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Identifying Pauli spin blockade using deep learning
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Pauli spin blockade (PSB) can be employed as a great resource for spin qubit initialisation and
readout even at elevated temperatures but it can be difficult to identify. We present a machine
learning algorithm capable of automatically identifying PSB using charge transport measurements.
The scarcity of PSB data is circumvented by training the algorithm with simulated data and by
using cross-device validation. We demonstrate our approach on a silicon field-effect transistor device
and report an accuracy of 96% on different test devices, giving evidence that the approach is robust
to device variability. The approach is expected to be employable across all types of quantum dot

devices.

I. INTRODUCTION

Electrostatically defined quantum dots are promising
candidates for scalable quantum computation and simu-
lation [1-3]. They can achieve universal quantum compu-
tation [4] with gates reaching high fidelity [5, 6]. Their
properties are attractive for large scale quantum proces-
sors, namely all-electrical control, compact size [2], and
potential operating temperatures of above 1K [7-9].

Pauli spin blockade (PSB) is often a crucial requirement
for spin qubit initialisation and readout. It allows for spin-
to-charge conversion, as spin-conserved tunneling leads
to current rectification [10]. We can rely on PSB even
at elevated temperatures [7-9, 11]. Tt is thus essential to
reliably and efficiently detect PSB. But PSB is elusive;
in the few-charges regime it can be found in unexpected
gate voltage locations or it might be absent, and in the
multi-charge regime it has to be found like the proverbial
needle in a haystack. Its detection is challenging even
for experienced human experimenters since evidence for
PSB is subtle and it relies on several factors, including
the details of the confinement potential. Those details
are affected by fluctuations in the disorder potential due
to fabrication variances and defects within the material.
To reach true scalability we need an automatic method
for detecting PSB that can be incorporated into larger
tuning efforts [12-22]. The scarcity of available data
makes reliable automation tough. In addition, PSB data
tends to be unbalanced, meaning that there are many
more examples of measurements in which PSB is not
present than examples evidencing PSB. Measurements
exhibiting PSB are therefore rare in an already scarce
body of data.

We demonstrate how to detect PSB using deep neural
networks. This required us to make use of extremely
scarce and unbalanced quantum device data. We devel-
oped a physics-inspired simulator and introduced cross-
device validation to address this challenge. In the context
of tuning quantum devices, deep learning has been used for

various other tasks [17, 19, 23-27], with some approaches
using simulated data to train their algorithms [15, 16, 28].

We demonstrate our algorithm in a silicon fin field-effect
transistor (FinFET) confining holes [9]. We show that we
can achieve an accuracy of over 96% on identifying signs
of PSB on unseen devices. The data stems from four
silicon FinFET devices with different gate dimensions.
We designate training devices, from which we extract
training data, and testing devices, from which we extract
data to test our algorithm. We discuss the performance
of the algorithm for different types of training data, using
simulated training data, measured training data, and a
combination of both.

II. EXPERIMENT

A schematic representation of a silicon FinFET device
similar to the ones used in this work and a cross-sectional
transmission electron microscope (TEM) image are shown
in Figs. 1a, b. The devices are fabricated using a CMOS-
compatible fabrication process, where a self-alignment
technique allows for ultra-small gate length and intrinsi-
cally perfect layer-to-layer alignment [29]. The fin pro-
vides a quasi 1D confinement for holes and a double
quantum dot (DQD) can be defined using gate electrodes.
Source and drain reservoirs are formed by lead gates L1
and L2, which accumulate p-type carriers. The plunger
gates P1 and P2 allow for control of the hole occupancy.
The inter-dot coupling is controlled by gate B. We perform
transport measurements by applying a bias voltage Vsp
between source and drain drawing a current I through
the device. Measurements of current as a function of the
plunger gate voltages Vp1 and Vpo are called stability dia-
grams. Energetically allowed charge transitions appear as
two bias triangles in stability diagrams, see Fig. le. Bias
triangles indicate that the device is tuned into the DQD
regime.

