
fSdH
D but rather at f = 2fSdH

D , which is consistent with
the presence of the beating seen on the second harmonic
in Fig. 8. Similarly to the pure Rashba case, for β =
10 meV nm with g = 0 (dashed blue line), the splitting
of the peak is not seen anymore, corroborating again the
role of the Zeeman term on the presence of beatings.

The apparent “asymmetry” in having peak-splitting
for Rashba spin-orbit coupling but not for Dresselhaus
(even when they have same SO strength) can be under-
stood from the behavior of the lF−-function vs 1/B,
shown in Fig. 10. As already discussed previously in
Secs. V B and V C, the condition for beating happens
when cos(2lπF−) = 0 or equivalently, lF− = ±1/4 (±1/4
plotted as gray lines). In the case of Rashba (green lines)

one has (1 − ∆̃) > 1, and the condition for a beating
node, cos(2lπF−) = 0, is reached in the interval of 1/B
for l = 1 (solid purple) (gray circles). In the Dresselhaus

case, (1 + ∆̃) < 1, such that lF− for l = 1 only crosses
−1/4 for large values of 1/B, where the amplitude of
the SdH has already been suppressed. Conversely, lF−
crosses 1/4 for l = 2 at smaller values of 1/B, thus guar-
anteeing the presence of a beating within the magnetic
field range, as shown in Fig. 8.
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FIG. 10. Plot of lF−(B) vs 1/B for l = 1 and l = 2 using
α = 10 meVnm with β = 0 (purple lines), α = β = 0 (cyan
lines), and β = 10 meVnm with α = 0 (green lines). The solid
gray lines indicate ±1/4 and the gray circles indicate where
beating nodes occur. For all curves, we use m∗ = 0.019mo,
g∗ = −34 and n2D = 3.3 × 10−3 nm−2, parameters for InSb-
based 2DEGs15,39.

E. Landau Levels with simultaneous Zeeman,
Rashba and Dresselhaus interactions: Analytical

results

As mentioned earlier, to the best of our knowledge,
there are no general exact analytical results for the ener-
gies and SdH oscillations corresponding to the case with
simultaneous and arbitrary Zeeman, Rashba and Dressel-
haus couplings. Therefore, in this section we will outline
how to derive an effective approximate solution that can
be used to shed light on magnetotransport results for
materials, e.g. GaAs or InAs, in which all the three cou-
plings are present. For convenience, we define the sum
and difference of the spin-orbit couplings

γ = αB + βB , (48)

δ = αB − βB , (49)

[see definitions of αB and βB following Eq. (9)] which
allows us to rewrite Eq. (9) as

H̃
~ωc

= a†a+
1

2
+

∆̃

2
σz +

γ + δ

2

(
a†σ− + aσ+

)
+
γ − δ

2

(
a†σ+ + aσ−

)
. (50)

Note that both the pure Rashba and pure Dresselhaus
cases are recovered from the equation above for γ = δ and
γ = −δ, respectively. Next, we define the Hamiltonian
for γ = δ and γ = −δ

H̃±
~ωc

= a†a+
1

2
+

∆̃

2
σz ± δ(a†σ∓ + aσ±), (51)

which describes the pure Rashba (+) and pure Dres-
selhaus (−) cases in the presence of the Zeeman cou-
pling. As we already discussed in the previous sec-

tions, by defining the operator N± = a†a ± 1
2σz, we

obtain [H̃±,N±] = 0, so the eigenstates of H̃± are
also eigenstates of N±. The eigenstates of N+ (N−)
are then constructed from the pair {|n, ↑〉, |n + 1, ↓〉}
({|n, ↓〉, |n+ 1, ↑〉}). The above statement is true except
for the decoupled eigenstates |0, ↑〉 (|0, ↓〉) with corre-

sponding eigenenergy ~ωc(1− ∆̃)/2 [~ωc(1 + ∆̃)/2]. The
diagonalization of each two state subspace results in

εn,s
~ωc

=

(
n+

1

2
+

δ

|δ|
s

2

)
− δ

|δ|
s

2

(
1− δ

|δ|∆̃
)

×
√

1 +
16δ2

(1− δ
|δ|∆̃)2

(
n+

1

2
+

δ

|δ|
s

2

)
, (52)

with s = + (−) and n ∈ N0. Note that this form is
valid for both pure Rashba (δ = γ > 0) and Dresselhaus
(δ = −γ < 0), Eqs. (34) and (40), respectively, thus
also including the corresponding decoupled state with the
lowest eigenvalues of N±. Note that to recover the pure
Zeeman case with no Rashba and Dresselhaus, we should
take δ → 0 with δ/|δ| → 1.

When both Rashba and Dresselhaus are present, we
can use second order perturbation theory with respect to
δ, γ � 1 (See Appendix E), to obtain the approximate
eigenvalues of the Hamiltonian in Eq. (50), namely

εn,s
~ωc

= n+ 1/2 + s
∆̃

2
− 2sΛ(l + 1/2)− Ω (53)

where the quantities Λ and Ω are defined as

Λ =
(γ2 + δ2)∆̃ + 2γδ

(1− ∆̃2)
=

2 εR
~ωc

(1− ∆̃)
−

2 εD
~ωc

(1 + ∆̃)
, (54)

Ω =
(γ2 + δ2) + 2γδ∆̃

(1− ∆̃2)
=

2 εR
~ωc

(1− ∆̃)
+

2 εD
~ωc

(1 + ∆̃)
, (55)

where we have introduced εR/~ωc = α2
B and εD/~ωc =

β2
B .

Our goal now is to rewrite Eq. (53) in a form that re-
covers the already obtained exact results for pure Rashba
and pure Dresselhaus cases. First, we write Λ = Λ

|Λ| |Λ|
since Λ changes sign depending on the relative strengths
of α and β, similarly to the sign of δ that enters into Eq.
(52). By adding and subtracting a term s

2
Λ
|Λ| in Eq. (53)

and after some straightforward algebra we obtain

εn,s
~ωc

=

(
n+

1

2
+

Λ

|Λ|
s

2

)
− Λ

|Λ|
s

2

(
1− Λ

|Λ|∆̃
)

×
{

1 +
4

1− Λ
|Λ|∆̃

[
|Λ|
(
n+

1

2

)
+ Ω

Λ

|Λ|
s

2

]}
.

(56)

In the case of pure Rashba we have Λ = Ω = δ2

1−∆̃
> 0

while for pure Dresselhaus Λ = −Ω = − δ2

1+∆̃
< 0; these
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neatly reduce to the exact results when using second or-
der Taylor expansion of Eq. (52). Note that Eq. (56) also
reproduces the exact result for when α = β and g∗ = 0

62, represented here by Λ → 0 with Λ/|Λ| → 1, ∆̃ = 0,
and Ω = 2εD/R/~ωc . The mathematical expression of
Eqs. (34) and (40) motivate us to rewrite Eq. (56) as

εn,s
~ωc

=

(
n+

1

2
+

Λ

|Λ|
s

2

)
− Λ

|Λ|
s

2

1− Λ
|Λ|∆̃

|1− Λ
|Λ|∆̃|

×
√(

1− Λ

|Λ|∆̃
)2

+ 8

(
1− Λ

|Λ|∆̃
)[
|Λ|
(
n+

1

2

)
+ Ω

Λ

|Λ|
s

2

]
, (57)

where we have used 1+ x
2 ≈
√

1 + x63. It is important to
note that although |Λ| � 1, Λ enters the square root mul-
tiplied by n, the Landau level index. This means that for
high enough n, the product |Λ|n is not necessarily a small
quantity. Accordingly, although the equation above be-
comes exact for either pure Rashba or Dresselhaus case,
for α, β 6= 0 Eq. (57) is only valid when |Λ|n . 1, be-
sides αB , βB , δ, γ � 1 already assumed in Appendix E to
obtain Eq. (53).

We reiterate that Eq. (57) satisfies the exact results for
(i) the Zeeman-only case [Eq. (27)], (ii) the pure Rashba
plus nonzero g∗ [Eq. (34)] and (iii) the pure Dresselhaus

plus nonzero g∗ [Eq. (40)]. The case α = β with g∗ = 0,
for which there is also an exact solution62, is satisfied
to leading order using

√
1 + x ≈ 1 + x/2 for with x =

8Ω(s/2)/(1 − ∆̃) � 1. That is, as mentioned in the
previous paragraph, the approximate solution given by
Eq. (56) reproduces the exact solution for α = β with
g∗ = 062.

