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Semiconductor spin qubits offer a unique opportunity for scalable quantum computation

by leveraging classical transistor technology. Hole spin qubits benefit from fast all-electrical

qubit control and sweet spots to counteract charge and nuclear spin noise. The demonstra-

tion of a two-qubit quantum gate in a silicon fin field-effect transistor, that is, the workhorse

device of today’s semiconductor industry, has remained an open challenge. Here, we demon-

strate a controlled rotation two-qubit gate on hole spins in an industry-compatible device.

A short gate time of 24 ns is achieved. The quantum logic exploits an exchange interaction

that can be tuned from above 500MHz to close-to-off. Significantly, the exchange is strik-

ingly anisotropic. By developing a general theory, we show that the anisotropy arises as a

consequence of a strong spin-orbit interaction. Upon tunnelling from one quantum dot to

the other, the spin is rotated by almost 90 degrees. The exchange Hamiltonian no longer has

Heisenberg form and is engineered in such a way that there is no trade-off between speed and

fidelity of the two-qubit gate. This ideal behaviour applies over a wide range of magnetic

field orientations rendering the concept robust with respect to variations from qubit to qubit.

Our work brings hole spin qubits in silicon transistors a step closer to the realization of a

large-scale quantum computer.

Semiconductor quantum dot (QD) spin qubits are prime candidates for future implementations

of large-scale quantum circuits [1–3]. Currently, the most advanced spin-based quantum processor

allows for universal control of six electron spin qubits in silicon (Si) [4], closely followed by a four-

qubit demonstration with holes in germanium [5]. In comparison to electron spins, hole spins have

the advantage that they can be controlled all-electrically, without the added complexity of on-chip

micromagnets [6, 7], thanks to their intrinsic spin-orbit interaction (SOI). Moreover, holes benefit

from a reduced hyperfine interaction [8] and the absence of valleys [9].

Holes in quasi-one-dimensional (1D) nanostructures are highly attractive for implementing fast
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and coherent qubits. The mixing of heavy- and light-hole states on account of the 1D-confinement

results in an unusually strong and electrically tunable direct Rashba spin-orbit interaction (DRSOI)

with sweet spots for charge and hyperfine noise [10–12], enabling ultra-fast hole spin qubits [13, 14]

hidden from the noise [15]. Conveniently, such a 1D-system can be realized using today’s industry

standard transistor design known as the fin field-effect transistor (FinFET) [16]. Adapting FinFETs

for QD integration [15, 17–21] may potentially facilitate quantum computer scale-up by leveraging

decades of technology development in the semiconductor industry [22]. Furthermore, it has recently

been shown that hole spin qubits in a bulk-Si FinFET can be operated at temperatures above 4K

[21], paving the way for FinFET-based quantum integrated circuits that host both the qubit array

and its classical control electronics on the same chip [23–25].

Universal quantum computation requires both single-qubit control and two-qubit interactions.

Native two-qubit gates for spins such as the
√

SWAP [1, 26], the controlled phase (CPHASE) [27–

30] or the controlled rotation (CROT) [4, 23, 28, 31–33] rely on the exchange interaction, which

arises from the wavefunction overlap between two adjacent QDs. For electrons in Si, two-qubit gate

fidelities have recently surpassed the fault-tolerance threshold of 99% [29, 30, 33], but for holes in Si

or FinFETs the demonstration of two-qubit logic is still missing due to the challenges in obtaining

a controllable exchange interaction [34].

We make this important step towards a FinFET-based quantum processor by demonstrating a

CROT for holes in a Si FinFET. The strong SOI in combination with a large and highly tunable

exchange splitting enables the execution of a controlled spin-flip in just ' 24 ns. While the exchange

interaction is crucial for implementing high-fidelity two-qubit gates, it is, in particular for hole spins,

still largely unexplored. We measure the dependence of the exchange splitting on the magnetic

field direction and find large values in some directions, close-to-zero values in other directions. In

addition, we develop a general theoretical framework, applicable to a wide range of devices, and

identify the SOI as the main reason for the exchange anisotropy. From our measurements we can

extract the full exchange matrix and hence accurately determine the Hamiltonian of the two coupled

spins, allowing us to predict the optimum operating points for the gates. For holes unlike electrons,

the strong exchange anisotropy facilitates CROTs with both high fidelity and high speed for an

experimental setting that is robust against device variations.