Four devices with different dimensions (for details see



'
o
)

Vi, [mV]
R

|
I InA]

- -760 = o V-
-620 -399 -650 -449 -650 -449
Ve [mV]

FIG. 1: Pauli spin blockade in silicon FinFET devices.
a Schematic and b cross-sectional TEM image of a silicon
FinFET device. The plunger gates (P1 and P2) accumu-
late holes in a DQD, the inter-dot barrier is controlled by B
and source and drain reservoirs are accumulated using lead
gates (L1 and L2). ¢, d Schematic of a transport cycle in
unblocked/blocked configurations respectively. While in the
unblocked configuration holes can easily tunnel through the
device, spin-conservation blocks the transport through the
ground state transition when inverting Vsp due to the forbid-
den T(1,1)—S(0,2) transition. e Bias triangles with positive
Vsp. f Bias triangles with negative Vsp. The current at the
base line of the triangles, i.e. current due to the T(1,1)—S(0,2)
transition, is blocked (left). A finite magnetic field B =0.1T
lifts the blockade (right). We show the absolute value of cur-
rent for ease of comparison between figures. We outline the
bias triangles with white dashed lines to guide the eye.

Appendix A) were measured at different bias voltages
and at temperatures ranging from 20 mK to 1.5 K. In all
measurements the magnetic field was applied in-plane and
perpendicular to the fin as indicated in Fig. 1a.

A. Pauli spin blockade

We look at the (1,1) — (0,2) charge transition, where
(m,n) denotes the effective hole occupancy of the left
and right dot omitting filled shells. For positive Vgp,
we expect a hole to tunnel onto the right dot and form
a singlet state S(0,2), since the triplet state T(0,2) is
energetically unavailable (see Fig. 1c). The large energy
splitting comes from the fact that the symmetric triplet
spin state requires an anti-symmetric orbital state with

higher energy. The hole can now tunnel via the S(1,1)
state to the left reservoir completing the transport cycle.
When applying a negative Vsp, we expect a hole to enter
the left dot from the reservoir (see Fig. 1d). Due to the
weak inter-dot coupling S(1,1) and T(1,1) are nearly de-
generate, such that both states are accessible. If T(1,1)
is occupied, transport through the DQD is blocked since
the T(1,1)—S(0,2) transition is forbidden by spin conser-
vation and the T(0,2) state is energetically unavailable.
The effect is also possible in the opposite bias direction,
i.e. a blockade can occur with positive bias voltage for a
(1,1) — (2,0) charge transition.

The blockade can be lifted by processes that allow
transitions out of the T(1,1) state. In systems dominated
by hyperfine interaction [30] or spin-flip cotunneling [31],
these transitions are enabled at zero magnetic field giving
rise to a finite current. For holes in silicon FinFETSs,
however, spin orbit coupling is the dominant interaction [9,
29], which lifts the PSB at finite magnetic field due to spin-
flip tunneling coupling the T(1,1) states with the S(0,2)
state. [32-34]. This mechanism for holes and strong spin
orbit coupling in a magnetic field is described in detail
in Ref. [35]. Furthermore, independent of the magnetic
field, the blockade is lifted when the inter-dot energy level
detuning reaches or exceeds the singlet-triplet splitting of
the S(0,2) and T(0,2) states.

Signatures of PSB can be observed in Figs. le, f. Two
bias triangles are visible for Vsp = 8 mV. For opposite
polarity Vgp = —8mV the current at the common base
line of the triangles, i.e. current due to ground state tran-
sitions, is strongly suppressed at zero magnetic field. The
excited state transitions are visible as parallel stripes away
from the common base line. They appear at a detuning
exceeding the singlet-triplet splitting and are visible in
both bias directions, although the magnitude of the corre-
sponding current might differ due to device asymmetries.
The blockade at the base line of the bias triangles is lifted
for a magnetic field of B = 0.1 T. PSB can be detected
by comparing stability diagrams displaying bias triangles
at B =0 and B # 0 and looking for changes in the base
line current. Two stability diagrams showing the same
bias triangles at B = 0 and B # 0 will be called a pair.
A comparison between stability diagrams corresponding
to opposite signs of bias voltage could also be used to
identify PSB, but this comparison might be uninformative
since differences in the transport features might arise from
device asymmetries.