As in the case of pure Zeeman, Rashba or Dresselhaus,
we can now calculate the F -function from Eq. (57). The
corresponding results are presented in Appendix F, and
by neglecting SO contributions higher or equal than sec-
ond order in the spin-orbit parameters Λ and Ω (or fourth
order in γ and δ), we obtain

F+ =
ε

~ωc
− 1

2
+ Ω− Λ∆̃, (58)

F− = −1

2

Λ

|Λ| +
1

2

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣
√(

1− Λ

|Λ|∆̃
)2

+ 8 |Λ|
(

1− Λ

|Λ|∆̃
)[

ε

~ωc
+

1

2
|Λ|
(

1− Λ

|Λ|∆̃
)]
. (59)

It is easy to see that these equations recover all the pre-
vious results: pure Zeeman [Eq. (29)], Zeeman with pure
Rashba [Eqs. (35) and (36)], and Zeeman with pure Dres-
selhaus [Eqs. (41) and (42)]. Additionally, in the case of

Λ ≈ 0, F−≈ −∆̃/2 , which reduces to the pure Zeeman
case. Accordingly, here F− becomes independent of B
(for B . 1 T), and therefore, we expect the absence of
beatings in the magneto-resistivity, previously seen for

both pure Rashba and pure Dresselhaus cases.

F. Generalized SdH magneto-resistivity for
arbitrary α, β and g∗ : new prediction for the

absence of beatings.

Using the Eqs. (58) and (59) in Eq. (24), we can de-
rive the magnetoresistivity δρxx(B) for the case with ar-
bitrary Rashba and Dresselhaus couplings and simulta-
neous nonzero Zeeman field,

δρxx(B) =2

∞∑
l=1

e−lπ
~/τq
~ωc

2π2lkBT/~ωc
sinh(2π2lkBT/~ωc)

× cos

[
2πl

(
εF
~ωc

+
2εR
~ωc

+
2εD
~ωc

)]
cos

πl
√(

1− Λ

|Λ|∆̃
)2

+ 16λ2
B

(
λ2
B +

εF
~ωc

) , (60)
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with λ2
B = |Λ|

2

(
1− Λ

|Λ|∆̃
)

. From Eq. (60), we can derive

the condition for the absence of beatings for any l by find-
ing the condition for the second cosine being independent
of 1/B ; this implies |Λ| = 0, which leads to

α

β
=

√
1− ∆̃

1 + ∆̃
, (61)

thus yielding Eq. (1) presented in the introduction. For

∆̃ � 1, the above condition is reduced to α ≈ β, corre-
sponding to the situation where the total SO k-dependent
effective field becomes unidirectional5–7.

Note that the above condition does not correspond to
any fundamental symmetry, since there is no new con-
served quantity in our Hamiltonian with both non-zero
Zeeman (g∗ 6= 0) and Rashba-Dresselhaus couplings.
We reiterate that Eq. (61) is entirely distinct from the
persistent-spin-helix condition α = β. As shown in
Fig. 1(d), the case α = β and g∗ 6= 0 does not show
peak splitting in the first harmonic but ehxibits beating
(or peak splitting) in the second harmonic. Only when
g∗ = 0 (no Zeeman) and α = β there are peak splittings
absent altogether44,62.

G. Beatings for both α and β non-zero

In the previous sections, we studied the effect of the
Zeeman interaction on the frequency splitting of the
power spectrum peaks, which represents the beatings in
the SdH oscillations. Here we study the interplay of both
the Dresselhaus and Rashba interactions on the beatings
of the SdH oscillations.

Similarly to what we did leading up to Eq. (47), we
can obtain the effective beating frequency from the F−–
function in Eq. (59) which results in

fR+D =
h

2e

√∣∣∣∣2k2
R+D

π

(
n2D +

k2
R+D

2π

)∣∣∣∣, (62)

where the effective SO momentum is

kR+D =
m∗

~2

√(
1− Λ

|Λ|∆̃
)(

α2

1− ∆̃
− β2

1 + ∆̃

)
. (63)

We start with the pure Rashba case plus Zeeman, α =
7.0 meV nm and g∗ = −34. The corresponding power
spectrum yields the bottom curve in Fig. 11, similar to
the one plotted in Fig. 9. This curve shows two main
peaks representing the first two harmonics, and the pres-
ence of a split main peak. We assume a Lorentzian broad-
ening ~τ−1

q = 1.75 meV. When the Dresselhaus coupling
β increases, we see the splitting of the main peak reduces
until it vanishes for β = 5.0 meV nm (the frequency split-
ting from Eq. (62) is indicated by the gray circles). The
absence of beating is indeed expected as predicted by the

FIG. 11. Normalized power spectrum
√
I(f) for a fixed α =

7.0 meV nm, and for β = 0.0 to 10 meV nm, from bottom
to top. [red curves], along with full numerical results [black
dashed]. The curve corresponding to kRD = 0 with β =
5.0 meV nm, is shown [blue curve]. The gray circles indicate
the frequency splitting in Eq. (62). Other parameters are
m∗ = 0.019mo, g∗ = −34, n2D = 3.3 × 10−3 nm−2, and
~τ−1

q = 1.75 meV, for InSb-based 2DEGs15,39

FIG. 12. Normalized power spectrum
√
I(f) for a fixed

β = 5.0 meV nm, and for α = 0.0 to 9.0 meV nm, from
bottom to top. [red curves] along with full numerical re-
sults [black dashed]. The curve corresponding to kRD = 0
with α = 7.0 meV nm [blue curve]. The gray circles indi-
cate the frequency splitting in Eq. (62). Other parameters
are m∗ = 0.019mo, g∗ = −34, n2D = 3.3 × 10−3 nm−2, and
~τ−1

q = 1.75 meV, for InSb-based 2DEGs15,39

condition β = α
√

1+∆̃
1−∆̃

= 5.0 meV in Eq. (61). For larger

β, we see that the splitting of the main peak remains
neglible. However, in the second harmonic a clear split-
ting opens up. The condition for having no peak split-
ting at any harmonics is indeed the condition in Eq. (61),
where the effects of the SO couplings basically disappear
[there are still small SO terms εR , εD in Eq. (60)]. The
power spectrum using full numerical calculations are also
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shown [black dashed], and for this parameter regime the
analytical and numerical results agree well.

A similar analysis can be done for the case of pure
Dresselhaus with Zeeman, β = 5.0 meV nm and g∗ =
−34, see Fig. 12. Here the splitting is not observed
in the main peak, but rather in the second harmonic.
As α is increased from 0.0 to 9.0 meV nm, the split-
ting in the second harmonic decreases, and vanishes at
α = 7.0 meV nm, which again corresponds to the con-
dition in Eq. (61). Despite the good accuracy of the
approximate analytical solution for α . 8.0 meV nm, it
starts to deviate from the exact one (full numerics) for
higher values of β. This happens because for these val-
ues, the combined effect Rashba and Dresselhaus is more
pronounced, producing an anti-crossing between different
energy levels (see blue curves Fig. 14, discussed further
below). While the approximate energies obtained here
are always monotonic with respect to 1/B, around the
anti-crossing the numerical ones are not. Accordingly,
our F -function calculation will not be able to fully de-
scribe the SdH oscillations and frequencies around the
anti-crossing regions, specifically the approximate solu-
tion misses a central peak that starts developing, which
will be discussed in the next section. In terms of the F -
function, the occurance of level anticrossings corresponds
to |F−| ≈ 1/2. Since the power spectrum is obtained by
integrating δρxx over a range of 1/B, there is no simple
condition determining the validity of the approximate so-
lution. However, looking at the λB term in Eq. (59) the
condition

8πn2D

(
k2
R

1− ∆̃
− k2

D

1 + ∆̃

)
l4c . 1, (64)

yields a useful estimate for the 1/B values where the
Dingle factor has not suppressed δρxx. Equation (64)
generalizes a similar condition derived in Ref. 57. It is
also interesting to note that the analytical result is more
accurate for higher harmonics, as the Dingle-factor helps
diminishing the amplitude of the anti-crossing at higher-
fields (see Fig. 14).

VI. LANDAU LEVELS WITH ZEEMAN,
RASHBA AND DRESSELHAUS INTERACTIONS:

NUMERICAL RESULTS

In the previous section, we have derived an approxi-
mate analytical result for the magnetoresistance oscilla-
tions in the presence of both Rashba, Dresselhaus and
Zeeman interactions. The assumptions and approxima-
tions underlying the derivation involved the relatively
small SO coupling and the low number of occupied Lan-
dau levels. These are satisfied in the low electron density
InSb-based 2DEGs of Refs. 39 and 64. For higher elec-
tron density systems (but still with just a singly-occupied
subband at B = 0), such as the InAs/GaSb wells in
Ref. 41, a numerical approach is needed. Below we out-

line the numerical procedure. The numerical approach
also allows us to account for the full form of cubic Dres-
selhaus term, see Sec. VI A.