Fig. 1a shows the device cross-section along the triangular-shaped fin, revealing ultrashort

lengths, highly uniform profiles and perfect alignment of the gate electrodes [18, 19]; Fig. 1b presents

a 3D illustration of the device. The double quantum dot (DQD) hosting qubits Q1 and Q2 is formed

beneath plunger gates P1 and P2, and the barrier gate B provides control over the inter-dot tunnel
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FIG. 1. Two-qubit system in a Si FinFET. a, False-colour transmission electron microscope image of

a co-fabricated device showing the cross-section along the fin. The qubits (Q1, Q2) are located underneath

the plunger gates (P1, P2) and are manipulated by applying microwaves to the P1-gate. The barrier gate

(B) controls the inter-dot tunnelling; the lead gates (L1, L2) accumulate the hole reservoirs. Measurements

are performed on a device with ' 20 nm-wide B- and P-gates. b, A 3D render of the device illustrating the

triangular-shaped fin covered by the wrap-around gates. c, Two-spin energy-level diagram close to the (1,1)-

(0,2) charge transition with (black) and without (orange) interactions. The singlet state S02 hybridizes with

the antiparallel (parallel) two-spin states on account of spin-conserving tunnelling (SOI). A finite exchange

splitting J‖ lowers the energy of the antiparallel two-spin states with respect to the parallel ones. d, Exchange

spin funnel measurements for both qubits, revealing an increase (decrease) in f1↑, f2↑ (f1↓, f2↓) at the upper

(lower) branch. Data was taken at VB = −820 mV and |B| = 0.146 T with orientation α = 30◦, β = 0◦.

coupling tc [21]. The distance between the QDs was chosen to match the spin-orbit length [19, 21].

Taking advantage of the strong SOI, all-electrical spin control is implemented by electric-dipole

spin resonance (EDSR) [35, 36]. For this purpose, fast voltage pulses and microwave (MW) bursts

are applied to P1 and a spin-flip is detected in the form of an increased spin blockade leakage

current. The device is tuned close to the (1,1)-(0,2) charge transition, where (n,m) denotes a state

with n (m) excess holes on the left (right) QD. In Fig. 1c the eigenenergies of the two-spin states

(|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉) in the (1,1) and the singlet ground state S02 in the (0,2) charge region are

plotted as a function of the detuning ε, which describes the energy difference between the (1,1) and

(0,2) charge states. While spin-conserving tunnelling causes an anticrossing between the S02 and

the antiparallel two-spin states, spin-non-conserving tunnelling on account of the SOI results in an

anticrossing between the S02 and the parallel two-spin states. As a consequence of the anticrossing

with the singlet state, the energy of the antiparallel states decreases by J‖(ε)/2, where J‖(ε) is the

exchange coupling between the two spins. The energy level structure of the two-hole system can be
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FIG. 2. Tunable exchange coupling. a, Detuning dependence of the exchange frequency for VB =−830,

−800 and −780 mV. The solid curves represent fits to Eq. (1) and errors the width of the EDSR resonance.

b, J‖/h determined for ε = −2 meV and c fitted tunnel coupling as a function of VB. The solid lines show

exponential function fits to the data. The error bars represent in b the estimated errors due to a detuning

uncertainty, and in c the standard errors for the best-fit values.

probed by performing MW spectroscopy (Fig. 1d): at large negative ε, the resonance frequencies

of both qubits differ due to the individual g-tensor gi for each QD, and are independent of each

other. At more positive detunings, closer to the (0,2) region, the exchange interaction splits both

resonances by J‖/h, resulting in four conditional transitions. The corresponding EDSR frequencies

are denoted by fiσ, where i is the index of the target qubit and σ the control qubit state |↑〉 or |↓〉.
We map out the ε-dependence of J‖ that, as shown in Fig. 2a, is well described by