B. Simulator

A simulator allows us to generate large and diverse
data sets needed to train the deep learning algorithm. We
require simulations of pairs of stability diagrams. With
this goal, we calculate the steady state current [36] with
one energy level in each quantum dot. Then we consider
multiple energy levels in each dot and sum the contri-
bution of every possible combination of energy levels to



calculate the total current.

A simple approach to account for PSB in the simulator
is to suppress the tunneling rate between ground states
in each quantum dot. This can lead to simulated mea-
surements that are unphysical but allows for an efficient
training of the algorithm. We add various sources of
noise to the current simulation. For each parameter of
the simulator we defined a sampling range. This sam-
pling range was not optimised. We observed that different
sampling ranges for the tunneling rates did not have a
significant impact on our results. A detailed description
of the simulator can be found in Appendix B.

Fig. 2 shows examples of simulated bias triangles. PSB
is introduced for Bg;,, = 0 while it is not considered for
Bgim # 0 (Fig.2a). A pair of simulated stability diagrams
is marked by a grey box in Fig.2. Examples of bias
triangles where PSB does not occur are shown in Fig. 2b.
In this case the difference between measurements in a
pair is due to the added noise.
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FIG. 2: Examples of simulated training data. Each
pair in a and b (grey boxes) represents a different set of
parameters. The simulated current values are normalized for
each of these pairs. a Examples displaying PSB. b Examples
in which PSB is not introduced in the simulation. Running
the simulator twice with the same parameters results in two
similar measurements that only differ due to the noise added
to the simulator.

C. Deep learning

The input of the neural network, a deep residual net-
work [37] with 18 layers, is a pair consisting of two stability
diagrams. The current input values are jointly normalized
between 0 and 1 for each pair. The neural network out-
puts a score between 0 and 1. A score of 1 (0) corresponds
to maximum (minimum) confidence in the occurrence of
PSB. The threshold of classification is set at 0.5.

Due to the random sampling of parameters in the sim-
ulations and the randomness in the data augmentation
process, we expect a high variance in the results of the
classification if we train the neural network more than
once. We thus train the neural network ten times to
obtain ten individual classifiers that we combine into a
ensemble of classifiers. We use the average score of all
individual classifiers as the score of the ensemble. This
approach is expected to produce more robust results than
individual classifiers. Details on the training of the neural
networks can be found in Appendix C.

III. RESULTS

We test our algorithm on a stability diagram displaying
a few bias triangles. Machine learning algorithms are
already capable of tuning a device to the double quantum
dot regime [12, 13]. We manually select gate voltage
windows enclosing a few of those bias triangles. These
gate voltage windows are indicated by rectangles labelled
A-C in Fig. 3a. All other bias triangles that could be
observed in this device are displayed in Appendix E. To
create the pairs introduced in Section II B we combine the
bias triangles delimited by the chosen rectangles with an
equivalent version of these measurements at low magnetic
field.

Magnetic field hysteresis can shift the PSB signature
away from B=0. This can sometimes occur in supercon-
ductive coils when current is repeatedly swept at opposite
polarities. We thus do not set B = 0 for these measure-
ments but we choose 9 different equidistant magnetic
fields between B = —0.08 T and B = 0.08 T. In this way,
we create nine pairs of stability diagrams for each gate
voltage window A to C. Example pairs are displayed in
Fig. 3b.

The predictions obtained by the ensemble of classifiers
trained on simulated data as described in Section ITC can
be seen in Fig. 3c. All predictions for charge transitions
A and B are negative, i.e. no signs of PSB are detected.
For charge transitions in C PSB is detected for pairs with
low magnetic field values B = —0.06, —0.04, —0.02 T even
though the base line is very faint when PSB is lifted.