For the case of either pure Rashba or Dresselhaus with
Zeeman, the absence of anti-crossing in the LL spectrum
allow us to obtain exact analytical results for the prob-
lem. As we explain below, this does not hold in the pres-
ence of both Rashba and Dresselhaus with the Hamilto-
nian (in the spin basis) Eq. (9)

H̃
~ωc

=

(
a†a+ 1

2 + ∆̃
2 2αBa+ 2βBa

†

2αBa
† + 2βBa a†a+ 1

2 − ∆̃
2

)
. (65)

Therefore, here we calculate the magnetotransport nu-
merically via the diagonalization of the Hamiltonian
above. The F -function method used for the analytical
cases can be extended to allow for numerical methods
for calculating the energy spectrum, see App. D.

As opposed to both the pure Rashba and pure Dres-
selhaus cases, N± do not commute with the Hamiltonian
above, and therefore, the diagonal basis cannot be de-
scribed by any linear combination of the previous degen-
erate eigenstates of N±. However, there is still a unitary
operator, P = exp

{
iπ
(
N± − 1

2

)}
that commutes with

this Hamiltonian, called the parity operator 51,52, which
is discussed in detail in App. B. The corresponding uni-
tary transformation gives PaP† = −a, Pa†P† = −a†
and Pσ±P† = −σ±, which clearly makes the Hamilto-
nian Eq. (9) invariant due to presence of only a†a, a†σ±
and aσ± terms. The eigenvalues of P, ±1, help analyze
the energy spectrum behavior.

To understand the influence on the spectrum of both
Rashba and Dresselhaus contributions, we first recall
that in the absence of the latter, the Rashba term is
responsible for coupling |n, ↑〉 to |n+ 1, ↓〉, for n ∈ N0

, thus yielding decoupled 2 × 2 block diagonal Rashba
Hamiltonians (shown by the red boxes in the Hamil-
tonian below). When we account for the Dresselhaus
contribution, we obtain a coupling between states |n, ↓〉
and |n+ 1, ↑〉 for n ∈ N0, which belongs to different
Rashba blocks. More specifically, the Dresselhaus term
produces a coupling between blocks {|n, ↑〉 , |n+ 1, ↓〉}
and {|n+ ∆n, ↑〉 , |n+ 1 + ∆n, ↓〉} with ∆n = 2,
which is indicated by the blue box in the Hamil-
tonian below (See App. B). As a consequence,
we have two decoupled orthogonal basis set given
by {|0+〉} = {|n, ↑〉 , |n+ 1, ↓〉 , . . .} and {|0−〉} =
{|n, ↓〉 , |n+ 1, ↑〉 , . . .} with n ∈ N0. Interestingly, these
decoupled basis have different eigenvalues with respect to
the parity operator, i.e., P |0±〉 = ±1 |0±〉 and therefore,
represent different parity subspace.

In terms of the spectrum, in the presence of only
Rashba SO coupling, we observe multiple crossing be-
tween the Rashba eigenstates {|n,−〉, |n,+〉} for different
n ∈ N0, with energy given by Eq. (34), obtained through
the diagonalization of the Rashba blocks (red boxes
within the Hamiltonian matrix in Fig. 13). This is shown
by the red solid lines in Fig. 14(a) for α = 7.5 meV nm.
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FIG. 13. Graphical illustration of the parity subspaces in the matrix representation of the Hamiltonian Eq. (65). Here we see
the Rashba interaction couples |n− 1, ↑〉 to |n, ↓〉 (red boxes), while the Dresselhaus interaction couples |n, ↓〉 to |n+ 1, ↑〉 (blue
boxes).

In the presence of Dresselhaus SO coupling, the states
|n,−〉 and |n + ∆n,+〉 with ∆n ∈ Nodd belong to the
same parity subspace and adding a Dresselhaus contri-
bution will yield anti-crossing, which open up gaps in the
spectrum (blue curves). Conversely, the decoupling be-
tween the different parity sets, i.e., |n,−〉 and |n+∆n,+〉
with ∆n ∈ Neven, implies multiple crossing between their
corresponding energy states. These features are shown
by the blue curve in Figs. 14(a) and (c), where we have
used β = 3.0 meV nm. Other parameters are m∗ = 0.04,
g∗ = −12 and n2D = 17.6 × 10−3 nm−2. These parame-
ters are for InAs/GaSb-based (double) quantum wells41

in the electron regime. This regime, as emphasized in
Ref. 41, corresponds to the configuration in which the
GaSb well is depleted and the system is effectively a sin-
gle InAs-based asymmetric quantum well with electrons
only. Furthermore, we also observe that the effect of the
Dresselhaus term is to simply shift the crossing point to
a different magnetic field and energy (the crossing-point
energy remains constant to lowest order in β but does in
general shift for higher values of β).

The contrasting behavior of crossings vs. anti-crossings
has direct consequences on the F -function, which will be
analyzed in the next paragraphs. First we consider the
crossing between states |n,−〉 and |n+∆n,+〉, with even
∆n (corresponding to states belonging to different parity
subspaces). The F -function are

εn,−(B) =
ε

~ωc
↔ n = F−

(
ε

~ωc
, B;α, β

)
, (66)

and

εn+∆n,+(B) =
ε

~ωc
↔ n+ ∆n = F+

(
ε

~ωc
, B;α, β

)
,(67)

where we have explicitly added their dependence on α
and β. This results in an F -function difference [see Eq.

13] at the crossing ε = εc and B = Bc

F−
(
εc
~ωc

, Bc;α, β

)
=

∆n

2
∈ Z. (68)

Note that since the SdH oscillation is dependent on F± in
the form of cos(2πF±), we can re-define F− to lie within
an unit interval, e.g., F− ∈ [−1/2, 1/2]. Accordingly,
integer values of F− are equivalent to F− = 0 and there-
fore, the vanishing of F− provides the field values where
the crossing happens. The curves for F− are plotted in
Fig. 14(b) for the same parameters as in Fig. 14(a). It
presents a sawtooth pattern because values of |F−| > 1/2
are shifted back to the [−1/2, 1/2] interval. The role of
the Dresselhaus coupling for these crossings is evident in
Fig. 14(b), where the zeros of F− remain zeros for any
value of β, but are simply shifted to new values of mag-
netic field, open circle moves to open rectangle Fig. 14(b).

Next, we look at the crossing between states belonging
to the same parity subspace, i.e., |n,−〉 and |n+ ∆n,+〉
for odd ∆n. We recall that this crossing only exists for
the pure Rashba case, shown in both Figs. 14(a) and (c).
Here the relations in Eqs. (66) and (67) still hold, the
only difference being the value of ∆n, which results in

F−
(
εc
~ωc

, Bc;α, β = 0

)
=

∆n

2
∈ Z +

1

2
. (69)

Adding a non-zero Dresselhaus contribution will cou-
ple these states and lead to an anti-crossing, shown in
Figs. 14(a) and (c). The anti-crossing result in non half-
integer values of F± in Eqs. (66) and (67) and will lead
to a rounding of the sawtooth pattern as seen in Fig.
(14)(b) (blue curves).

The conditions in Eqs. (68) and (69) lead to values of
cos(2πF−) = 1 [filled circle and rectangle in Fig. 14b)]
and cos(2πF−) = −1 [open cirlce circle in 14b)], respec-
tively, in the case of either pure Rashba or pure Dressel-
haus. However, when both Rashba and Dresselhaus are
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present only the former condition cos(2πF−) = 1 holds
(crossing of states with opposite parity) but the latter
condition changes such that cos(2πF−) > −1 due to an-
ticrossings of states with same parity eigenvalue [open
rectangle in Fig. 14b)]. This, in turn, affects the shape
of the magneto-oscillations leading to an asymmetry in
the maximum and minimum values of cos(2πF−).

275

276

277

1 2 3 4 5 6 7 8 9 10

c)

275

276

277

1 2 3 4 5 6 7 8 9 10

c)

−0.5

−0.25

0

0.25

0.5 b)

124

125

126

a)

124

125

126

a)

ε n
,s

h̄
ω
c

1/B [T−1]

EF/h̄ωc

ε n
,s

h̄
ω
c

1/B [T−1]

EF/h̄ωc

F −
(B

)

β = 0.0meV nm
β = 3.0meV nm

ε n
,s

h̄
ω
c

EF/h̄ωc

ε n
,s

h̄
ω
c

EF/h̄ωc

FIG. 14. The energy spectrum for two sets of (α, β) =
(7.5, 0.0) meV nm [red] and (α, β) = (7.5, 3.0) meV nm [blue],
along with εF /~ωc (black dashed), a) around n = 125
and c) n = 255. b) Fc for the same pair of parameters.
Note sawtooth form for pure Rashba [red], and for (α, β) =
(7.5, 3.0) meV nm [blue] a rounding, and translation, of the
cusps due to level anticrossing [solid circles]. Other parame-
ters are m∗ = 0.04, g∗ = −12 and n2D = 17.6 × 10−3 nm−2,
for InAs-based quantum wells41.

In Fig. 15 this asymmetry is visible in the magneto-
osillations. Here we assume Gaussian broadening with
Bq = 0.50 T which forms an envelope (black dashed
curve). The lowest curve is the pure Rashba (α, β) =
(7.5, 0.0) meV nm and there all maximas intersect the
envelope [black circles]. The curve for (α, β) =
(7.5, 3.0) meV nm shows that only some maxima inter-
sect the envelope, the other maximas correspond to
cos(2πF−) > −1 do not (black circle). This is a di-
rect consequence of the anti-crossing in the spectrum
in Fig. 14. The curves for (α, β) = (5.5, 3.0) meV nm
and (4.5, 3.0) meV nm show how the anti-crossing be-
comes larger, eventually leading to an absence of beat-
ings. This can also be seen in the frequency spectrum
shown in Fig. 16, for the f ≈ fSdH peak. The lowest
curve (blue) corresponds to (α, β) = (7.5, 3.0) meV nm
where the spectrum shows well separated peaks. How-

FIG. 15. Magnetooscillations for four different parameter
values, including pure Rashba, then different combinations
of (α, β). The anti-crossings in the spectrum complicates
the beating behavior, which eventually vanishes for around
(α, β) = (4.5, 3.0) meV nm. Other parameters are m∗ = 0.04,
g∗ = −12 and n2D = 17.6× 10−3 nm−2.

ever, as the strength of the Rashba coupling is decreased
all the way down to α = 0.5 meV nm for a fixed value of
β = 3.0 meV nm a central peak develops and for α be-
tween 4.5 and 1.5 meV nm, the two split peaks are barely
visible.

FIG. 16. Power spectrum for af fixed β = 3.0 meV nm for α =
7.5 down to 0.5 meV nm. Other parameters are m∗ = 0.04,
g∗ = −12 and n2D = 17.6× 10−3 nm−2, from Ref. 41.

A. Extracting α and β from SdH data

The magneto-oscillations can be thought of as a finger-
print of the sample parameters, including Fermi energy
εF , effective mass m∗, g∗, and α and β. To better cap-
ture the influence of the spin-orbit couplings for higher
electron density, the full form of the Dresselhaus inter-
action will be used. For non-zero magnetic fields, this
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corresponds to having Dresselhaus SO term in Eq. (9)
replaced with[

1√
2~ωc`c

(
β1 − γ

a†a

2`2c

)
a†σ+ +

γ

2`2c
a3σ−

]
+ h.c.,(70)

where β1 = γ〈k2
z〉, γ is material-dependent parame-

ter describing the SO interaction due to bulk inversion
asymmetry, and 〈k2

z〉 is the expectation value of the z-
component of the square of momentum operator (divided
by ~), see App. C for details of full Dresselhaus coupling.
Note that β in Eq. (2) is assumed to include the first har-
monic of the cubic Dresselhaus7,49, which makes it lin-
early dependent on the electron density. For instance, if
the potential confining the 2DEG is assumed to be an in-
finite well of width dQW then 〈k2

z〉 = π2/d2
QW. To model

the magnetoresistance data we start from Eq. (22), which
features (i) a sum over higher harmonics , (ii) rapid oscil-
lations coming from F+, and (iii) damping due to Lan-

dau level broadening L̃Γ. The analysis introduced in the
previous section was based on the study of the proper-
ties of cos(2πF−), which forms an envelope on top of
the rapid oscillations. Note that in the case having both
Rashba and Dresselhaus coupling the rapid oscillations
are still dominated by the normal SdH oscillations, i.e.

F+(B) = −1

2
+

εF
~ωc

(
1 +O

(
εR
εF
,
εD
εF

))
≈ −1

2
+
fSdH

B
, (71)

so the SO coupling does not affect the rapid oscillations.
The resulting lowest harmonic form of the magneto-
resistivity is

δρxx(B) = −2L̃Γ(B) cos(2πlF−(B)) cos

(
2π
fSdH

B

)
,

(72)
which can be fitted to available data.

Figures 17-19 show the experimental data from Ref.
41 for InAs/GaSb quantum wells in the electron regime)
along with our theoretical fits [Eq. (72)]. We focus on the
experimental curves 1, 5 and 10, of Fig. S4 of Ref. 41 that
we label as C1, C5 and C10 in Fig. 17-19. The data was
fitted to δρxx(B) in Eq. (72), where F− was calculated
numerically. For the fitting we consider both the Dres-
selhaus coupling in Eq. (9) [black dashed lines], and also
with the full Dresselhaus term in Eq. (70) [solid red lines].
The black dots are reference points extracted from the
data, which are used in the fitting of L̃Γ(B) cos(2πF−).
The best fittings were produced by assuming Gaussian
broadening, namely.

L̃Γ(B) = exp

(
−2π2 Γ2

(~ωc)2

)
= exp

(
−B

2
q

B2

)
, (73)

where Bq =
√

2πm
∗Γ
~e and Γ is a constant Landau level

broadening.

FIG. 17. The black dots are reference points for curve
C1, solid black line. The black dashed curve is the lin-
ear Dresselhaus result and solid red curve full Dresselhaus
result. Parameter values from fitting are shown in the in-
set. Other parameters41 are m∗ = 0.019, g = −12 and
n2D = 0.0176 nm−2.

FIG. 18. Similar to Fig. (17), but for curve C5, solid black
line. The black dashed curve represents the linear Dresselhaus
result, while the solid red curve, the full cubic Dresselhaus
term. Extracted fitting parameters are shown in the inset.
Other parameters41 are m∗ = 0.019, g = −12 and n2D =
0.0176 nm−2.

For curve C1 in Fig. 17 the fitting with linear Dressel-
haus yields values α = 7.2 meV nm and β = 3.0 meV nm.
On the other hand, for fitting to the full model we ob-
tain α = 7.6 meV nm, and γ = 85 meV nm3. We see
that both fits produce equally good curves fitting the
experimental data points, with comparable values for
the extracted Rashba SO coupling. This indicates that
when the Rashba coupling dominates the cubic Dressel-
haus term (a3-term in Eq. (70)), fitting the data with
the addition of the cubic term does not strongly affect
the result. The results for curve C5 in Fig. 18 behave
similarly, i.e. we find fitted values of the Rashba coeffi-
cient, α = 6.7 meV nm for the linear Dresselhaus with
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FIG. 19. Similar to Fig. (17), but for curve C10, solid black
line. The black dashed curve represents the linear Dresselhaus
result, which fails to fit the data. However, the full cubic Dres-
selhaus term (solid red curve) results in a good fit. Extracted
fitting parameters are shown in the inset. Other parameters41

are m∗ = 0.019, g = −12 and n2D = 0.0176 nm−2.

β = 2.8 meV nm, and α = 6.3 meV nm for the full cubic
Dresselhaus, with γ = 82 meV nm3.

However, the story is different for the curve C10 shown
in Fig. 19. Here the value of Rashba and Dresselhaus
coupling are closer, and then the details of the linear vs.
cubic Dresselhaus become relevant. Indeed, the linear
Dresselhaus model fitting yields α = 5.5 meV nm and β =
2.5 meV nm while the cubic fit gives α = 4.9 meV nm.
More importantly the error in the linear fit is quite high,
and the fit [black dashed curve] fails to describe the data
points. However, the cubic model gives a good fit , with
γ = 80 meV nm3. This clearly shows the importance
of the cubic contributions in samples with high density,
where the Rashba and Dresselhaus contributions are of
comparable magnitudes.

The fit results in Fig. 17-19 were done for 〈k2
z〉 =

π2/d2
QW where dQW = 12.5 nm41. To fully model the

sample a self-consistent Poisson-Schrödinger calculation
is required7,46,65, which is beyond the scope of this work.
We can however use different values of 〈k2

z〉, which in-
directly emulate self-consistent potential details, i.e. in-
creasing the value of 〈k2

z〉 suggests a stronger confinement
in the InAs quantum well, and decreased value of 〈k2

z〉
would correspond to wavefunctions being less localized
in the InAs quantum well.

In Fig. 20 the values of α, β1, and β are shown as

a function of 〈k2
z〉 from 0.75 π2

d2
QW

to 1.25 π2

d2
QW

. The data

from the three curves are indicated by different forms:
C1: circle, C5: triangle, and C10: square. For each value
of 〈k2

z〉, specific values of α β1, and β are obtained from
the fit. The fit results for α and β for each curve remain
relatively insensitive to 〈k2

z〉-variations. Note that as 〈k2
z〉

varies β1 changes quite rapidly via the fitted value of γ.
This is to be expected since lower values 〈k2

z〉, correspond

to the electron leaking out the InAs quantum well γ into
the GaSb, which has a higher bulk value of γ. For higher
values of 〈k2

z〉 the system becomes more strongly confined
in the InAs quantum well and the value of γ should tend
to the value corresponding to bulk InAs.