To confirm the predictions, we measure the current at
the base of the bias triangles as a function of the magnetic
field and detuning, see Fig. 3d. The detuning axes, i.e. the
sweep direction of gate voltages Vp; and Vps, are indicated
as white dotted lines in Fig.3b. For charge transitions
in C, the current suppression is evident at low magnetic
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FIG. 3: Using the classifier to find bias triangles ex-
hibiting PSB. a Stability diagram taken at B = 0.5 T. White
rectangles are drawn by a human wishing to classify bias trian-
gles A-C. As in Fig. 1, we display the absolute value of current
and outline the bias triangles with dashed white lines. b Ex-
amples of pairs that are inputs to the classifier. The bottom
row shows the bias triangles from Fig. 3a, which serve as a
reference, since we expect PSB to be lifted at this magnetic
field value. The same bias triangles are shown in the top row at
low magnetic field. Black arrows point at a vanishing common
base line indicating the presence of PSB. ¢ Classification of
bias triangles A-C. The ensemble of classifiers produces a score
for each of the nine pairs corresponding to charge transitions
A-C, which are composed by paired measurements at B = 0.5
T and at values of B close to zero (B = —0.08 to 0.08 T). A
score of over 0.5 predicts the occurrence of PSB. d Magnetic
field dependence of current measurements along the detuning
axis, indicated by white dotted lines in Fig. 3b. A reduction in
current confirms the predicted PSB for three pairs of C. We
draw a dashed line from the pairs in Fig. 3b through Fig. 3c
and Fig. 3d to indicate the magnetic field values corresponding
to those pairs. More results can be found in Appendix E.

field values. This verifies that the corresponding pairs
are correctly identified as displaying PSB. Conversely, no
current reduction is observed for bias triangles A and B,
confirming the absence of PSB. Additional results can be
found in Appendix E.

Benchmarking

We now benchmark the performance of the algorithm
for different types of training data, and considering both
individual and ensemble classifiers.

We build a data set consisting of 53 pairs, originating
from measurements of 4 different devices. In this data
set, we only included examples that exhibit well shaped
bias triangles and measurements that show either clear
signatures of PSB or no signatures of PSB at all, so that
human experts can verify the correctness of the label.
Table I shows how many pairs are associated with each
device. All pairs used are shown in Fig.9 in Appendix E.

Device

il il iv

Positive |1 15 2 1

Negative|0 16 14 4
TABLE I: Structure of experimental data used to
benchmark the algorithm. For each of the devices con-
sidered, number of pairs displaying PSB (positive) and not
displaying PSB (negative) as assessed by a human judge. Data
from device ii was collected over multiple cool-downs. A few
individual pairs might show the same charge transitions in
different locations in gate voltage space, e.g. for different tun-

nel coupling strengths. The data set includes measurements
corresponding to B = —0.04 T from Fig. 3 and Fig. 8.

To study the effect of different training data on the
performance of the algorithm, we investigate three cases,
which we refer to as Simulated data (Sim), Experimental
data (Exp) and Mixed data (Mix). Sim corresponds to
the case of training the classifiers with only simulated
data. These classifiers are the same as those used for the
predictions in Fig. 3. For Exp, training is performed only
with experimental data from the devices listed in Table I.
Mix is a mix of training with experimental and simulated
data; half of the training data is experimental and the
other half is simulated.

We augment the training data by random shearing,
stretches, crops, contrast and brightness such that there
are 50,000 pairs. Details of training and augmentation
can be found in Appendix C.

Since our data set of measurements is small we employ a
form of cross-validation in the cases Exp and Mix which
we call cross-device validation. This means that each
classifier is tested on data from a device that is different
from the devices it was trained on. Each of these groups
of training and testing data forms a fold. The process is
repeated until all devices have served as a testing device
once. Because we don’t have both positive and negative



pairs from device i we don’t use that device as a testing
device as computing some specific performance metrics
is not possible. In computation of the cross-validation
performance metrics, we weight each fold according to
the number of pairs it holds. This can be seen as a form
of inverse-variance weighting. In the case Sim we do not
need cross-validation since we use only experimental data
for testing.
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FIG. 4: Benchmarking results. a Accuracy. Box plots
with results from individual classifiers plotted as dots, the
mean of those is plotted as a dashed green line, and the
performance of the ensemble of classifiers as a solid orange
line. b Receiver operating characteristic (ROC). For each case,
the ensemble ROC is plotted as a solid orange line and the
mean individual ROC as a dashed green line. ¢ Area under
the curve (AUC). Legend as in Fig. 4a.

We define accuracy as the proportion of correctly classi-
fied data in the complete data set. The accuracies of single
and ensemble classifiers are shown in Fig.4a. Training
the classifier with only simulated data (case Sim) leads
to an ensemble accuracy of 96.2%. This high accuracy in-
dicates that our simulator produces data that are similar
to experimental measurements. The ensemble classifier
outperforms the mean of individual classifiers (92.8%), jus-
tifying the use of ensemble classifiers. Previous classifiers
that classify data from quantum devices show accuracies
below 90% [28]. The mean accuracy of individual clas-
sifiers decreases to 84.2% for classifiers trained purely
on experimental data (case Exp) and the ensemble of

classifers achieves an accuracy of only 83.0%, showing the
advantage of a simulator. These lower accuracies indicate
over-fitting as a result of small training data sets. The
simulated data provides a more representative and diverse
data set that prevents this problem. Mixing the two data
types (case Mix) leads to the same ensemble classifier
accuracy as using only simulated data (96.2%). The mean
of the individual classifiers improves to 95.7% and a lower
variance of the individual classifiers is observed.

We find that neural networks trained only on experimen-
tal data strongly under-perform those that were trained
with only simulated data or a mix of both types of data.
Thus, the simulated data seems to be the main driver
of performance in contrast to the findings in [28]. The
superiority of classifiers trained on simulated data may be
due to the scarcity of experimental data and specific to
the problem of detecting PSB. We train with between 31
an 48 experimental measurements before augmentation
in the cases Exp and Mix depending on the fold. In
the case Sim (Exp) we use 25,000 (12,500) simulated
pairs before augmentation. The influence of the number
of pairs used in training is discussed in Appendix D.

The accuracy can be affected by the choice of the score
threshold so we use other metrics to further analyse our
results. Choosing a score threshold means navigating
a trade-off between true positive rate (TPR) and false
positive rate (FPR). The receiver operating characteristic
(ROC) curve, a plot of TPR against FPR, illustrates this
trade-off, see Fig.4b. The area under the ROC curve
(AUC) is independent of the score threshold and is 1 for
a perfect classifier. An arbitrary classifier would produce
a ROC that is a diagonal with an AUC of 0.5. In the
case Sim we obtain an AUC of 0.983 for the ensemble
classifier, see Fig.4c. This can be slightly improved by
mixing in experimental data (case Mix), leading to an
AUC of 0.991. In comparison, only using experimen-
tal data (case Exp) gives an ensemble AUC of 0.924.
The mean individual classifiers achieve an AUC of 0.983,
0.910, and 0.984 in cases Sim, Exp and Mix, respec-
tively. The results obtained by estimating the AUC are
similar to those obtained by calculating the accuracy of
the classifiers; training only on experimental data results
in under-performing classifiers. Classification results for
all experimental pairs used here can be found in Fig.9 in
Appendix E.

IV. DISCUSSION

We train deep neural networks with simulated and
experimental data to detect bias triangles that show signs
of PSB. We demonstrate that even in the case of extremely
limited data, a neural network can be successfully trained
to solve this intricate task. Cross-device validation allows
us to show that the method performs well on unseen
devices.

We find a higher variance of accuracy of individual
classifiers when trained on simulated data compared to



classifiers trained on real data. This might be due to
the limitations of the simulator and could be mitigated
by increasing the number of simulations used in training
at a larger computational cost. Forming an ensemble
prediction leads to a high accuracy. In contrast to previous
work [28], simulated data seems to be more important
for training than experimental data. This might be due
to the scarcity of experimental data available for the
classification of PSB.