The fact that the values of α and β change only slightly
as function of 〈k2

z〉, as can be seen in Fig. 20, has impor-
tant consequences on the fitting proceedure. For this rea-
son a fitting with γ and 〈k2

z〉 both being independent fit-
ting parameters can not be performed, since if β1 = γ〈k2

z〉
is the dominant contribution to the Dresselhaus couplings
then there are multiple (infinite) solutions to the equa-
tion γ〈k2

z〉 = const. and fitting the data with γ and 〈k2
z〉

independent will not converge41.

FIG. 20. The spin-orbit parameters that result from the fit-
ting as a function of 〈k2

z〉. Other parameters are m∗ = 0.019,
g = −12 and n2D = 0.0176 nm−2. The three different symbols
represent different curves: curve 1: circle, 5: triangle, and 10:
square.

VII. SUMMARY

We investigated the SdH magneto-oscillations in the
resistivity ρxx of 2DEGs in the presence of spin-orbit
(Rashba-Dresselhaus) and Zeeman couplings. We used a
semiclassical approach for the resistivity combined with
a Poisson summation formula for the Landau-quantized
DOS. Our approach allows for an intuitive separation
of the slow and fast quantum oscillations in terms of
“F-functions”, central quantities in our description, es-
sentially being the inverse functions of the spin-resolved
Landau-level structure of the system. We study a vari-
ety of exact cases such as the pure Zeemann, pure Dres-
selhaus, and pure Rashba cases – all of which provide
analytical expressions for the magnetoresistivity.

More importantly, from our unified and general formu-
lation we also derive, for the first time, an analytical solu-
tion for the case with arbitrary Rashba and Dresselhaus
couplings and simultaneous non-zero Zeeman coupling
(g∗ 6= 0).Interestingly, this allows us to derive a unique
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new condition for the vanishing of the SO-induced beat-
ings in the SdH signals: α/β = [(1 − ∆̃)/(1 + ∆̃)]1/2,

where ∆̃ = g∗m∗/2m0 (i.e., ratio (Zeeman energy)/~ωc).
This new condition does not correspond to any conserved
quantity in our Hamiltonian, unlike the persistent-spin-
helix condition α = β which is associated with the conser-
vation of spin along some particular axes. We emphasize
that our new condition precludes beatings in all harmon-
ics of the quantum oscillations.

We have applied our analytical formulation to describe
low-density data for SdH oscillations showing many har-
monics in GaAs-based 2DEGs (see SM in Ref. 46) and
found an excellent agreement, Fig. 2. We have also ap-
plied our theory to low-density InSb-based 2DEGs15,39.
In addition, we have also developed a detailed numer-
ical calculation for high-density InAs-based 2DEGs, in
which an analytical description is not satisfactory. We
find excellent agreement with available data for high-
density InAs-based 2DEGs41,46. We have also pointed
out an inequivalence between the Rashba-dominated +
Zeeman vs the Dresselhaus-dominate + Zeeman cases,
with only the former showing beatings. This follows from
a distinct interplay between the SO and Zeeman terms
in these two regimes. We hope our detailed study and
unified general formulation will stimulate furhter experi-
mental investigations aiming at verifying our theoretical
predictions.
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Appendix A: Density of states and F-Functions

Here we follow closely the discussion (and notation)
in Sec. 3.2.2 of the book Semiclassical Physics by Brack
and Bhaduri47.

For simplicity, we first consider the case with a dis-
crete spectrum εn = f(n), n = 0, 1, 2, ... in which each

level has a degeneracy dn = D̃(n), with D̃(n) being an
arbitrary function of n. Later on we will account for a
(pseudo) spin index. As an example, we note that for
the usual 2DEG Landau levels (LLs) (in the absence of
both Zeeman or SO interaction), εn = ~ωc(n+ 1/2) and

dn = AeB/h = D̃(n) (A: area of the 2DEG, e > 0);

in this case, dn = D̃(n) denotes the LL degeneracy
and is independent of n. This same Landau degener-
acy holds in the presence of Zeeman and SO interac-
tions. For later convenience, we define D(n) = D̃(n)/A
to be the level degeneracy per unit area [e.g., for LLs
D(n) = nLL(B) = eB/h]. As in Ref. 47, let f(n) be an
arbitrary monotonic function with a differentiable inverse
f−1(x) = F (x), the relevant “F-function” in our discus-
sion. In this case, because f−1(f(x)) = x = f(f−1(x))
it follows that n = F (εn). Next we define the DOS of
our system and relate it the to the F-function, which ul-
timately allows us to calculate the oscillatory part of the
DOS relevant for our semiclassical transport calculation.

1. Density of states without LL broadening

Quite generally we can define the DOS of our system
as,

g(ε) =
1

A

∞∑
n=0

D̃(n)δ(ε− εn). (A1)

Note that the above DOS is defined per area and energy.
In Ref.47 the DOS is defined just per energy. Motivated
by the property δ[y(x)] = 1

|y′(x0)|δ(x − x0) where x0 de-

notes a root of y(x), i.e., y(x0) = 0 and y′(x) = dy(x)/dx,
we define h(ε) = n − F (ε), which obeys h(εn) = 0 as
n = F (εn) by construction. We can then write

δ[h(ε)] = δ(n−F (ε)) =
1

|F ′(εn)|δ(ε−εn) =
1

|F ′(ε)|δ(ε−εn),

(A2)
or

δ(ε− εn) = |F ′(ε)|δ(n− F (ε)). (A3)

Substituting (A3) into (A1), we find

g(ε) = D(ε)|F ′(ε)|
∞∑
n=0

δ(n− F (ε)), (A4)
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where D(ε) ≡ D(F (ε)). Noting that

∞∑
n=0

δ(ε− n) =

∞∑
l=−∞

e2πilε, (ε > 0) (A5)

we can straightforwardly cast (A4) in the form

g(ε) = D(ε)|F ′(ε)|
∞∑

l=−∞

e2πilF (ε). (A6)

Now we introduce the (pseudo) spin index s = ±1 by
adding a subscript s to all quantities [except D(ε) for it
is not (pseudo) spin dependent]. This s index accounts
for the spin-dependent Zeeman and SO interactions in
our 2DEG. With this new index, the DOS in Eq. (A5),
viewed as per spin now, becomes

gs(ε) = D(ε)|F ′s(ε)|
∞∑

l=−∞

e2πilFs(ε), (A7)

or

gs(ε) = D(ε)|F ′s(ε)|
{

1 + 2

∞∑
l=1

cos[2πlFs(ε)]

}
. (ε > 0)

(A8)
By summing over s, we obtain the total DOS,

g(ε) = D(ε)
∑
s

|F ′s(ε)|
{

1 + 2

∞∑
l=1

cos[2πlFs(ε)]

}
.

(A9)
For the systems investigated in our work, F ′s(ε) ' 1/~ωc.
This is actually exact for the Zeeman-only case, see
Eq. (28), main text, but only approximate in the pres-
ence of SO interaction [see Eq. (A38)]. In this case and

D(ε)|F ′s(ε)| = m∗

2π~2 , we find

g(ε) ' m∗

π~2

{
1 +

∞∑
l=1

(cos[2πlF+(ε)] + cos[2πlF−(ε)])

}
.

(A10)
Using the identity,

cos a+ cos b = 2 cos[(a+ b)/2] cos[(a− b)/2], (A11)

we can rewrite Eq. (A10) as

g(ε) ' m∗

π~2

{
1 +

∞∑
l=1

2 cos[2πlF+(ε)] cos[2πlF−(ε)]

}
,

(A12)
where

F±(ε) =
1

2
[F+(ε)± F−(ε)]. (A13)

To regain the DOS notation in the main text, we now
make g(ε) → D(ε,B) and use D0 = m∗

2π~2 . Hence,

Eq. (A12) becomes

D(ε,B) ' 2D0

{
1 + 2

∞∑
l=1

cos[2πlF+(ε)] cos[2πlF−(ε)]

}
,

(A14)
or

D(ε,B)− 2D0

2D0
' 2

∞∑
l=1

cos[2πlF+(ε)] cos[2πlF−(ε)],

(A15)
which is Eq. (14) in the main text.

2. Density of states including Landau level
broadening

We can account for LL broadening in the DOS calcula-
tion by considering Lorentzian or Gaussian functions as
particular representations of the ideal δ functions describ-
ing the discrete levels. We consider a simple phenomeno-
logical description which assumes that all LLs have the
same spin-independent broadening Γ.

a. Lorentzian DOS case

Here we take the delta function representing the DOS
of a single LL as,

δ(ε− εn) = lim
Γ→0

1

π

Γ/2

(ε− εn)2+(Γ/2)2
= lim

Γ→0
LΓ(ε− εn),

(A16)
where

LΓ(ε) =
1

π

Γ/2

ε2+(Γ/2)2
, (A17)

with ∫ ∞
−∞

LΓ(ε)dε = 1. (A18)

Note that∫ ∞
−∞

LΓ(ε)e−2πilεdε = e−Γπ|l| = L̃Γ(k), (A19)

where L̃Γ(k) is the Fourier transform (FT) of LΓ(ε) and
l ∈ Z. Using the shifting property of FTs, it follows
that the FT of LΓ(ε − x) is e−2πikxL̃Γ(k). Generalizing
Eq. (A1) for Lorentzian-broadened levels we have (we will
add a subindex s later on)

g(ε) = lim
Γ→0

∞∑
n=0

D(n)LΓ(ε− εn), (A20)
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which we can rewrite as,

g(ε) = lim
Γ→0

∞∑
n=0

∫ ∞
−∞

D(n)LΓ(ε− x)δ(x− εn)dx. (A21)

Considering that D(n) is independent of n and using
Eq. (A5) with the replacement ε→ F (ε), we obtain

g(ε) = lim
Γ→0

∫ ∞
−∞

D(F (x))|F ′(x)|
∞∑

l=−∞

e2πilF (x)LΓ(ε−x)dx.

(A22)
Since LΓ(ε − x) = LΓ(x − ε) is peaked at x = ε, it is
convenient to expand F (x) around this point. Then g(ε)
becomes

g(ε) = lim
Γ→0

∫ ∞
−∞

D[F (ε) + |F ′(ε)|(x− ε)][|F ′(ε)|+

|F ′′(ε)|(x− ε)]
∞∑

l=−∞

e2πil[F (ε)+|F ′(ε)|(x−ε)]LΓ(ε− x)dx.

(A23)

Neglecting the contribution |F ′′(ε)|(x − ε) [as a matter
of fact, this contribution vanishes identically in the limit
LΓ(x − ε) → δ(x − ε), because

∫∞
−∞ f(x)δ(x − x0)dx =

f(x0)], we have

g(ε) = D(ε) lim
Γ→0
|F ′(ε)|

∞∑
l=−∞

e2πilF (ε)×∫ ∞
−∞

e2πil|F ′(ε)|(x−ε)LΓ(x− ε)d(x− ε). (A24)

Using Eq. (A19), we can write

g(ε) = D(ε) lim
Γ→0
|F ′(ε)|

∞∑
l=−∞

e2πilF (ε)L̃Γ(l|F ′(ε)|).

(A25)
or

g(ε) = D(ε) lim
Γ→0
|F ′(ε)|

∞∑
l=−∞

e2πilF (ε)e−Γπ|lF ′(ε)|,

(A26)
where have used,

L̃Γ(l|F ′(ε)|) = e−Γπ|lF ′(ε)| (A27)

As before [Eq. (A7)], we can rewrite Eq. (A26) by adding
a subindex s to obtain the LL-broadened DOS per spin

gs(ε) = D(ε)|F ′s(ε)|
{

1 + 2

∞∑
l=1

cos[2πlFs(ε)]e
−Γπl|F ′s(ε)|

}
.

(A28)
In the above we have dropped the limΓ→0, since a real
system has a finite Γ. Interestingly, the broadened DOS
in Eq. (A28) can be obtained directly from the case with-

out broadening [Eq. (A8)] by simply multiplying the os-
cillating components (harmonics) in the latter by the ex-

ponential (“Dingle”) factor e−Γπl|F ′s(ε)|.

Here again, for the systems of interest here F ′s(ε) '
1/~ωc and the exponential factor in Eq. (A28) becomes

e−Γπl|F ′s(ε)| = e−πlΓ/~ωc , (A29)

where Γ ≡ ~/τq, τq is the quantum lifetime of the LL.
Summing over the (pseudo) spin index s Eq. (A28) be-
comes

g(ε) =
m∗

π~2

{
1 + 2

∞∑
l=1

cos[2πlF+(ε)] cos[2πlF−(ε)]e−
πlΓ
~ωc

}
.

(A30)
In the notation of the main text we have

D(ε,B)− 2D0

2D0
' 2

∞∑
l=1

cos[2πlF+(ε)] cos[2πlF−(ε)]e−
πlΓ
~ωc ,

(A31)
which is the Eq. (22) of the main text, but written for
the Lorentzian broadening case.

b. Gaussian DOS case

The Gaussian-broadened case can be treated similarly
by considering the delta function representation

δ(ε− εn) = lim
Γ→0

1√
2πΓ

e−
(ε−εn)2

2Γ2 . (A32)

From this we can evaluate the integral in Eq. (A19) which
results in the Gaussian version of Eq. (A27):

L̃Γ (l|F ′(ε)|) = e−2π2(l|F ′(ε)|)2Γ2

. (A33)

This reduces to Eq. (73) for l = 1 (fundamental fre-
quency) and |F ′(ε)| = 1/~ωc.

c. Calculating the F-function and its derivative F ′(ε)

Here we illustrate the calculation of Fs(ε) and its
derivative with respect to ε, F ′(ε), in the presence of SO
interaction. For simplicity, we consider the pure Rashba
case (no Zeeman). To determine the F-functions we need
to invert εn,s = ε, where

εn,s
~ωc

=

(
n+

1

2
+
s

2

)
(A34)

− s

2

1− ∆̃

|1− ∆̃|

√(
1− ∆̃

)2

+ 16α2
B

(
n+

1

2
+
s

2

)
,
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is the pure Rashba energy, Eq. (33) in the main text.
Squaring ε− ñ~ωc, with ñ = n+ (1 + s)/2, we find

[ε− ñ~ωc]2 =
1

4
(~ωc −∆)2 + 4εR~ωcñ

ε2 − 2ε~ωcñ + ñ2~2ω2
c =

1

4
(~ωc −∆)2 + 4εR~ωcñ

ñ2~2ω2
c − (2ε~ωc + 4εR~ωc)ñ−

1

4
(~ωc −∆)2 + ε2 = 0

ñ2 −
(

2ε

~ωc
+

4εR
~ωc

)
ñ −

(
1

2
− ∆

2~ωc

)2

+

(
ε

~ωc

)2

= 0(A35)

We can easily solve (A35) for ñs(ε) ⇒ ns(ε) = −(1 +
s)/2 + ñs(ε) = f−1

s = Fs(ε)

Fs(ε) = −1 + s

2
+

ε

~ωc
+

2εR
~ωc

(A36)

+ s

√(
ε

~ωc
+

2εR
~ωc

)2

+

(
1

2
− ∆

2~ωc

)2

−
(

ε

~ωc

)2

.

We obtain F ′±(ε) by differentiating (A37),

F ′s(ε) =
1

~ωc
+ s

1

2

2
(

ε
~ωc + 2εR

~ωc

)
1

~ωc −
2ε

~2ω2
c√(

ε
~ωc + 2εR

~ωc

)2

+
(

1
2 − ∆

2~ωc

)2

−
(

ε
~ωc

)2
,

or (A37)

F ′s(ε) =
1

~ωc
+ s

2εR
~ωc√

4εεR
~2ω2

c
+
(

2εR
~ωc

)2

+
(

1
2 − ∆

2~ωc

)2
. (A38)

As mentioned earlier, the leading term in F ′s(ε) is 1/~ωc.
By expanding the above expression, we can easily find
O (εR/εF ) = O[(αm∗`c)

2/~] corrections. The above cal-
culation also holds for the Dresselhaus case. The general
case with simultaneous and arbitrary Rashba and Dres-
selhaus couplings lead to the correctionsO[(αm∗`c)

2/~]+
O[(βm∗`c)

2/~)] mentioned following Eq. (12).

Appendix B: Orthogonal subspaces P

When both Rashba and Dresselhaus are present nei-
ther N+ nor N− are conserved, i.e. [N±, H̃] 6= 0. This
will result in mixing of states, e.g. the pure Rashba states
will get couple to each other when a finite β is introduced,
and vice versa. However, there is a conserved quantity
that can be constructed from N± by defining51,52

P± = exp(iπ(N± + 1/2)). (B1)

Using the definition of N+ = a†a+ 1
2σz we can show that

P+ = exp

(
iπ(a†a+

1

2
σz)

)
= exp

(
iπ(a†a− 1

2
σz + σz)

)
= P− exp(iπσz) = −P−, (B2)

where we used exp(iπσz) = −1. Since P± have eigen-
value ±1, we only need to consider P = P+ = −P−.
First, we look at how the operator P affects the opera-
tors a, and σ+:

Pσ+P† = ei
π
2 σzσ+e

−iπ2 σz = eiπσ+ = −σ+ (B3)

PaP† = eiπa
†aae−iπa

†a = eiπa = −a (B4)

The Hamiltonians in both Eqs. (9) and Eq. (70) contain
diagonal terms (a†a and σz) that commute with P, and
non-diagonal terms that involve odd power a, a† multi-
plying σ+, σ−, so then its straightforward to show that
[H,P] = 0. Note that P is unitary so the condition
[H,P] = 0, can be rewritten as PHP† = H. Focusing on
the spin-orbit part of Eq. (9) one obtains

P
(
αBa

†σ− + βBa
†σ+

)
P† + h.c.