The hurdles in the scarcity of data can be overcome
through careful training and high quality simulated data.
Scarcity of data could be addressed by the community
through open access to data.

In light of the subtlety of the problem of identifying
PSB we expect this method to have promising applications
in the automation of tuning procedures for spin qubit
devices. The classifier could be embedded in a larger
tuning algorithm to reliably determine whether a charge
transition is promising for PSB.
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Appendix A: Device dimensions

We use four different silicon FinFET devices with vary-
ing dimensions in this work. The dimensions that are
varied are the length of the plunger gates Lp, the length
of the barrier gate Ly, and the width of the fin W. We
show a schematic of the top view of the device with the
lengths and widths that are varied in Fig. 5. A top view
SEM image of similar devices can be found in [29]. Table
IT shows the estimated dimensions for each device.

L, Ly L
< c c &
S S
<> <>
| N H aw
L1 P1 P2 L2

FIG. 5: Top view schematic of device layout. Colors
and labels are the same as in Figs. la, b.

Device
i il oiv
Lp [nm][20 15 15 20
Lg [nm] |35 25 35 20
W [nm] |25 20 25 10

TABLE II: Estimated device dimensions for the dif-

ferent devices. Illustration of the layout is given in Fig. 5.

Lg gives the length of the gap between the plunger gates for
device i as it has no barrier gate.

Appendix B: Simulator

We consider the steady state current through a double
quantum dot coupled to fermionic reservoirs. For an
energy level E4 in the left dot and an energy level Ep
in the right dot we define the detuning as ¢ = EF, —
Ep. These energy levels are seen as the combined charge
and spin states of an excess electron. We describe the
simulator in terms of electrons but it holds true for holes
as in the silicon FinFET used in the main part. We
consider an electron to already occupy the right dot. The
tunneling rates from the left reservoir (the source) and
to the right reservoir (the drain) are I'y, and I'g, and the
tunneling rate between the dots is I'p. This situation
is shown in Fig. 6a. The stationary solution from [36] is
given by

275

Iar ial = . B1
Pl T T2 (24 TR/TL) + TR/4+ €2 (BL)

The total current consists of contributions due to differ-
ent energy levels in the left and right dot, as illustrated
in Fig. 6b. It is given by
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FIG. 6: Explanation of the simulator. a Fundamental
building block. If only one energy level is available in each
dot, we can compute the current through a double quantum
dot. b Simulation with several levels in each dot. We simply
add the contribution of each pair according to 6a. If the DQD
is in Pauli spin blockade, lower levels can be identified with
singlet and triplet levels, higher levels are excited levels.

1= Z Z Ipartial

Es Ep

(B2)

Each level in the left dot ES) is associated with a source
tunneling rate I‘(Li). Accordingly, each level in the right
dot Egc) is associated with a drain tunneling rate F%C)
and each pair of energy levels (EX), Egc)) is associated

with an inter-dot tunneling rate Fgf’k). This equation is
only used if the lowest energy levels in each dot are in the
bias window. Otherwise the DQD is in Coulomb blockade
and current will be suppressed by setting I to zero.
Energy levels are computed by considering the gate
voltage of each assigned plunger gate V4, Vp and the
associated lever arm L4, Lp that translates voltage to
an energy. Additionally, we introduce cross talk terms
Cy,Cp which describe the influence of a plunger gate on
the other quantum dot, i.e. the dot that the gate was not
intended to be influenced. This way, the ground energy

levels Eg)) and Eg) can be computed as

EY =La Va+Cp- Vs, (B3)
EV =Cr-Va+Lp-Vp. (B4)

(T69) 0 e+ (00 a v )
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Each energy level EX) (Egc)) for i > 0 (k > 0) is split

from the previous energy level by an energy Egli))m (Ei’;l)it):

7 1—1 7

EY =g 4 Es(p{it, (B5)
k k— k

R Ry WU

We apply white noise « to each energy level with x ~
N (1, 0%), where o is a sampled parameter. The indices
(1), (k) are omitted from now on for readability.