=
(
αBPa†P†Pσ−P† + βBPa†P†Pσ+P†

)
+ h.c.

=
(
αB(−a†)(−σ−) + βB(−a†)(−σ+)

)
+ h.c.

=
(
αBa

†σ− + βBa
†σ+

)
+ h.c., (B5)

which shows that PHP† = H, since the diagonal terms
in H trivially commute with P.

The practical results of having a diagonal operator P
that commutes with H is that the Hamiltonian can be
diagonalized using two separate sets of basis states:

P = +1 : {|0, ↑〉, |1, ↓〉, |2, ↑〉, |3, ↓〉, |4, ↑〉, . . . }
P = −1 : {|0, ↓〉, |1, ↑〉, |2, ↓〉, |3, ↑〉, |4, ↓〉, . . . }

Diagonalizing H in either of the P = +1, or −1, sub-
spaces will result in a set of states that all anticross. We
can connect these sets of states to N+ eigenstates

P = +1 : {
|0,+〉,|1,−〉︷ ︸︸ ︷
|0, ↑〉, |1, ↓〉,

|2,+〉,|3,−〉︷ ︸︸ ︷
|2, ↑〉, |3, ↓〉, |4, ↑〉, . . . }

P = −1 : {|0, ↓〉, |1, ↑〉, |2, ↓〉︸ ︷︷ ︸
|1,+〉,|2,−〉

, |3, ↑〉, |4, ↓〉︸ ︷︷ ︸
|3,+〉,|4,−〉

, . . . },

and similarly for the N− eigenstates

P = +1 : {|0, ↑〉,
|1,−〉,|2,+〉︷ ︸︸ ︷
|1, ↓〉, |2, ↑〉,

|3,−〉,|4,+〉︷ ︸︸ ︷
|3, ↓〉, |4, ↑〉, . . . }

P = −1 : {|0, ↓〉, |1, ↑〉︸ ︷︷ ︸
|0,−〉,|1,+〉

, |2, ↓〉, |3, ↑〉︸ ︷︷ ︸
|2,−〉,|3,+〉

, |4, ↓〉, . . . }

Note that P also commutes with the cubic Dresselhaus
terms as is discussed in App. C.

Appendix C: Cubic Dresselhaus

The Hamiltonian in Eq. (9) describes a 2DEG with
both Rashba and linear Dresselhaus. For the numerical
part we also include the full cubic Dresselhaus contribu-
tion. Starting from Eq. (6.1) in Ref. 50, and projecting
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down to the lowest transverse level results in

HD3 =
(−γ〈k2

z〉)
~

([
1

2
Π+σ+

− 1

8~2〈k2
z〉
{Π2

+ −Π2
−,Π−}

]
+ h.c.

)
, (C1)

where Π± = Πx ± iΠy, and 〈Π2
z〉 = ~2〈k2

z〉. Note that
now the Dresselhaus spin-orbit coupling is parametrized
by two parameters γ and 〈k2

z〉, while for the linear ap-
proximation, only the single parameter β = (−γ)〈k2

z〉 is
required. Using the definition in Eqs. (3) and (4) the full
Dresselhaus Hamiltonian becomes

HD3 =
(−γ〈k2

z〉)
~

{[(
1− 1

2〈k2
z〉`2c

a†a

)
a†σ+

+
1

2〈k2
z〉`2c

a3σ+

]
+ h.c.

}
. (C2)

In the absence of spin-orbit interaction a†a can be re-
placed by its eigenvalue n, which in turn is related to the
ratio of the Fermi energy and ~ωc (valid for εF � ~ωc)

1

`2c
a†a→ 1

`2c
n ≈ 1

`2c

εF
~ωc

=
k2
F

2
= πn2D. (C3)

In the presence of spin-orbit we can still formally rewrite
Eq. (C2) as

HD3 =
(−γ)

(
〈k2
z〉 − π

2n2D

)
~

{[
〈k2
z〉 − 1

2`2c
a†a

〈k2
z〉 − π

2n2D
a†σ+

+
1

2`2c

1

〈k2
z〉 − π

2n2D
a3σ+

]
+ h.c.

}
. (C4)

The prefactor −γ
(
〈k2
z〉 − π

2n2D

)
is defined as

β = β1 − β3

=
[
(−γ)〈k2

z〉
]
−
[
(−γ)

π

2
n2D

]
, (C5)

which reduces to the traditional definition of β for low
density samples as considered in Sec. V.

The parity operator P introduced in App. B also com-
mutes with the Hamiltonian in Eq. (C2), since the spin-
orbit terms involve odd powers of a, a† multiplied by ei-
ther σ+ or σ−, and the sign introduced the unitary trans-
formation gets cancelled.

Appendix D: The numerical procedure for finding
the F -function

For fixed parameter values, the eigenenergies of the
Hamiltonian Eq. (9) take discrete values. They are ob-
tained numerically by diagonalizing the Hamiltonian ma-
trix using a large enough set of basis states. Finding the
F -function as described in Eq. (11) is equivalent to a root

finding problem for the function

gs(n) = εn,s(B)− εF = 0. (D1)

This requires the quantum number n to be a continu-
ous variable. which leads to a minor modification of the
Hamiltonian diagonlization procedure. The standard di-
agonalization proceedure is to construct a 2NL matrix
from NL harmonic oscillator eigenstates, in addition to
the spin degree of freedom. The Pauli matrices form 2×2
blocks that are coupled by the ladder operators a and a†,
leading to block tri-diagonal matrix with 2×2 block ma-
trices

hl,l = (l − 1)

[
1 0
0 1

]
+

[
1−∆̃

2 0

0 1+∆̃
2

]
(D2)

hl,l+1 =
√
l + 1

[
0 2αβ

2βB 0

]
, (D3)

where l runs from 1 to NL (number of Landau levels
used in the calculations). To obtain a continuous version
of Eqs. (D2) and (D3) a variable x is added to the index
l, resulting in

hl,l(x) = (l + x− 1)

[
1 0
0 1

]
+

[
1−∆̃

2 0

0 1+∆̃
2

]
(D4)

hl,l+1(x) =
√
l + x+ 1

[
0 2αβ

2βB 0

]
. (D5)

The full block-tridiagonal matrix based on the subma-
trices in Eqs. (D4) and (D5) will then yield a spectrum
εn+x,s, for x ∈ [−1, 1]. To further simply the calculations
the basis states can be split into P = ±1 subspaces. Each
P-subspace contains ordered states {ε0+x, ε1+x, . . . }. For
each subspace, one chooses the two adjecent eigenenergies
determined by the condition εn+x <

εF
~ωc < εn+x+1. Sub-

sequently the value of x is found by solving gs(n+x) = 0.

Appendix E: Perturbation theory and
“Bogoliubov-de Gennes Hamiltonian”

Here we solve the Hamiltonian Eq. (50) through a per-
turbative approach. As the Hamiltonian due to the spin-
orbit terms are generally much smaller than the Hamil-
tonian corresponding to free electron gas, we rewrite
Eq. (50) as

H̃
~ωc

=

H0/~ωc︷ ︸︸ ︷
a†a+

1

2
+

∆̃

2
σz +

V/~ωc︷ ︸︸ ︷
γ
(
a† + a

)
σx + iδ

(
a− a†

)
σy

= H0/~ωc + V/~ωc.

with corresponding unperturbed Hamiltonian and per-
turbation, H0 and V, respectively. Using now the
Schrieffer–Wolff transformation66,67, defined by eS , with
the constraint V + [S,H0] = 0, we obtain an effective
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Hamiltonian given by Heff = H0 + 1
2 [S,V] + O

(
V3
)
.