Thermal broadening of the triangles is taken into ac-
count by adding the thermal energy kg7 to source po-
tential fig and drain potential fip with the Boltzmann
constant kg and temperature 7, us = fis + kg7, and
up = fip + kT . The tunnel rates are modified due to
the effects of temperature as,

T =TLf(Ea, ps), (B7)

Tr=Tg[l - f(Ep,up)], (B8)
where I', and Ty are sampled parameters, and f(e,v) =

(14exp( ;;;’,))_1 is the Fermi-Dirac distribution. Equally,

I'7 is sampled and then rectified to only allow for physi-
cally possible transitions in the bias direction:

B9
0, else. (B9)

{fT, if Ex— Ep >0
I'r =

Equations B1 to B9 produce one triangle of the pair we
need. We can think of this as the cycle (0,1) — (1,1) —
(0,2) — (0,1) with (m,n) indicating m electrons (holes)
in the left dot and n electrons (holes) in the right dot.
There is another cycle possible, namely (1,2) — (1,1) —
(0,2) — (1,2). The bias triangle associated with this
cycle is shifted due to the electrostatic coupling energy
between the dots E¢,, . This second triangle is simulated
by shifting all energy levels by E¢, and repeating the
current simulation discussed above. If the bias triangles
overlap, only the maximum current is used.

To mimic experimental observations and to create
a diverse data set, we get a set of two of bias tri-
angles by randomly sampling the scalar parameters
{La,Lp,Ca,Cp,0,fs,iip,T,Ec,, }, the vector parame-
ters {f‘L, f‘R, Epiit } and the elements of the matrix L.
The dimensions of the vectors and the matrix depend on
how many energy levels we consider in each dot, which
is also sampled randomly. Overall, the simulator takes
between 20 and 50 sampled parameters as input and
generates a two dimensional charge stability diagram.

Finally, we add different types of noise to the measure-
ments further to the noise already described. Gaussian
blurring is used to smooth the edges of the triangles. The
triangles can also move in voltage space due to charge



switches or other drift effects. Charge switch noise at ran-
dom points simulates both effects, see Figure 2b bottom
left for an example. We also add white noise to the final
current values at each simulated point.

To simulate the effect of PSB we add simple rules about
where and how much current is allowed. The right lowest
level represents the S(0,2) level and we neglect the small
splitting of the left lowest energy level into S(1,1) and
T(1,1), see Figure 6b, making it only one level. With PSB,
tunneling between these two states is prohibited because
an electron will eventually occupy the T(1,1) state and
will not be able to tunnel to S(0,2). This leads to the
rule:

For bias triangles in PSB, the tunneling rate between
the two lowest energy levels is set to 0.

An electron that is stuck in T(1,1) also blocks all other
paths through the double dot. Therefore, a second rule is
introduced:

We suppress all current at a given point in voltage
space if the only available energy levels in the bias
window are the lowest ones.

For more details, the code for the simulator is available
on our GitHub repository.

Appendix C: Details of the training procedure

Each training run consists of 50,000 pairs and 100
epochs. We use mini-batches of size 128.

We use the Adam optimizer [38] with a regularisation
factor of 0.001. The optimiser is initialised with a learning
rate of 0.001. The learning rate is then decayed with a
scheduler once a plateau in the training loss is reached.

To sample the 50,000 examples for the case where we
only use simulated data, we sample 25,000 and augment
each image twice.

When using only experimental data, we augment the
available training data (see Table I) until we have 50,000
examples. In the case of mixed data, we sample 12,500 ex-
amples from the simulator, augment them twice, and then
augment the available experimental training data until we
have 25,000 examples which gives us 50,000 examples in
total. To counteract class imbalance, i.e. examples with
and without PSB, we also weight the classes according to
their prevalence in the loss function.