For our system we find S = Sγ + Sδ, with

Sγ = − γ

1− ∆̃2

{
a
(
σx + i∆̃σy

)
− a†

(
σx − i∆̃σy

)}
,

(E1)

Sδ = − iδ

1− ∆̃2

{
a
(
σy − i∆̃σx

)
+ a†

(
σy + i∆̃σx

)}
,

(E2)

yielding

H̃eff
~ωc

=
1

2

(
1 + ∆̃σz

)
− Ω− Λσz + (1− 2Λσz) a

†a

+ Γ
(
aa+ a†a†

)
σz, (E3)

with

Ω =

(
γ2 + δ2

)
+ 2δγ∆̃

1− ∆̃2
, (E4)

Λ =

(
γ2 + δ2

)
∆̃ + 2δγ

1− ∆̃2
, (E5)

Γ =
δ2 − γ2

1− ∆̃2
∆̃. (E6)

The Hamiltonian Eq. (E3) can be rewritten in the
Bogoliubov-de Gennes form as

H̃eff
~ωc

=
1

2
(1 + ∆̃σz)− Ω− Λσz −

1

2
(1− 2Λσz)

+
1

2

(
a† a

) [ 1− 2Λσz 2Γσz
2Γσz 1− 2Λσz

](
a
a†

)
,

(E7)

which can be diagonalized by a 2 × 2 Bogoliubov-de
Gennes transformation, and reads

H̃eff
~ωc

=
1

2
(1+∆̃σz)−Ω−Λσz−

1

2
(1− 2Λσz)+

1

2

(
ã† ã

) [ √(1− 2Λσz)2 − 4Γ2 0

0
√

(1− 2Λσz)2 − 4Γ2

](
ã
ã†

)
, (E8)

with the diagonal operators ã and ã†. For most semicon-
ductors, we have Ω,Λ,Γ � 1. By neglecting the fourth
order or higher spin-orbit terms, i.e., δiγj with i+ j ≥ 4,
we obtain

H̃eff
~ωc

=
∆̃

2
σz + |1− 2Λσz|

(
ã†ã+

1

2

)
− Ω (E9)

with energies

εl,s
~ωc

=
s

2
∆̃− Ω + |1− 2Λs|

(
l +

1

2

)
. (E10)

For 1− 2Λ > 0 we obtain

εl,s
~ωc

=

(
l +

1

2
+ ∆̃

s

2

)
− 2sΛ

(
l +

1

2

)
− Ω, (E11)

which is Eq. (53) in the main text.

Appendix F: Approximations leading to Eqs. (58)
and (59)

Starting from Eq. (57) one can obtain the the F -
function by inverting the energy levels to obtain l, for
each value of s. The resulting equations are
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F+ =
ε

~ωc
− 1

2
+ |Λ|

(
1− Λ

|Λ| ∆̃
)

+
1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣
√(

1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)

+
1

2

(
Ω

Λ

|Λ| − Λ

)]

− 1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣
√(

1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)
− 1

2

(
Ω

Λ

|Λ| − Λ

)]
(F1)

F− = −1

2

Λ

|Λ| +
1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣
√(

1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)

+
1

2

(
Ω

Λ

|Λ| − Λ

)]

+
1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣
√(

1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)
− 1

2

(
Ω

Λ

|Λ| − Λ

)]
(F2)

We will further simplify these equations by approxi-
mating Eqs. (F1) and (F2) up to second order in the
spin-orbit parameters Λ and Ω (or fourth order in γ and
δ). Accordingly, we rewrite these equations as

F+ =
ε

~ωc
− 1

2
+ |Λ|

(
1− Λ

|Λ|∆̃
)

+
1

4

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣
(√

A+B −
√
A−B

)
, (F3)

F− = −1

2

Λ

|Λ| +
1

4

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣
(√

A+B +
√
A−B

)
,

(F4)

where A = A0 +A1 +A2 and B = B1, with

A0 =

(
1− Λ

|Λ|∆̃
)2

, (F5)

A1 = 8
ε

~ωc
|Λ|
(

1− Λ

|Λ|∆̃
)
, (F6)

A2 = 4 |Λ|2
(

1− Λ

|Λ|∆̃
)2

, (F7)

B1 = 4

(
1− Λ

|Λ|∆̃
)(

Ω
Λ

|Λ| − Λ

)
. (F8)

Here, the nominal values of the subindices of Ai and Bj
indicate their order on the spin-orbit terms Λ and Ω.
Accordingly, we expand the square roots of Eqs. (F3) and
(F4) and keep only terms up to second order in either Λ
or Ω, yielding

√
A+B +

√
A−B ≈ 2

√
A0 +A1

(
1 +

1

2

A2

A0 +A1

)
,

= 2
√
A0 +A1 +A2 (F9)

√
A+B −

√
A−B ≈ B1√

A0

. (F10)

As a consequence, we can finally write

F+ =
ε

~ωc
− 1

2
+ Ω− Λ∆̃ (F11)

F− = −1

2

Λ

|Λ| +
1

2

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣ ×
√(

1− Λ

|Λ|∆̃
)2

+ 8 |Λ|
(

1− Λ

|Λ|∆̃
)[

ε

~ωc
+

1

2
|Λ|
(

1− Λ

|Λ|∆̃
)]
, (F12)

which are Eqs. (58) and (59), respectively. Appendix G: Temperature dependence of the
normalized differential resistivity

In this section we derive the general temperature de-
pendence of the normalized differential magnetoresistiv-
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ity in Eq. (24) for the systems studied in this work.

δρxx(B) = 2

∞∑
l=1

∫
dεL̃Γ

(
l

Γ

~ωc

)(
−df0(ε)

dε

)
× cos(2πlF−) cos(2πlF+). (G1)

At T = 0 K, we have −df0(ε)/dε → δ(ε − εF ), which
simplifies Eq. (G1) to

δρxx(B) = 2

∞∑
l=1

L̃Γ

(
l

Γ

~ωc

)
cos(2πlF−) cos(2πlF+)|ε=εF ,

(G2)
being obviously temperature independent. When the
temperature is finite but small, i.e., kBT � µ ∼ εF ,

we have a temperature dependent δρxx(B). We now an-
alyze the relevant case for low-density semiconductors,
but with εF � εR, εD, and high number of populated
Landau levels, i.e., εF /~ωc � 1. With these condi-
tions, all the different cases analyzed in this manuscript
present F±-functions constant or linearly dependent on
the energy, so we write here, F± ∝ ε + cte, see, for
example Eqs. (29), (44), (45), (58), and (59). Using
2πlF+ = 2Λl+ε+φ

l
+, 2πlF− = 2Λl−ε+ φl−, with φl± prop-

erly defined by comparison with these equations, and as-
suming an energy-independent Dingle factor (only true
for Lorentzian broadening.), we need to calculate inte-
grals of the following form,

∫ ∞
0

dε

(
−∂f

0

∂ε

)
cos
(
2Λl+ε+ φl+

)
cos
(
2Λl−ε+ φl−

)
=

∫ ∞
− µ

2kBT

dx
cos
(
4Λl+kBTx+ 2Λl+µ+ φl+

)
cos
(
4Λl−kBTx+ 2Λl−µ+ φl−

)
2 sinh2 x

,

(G3)

where we have introduced the dimensioness quantity x = ε−µ
2kBT

. For µ� kBT , we obtain

∫ ∞
0

dε

(
−∂f

0

∂ε

)
cos
(
2Λl+ε+ φl+

)
cos
(
2Λl−ε+ φl−

)
= πkBT

{(
Λl+ − Λl−

)
cos
[
2µ
(
Λl+ − Λl−

)
+ φl+ − φl−

]
sinh

[
2πkBT

(
Λl+ − Λl−

)] (G4)

+

(
Λl+ + Λl−

)
cos
[
2µ
(
Λl+ + Λl−

)
+ φl+ + φl−

]
sinh

[
2πkBT

(
Λl+ + Λl−

)] }
. (G5)

using ∫ ∞
−∞

dx
cos(2λ1 + a1) cos(2λ2 + a2)

coshx2

=
π(λ1 − λ2) cos(a1 − a2)

sinhπ(λ1 − λ2)
+
π(λ1 + λ2) cos(a1 + a2)

sinhπ(λ1 + λ2)

For the cases treated in this work, Λl+ � Λl− holds, and
we obtain∫ ∞

0

dε

(
−∂f

0

∂ε

)
cos
(
2Λl+ε+ φl+

)
cos
(
2Λl−ε+ φl−

)
≈ Al(T ) cos

(
2µΛl+ + φl+

)
cos
(
2µΛl− + φl−

)
,

with

Al(T ) =
2πkBTΛl+

sinh
(
2πkBTΛl+

) , (G6)

for the temperature dependent coefficient for the SdH
oscillation. For all the cases investigated in this work, we
have Λ+ = πl/~ωc, yielding Eq. (25) in the main text,

Al (T ) =
2π2lkBT/~ωc

sinh (2π2lkBT/~ωc)
. (G7)

1 M. I. D’Yakonov and V. Perel, Soviet Journal of Experi-
mental and Theoretical Physics Letters 13, 467 (1971).

2 M. I. Dyakonov and V. Perel, Physics Letters A 35, 459



28

(1971).
3 J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
4 C. E. Landisman and B. W. Con-

nors, Science 310, 1809 (2005),
https://www.science.org/doi/pdf/10.1126/science.1114655.

5 J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett.
90, 146801 (2003).

6 B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev.
Lett. 97, 236601 (2006).

7 J. Fu, P. H. Penteado, M. O. Hachiya, D. Loss, and J. C.
Egues, Phys. Rev. Lett. 117, 226401 (2016).

8 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

9 B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96,
106802 (2006).

10 B. A. Bernevig, T. L. Hughes, and
S.-C. Zhang, Science 314, 1757 (2006),
https://www.science.org/doi/pdf/10.1126/science.1133734.

11 A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
12 L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
13 D. R. Candido, M. E. Flatté, and J. C. Egues, Phys. Rev.
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