We add random contrast and brightness to all training
data and then crop them randomly. Experimental data is
additionally randomly sheared and stretched along both
axes. Every pair is normalised between 0 and 1.

Testing data, i.e. the corresponding fold in the cross-
validation procedure, is not augmented but only nor-
malised. The neural network and its training is imple-
mented in PyTorch [39].
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Appendix D: Influence of the number of simulated
pairs

We investigate the role of the number of simulated pairs
when training with only simulated data. We simulate 10,
100, 1,000, or 10,000 pairs and augment them until we
have 50,000 pairs. The accuracy for classifiers trained
on those data sets in comparison with the sample size
used in the main text (25,000 sampled pairs) is shown in
Fig. 7.

The results show that the main driver of accuracy is the
size of the sample set. The number of pairs when training
with real data is between 31 and 48, depending on the
fold, reaching about 85% mean accuracy. In comparison,
100 simulated pairs lead to a similar mean accuracy but
the spread of accuracies is much larger.
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FIG. 7: Varying simulated sample size. We show the

accuracy for varying sizes of the simulated data set. In all

cases the simulated pairs were augmented until 50,000 total

pairs are created. 25,000 pairs in the training set corresponds
to the analysis shown in the main text in Fig 4.

Appendix E: More classification results

Fig. 8 shows more classification results that correspond
to section III in the main text. Fig.8a shows the stability
diagrams with the identified bias triangles as white boxes
and Fig. 8b shows the predictions of the classifier, which
predicted no PSB for charge transitions D-F.

We repeat the same experiment for reversed bias.
Fig. 8c shows the stability diagram with identified bias
triangles. We call them G-L to distinguish them from
the measurements in the main text even though they
correspond to charge transitions A-F.
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FIG. 8: More classification results. a Stability diagram

for more bias triangles. b Classification results corresponding

to charge transitions in Fig. 8a. ¢ Stability diagram for reversed

bias. d Classification results in the reversed bias case. As

in Figs. 1 and 3, the absolute value of current is shown and

dashed white lines outline the bias triangles in Fig.8a and
Fig. 8c.
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Here, all bias triangles were classified as not having
PSB, shown in Fig. 8d.

We show all experimental data used for the training and
testing of the classifier in Fig.9. We split them according
to device source (row) and whether they show signs of
PSB or not (column). Data from device iv corresponds to
charge transitions A, B, C, D, and H with a low magnetic
field of B = —0.04 T (see Fig. 3 and Fig. 8). We show three
ensemble classifier scores (one for each type of training
data) for each example. In the left column, we expect a
perfect classifier to predict PSB (which would mean a full
bar), in the right column it would predict no PSB (which
would mean a missing bar).

This shows which examples were hard for the classifiers
and it also shows the diversity of examples the classifier
needed to deal with.

Some bias triangles show only weak signs of PSB, such
as the ones from device iii. Even though we can not be
sure from those measurements that this is indeed due
to PSB and not due to other effects, e.g. orbital effects,
we still label those bias triangles as showing PSB. The
point is that the signature could be due to PSB and
should therefore be caught by a classifier. Confirmation
measurements such as the ones done in Fig. 3d need to
be performed after that to verify the prediction.
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FIG. 9: All experimental data used for benchmarking and the prediction of the ensembles of classifiers. There
are two main columns (sets with and sets without PSB) and four main rows (devices i to iv). The measurements shown in the
left column (marked “PSB”) are not definitive proof that PSB is present but show the signs we expect and want to detect with
a classifier. In the top left corner there is an example prediction plot with all labels: We show ensemble scores for the case of
training on simulated data (blue), experimental data (orange), or a mix of both (green). The prediction threshold is plotted in
the background as a horizontal line at a score of 0.5. Each set consists of a current measurement with low or zero magnetic field
(top) and with a large magnetic field (bottom) and is jointly normalised between 0 and 1. Above each set the score plot is
shown for that set without labels. The sets with PSB of device iii additionally show a magnification of a part of the base of the
triangles due to visibility.
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