J‖ = J0 cos(2θ̃) =
2t2c

U0 − ε
cos(2θ̃), (1)

valid in the limit of tc � U0 − ε [37–39]. Here U0 is an energy offset of the ε-axis, J0 the bare

exchange, and cos(2θ̃) a SOI-induced correction factor, which is independent of detuning and dis-

cussed later. The exchange splitting shows an exponential dependence on the barrier gate voltage

VB (Fig. 2b) and reaches values of up to ' 525 MHz. At the same time, exchange can be turned off

within the resolution limit of our spectroscopy experiment that is given by the EDSR linewidth of

' 2 MHz [28, 32, 39]. This means, using the two control knobs ε and VB, we achieve excellent control

over the exchange coupling. Since tc ∝ J1/2
‖ the tunnel coupling is also exponentially dependent on

VB and tunable by almost one order of magnitude (Fig. 2c).

In Figs. 3a-e the dependence of J‖ on the magnetic field orientation is shown, revealing a striking

anisotropy with vanishing splittings. The highly anisotropic exchange frequency is mainly due to

the strong SOI and can be qualitatively understood from the gap size ∆dd
so of the anticrossing
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between the S02 and the parallel two-spin states. ∆dd
so is proportional to |nso ×B|, where nso is a

unit vector pointing in the direction of the spin-orbit field and B the external magnetic field [40].

Therefore, ∆dd
so changes with magnetic field orientation and so do the two-hole energy levels (see

Fig. 1c). However, we remark that from the dependence of ∆dd
so on B/|B| the exchange matrix J

cannot be extracted.

We derive an equation for J starting from a Fermi-Hubbard model and including both the

SOI as well as the anisotropic and differing hole g-factors (Methods and Supplementary Section

5). Tuned deep into the (1,1) charge regime where spin manipulation takes place, the system is

approximated by the Hamiltonian

H(1,1) =
1

2
µBB · g1σ1 +

1

2
µBB · g2σ2 +

1

4
σ1 · Jσ2 . (2)

Here µB is Bohr’s magneton and σi the vector of Pauli matrices for each QD. The exchange matrix

is given by J = J0Rso(−2d/λso), where Rso(ϕ) is the counterclockwise rotation matrix around nso

by an angle ϕ, λso the spin-orbit length, and d the inter-dot distance. The experimentally observed

exchange splitting is given by (Methods and Supplementary Section 5)

J‖ = n1 · Jn2 = J0n1 ·Rso(−2d/λso)n2 , (3)

where ni = giB/|giB| denotes the Zeeman field direction. On comparing Eqs. (1) and (3) we find

for the previously introduced correction factor cos(2θ̃) = n1 ·Rso(−2d/λso)n2. Finally, by describing

the magnetic field direction using the two angles α and β (Fig. 3), we obtain a fit equation J‖(α, β)

with five fitting parameters, namely tc, U0, nso and λso.

Next, we apply this model to the data (black points) shown in Figs. 3a-f and perform a common

fit to the full data set, consisting of measurements of J‖(α, β) in five different planes (visualized in

Fig. 3g) at constant detuning, and J‖(ε) for B pointing in x-direction. There is excellent agreement

between theory and experiment for the best-fit parameters: λso = 31 nm, nso = (−0.06, 0.41, 0.91),

tc = 5.61 GHz and U0 = 1.07 meV. The spin-orbit length coincides with the values reported before

[19, 21], and corresponds to a spin rotation angle of θso = d/λso ' 0.41π for a hole tunneling from

one QD to the other over d' 40 nm. The direction of the spin-orbit field, represented by (αso = 93◦,

βso = 23◦), is as expected perpendicular to the long axis of the fin and thus orthogonal to the hole

momentum [10, 12]. The small out-of-the-substrate-plane tilt can arise on account of strain or

electric fields not being perfectly aligned along the y-direction. Using the five best-fit parameter
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FIG. 3. Anisotropic exchange. a-e, Exchange frequency as a function of magnetic field direction, which is

expressed with the angles α and β (see coordinate system in g), for five different planes at ε = −4.03 meV. For

certain B-orientations the qubits could not be read out via Pauli spin blockade and hence J‖/h (black points)

could not be determined. f, Detuning dependence of J‖/h for B applied in x-direction. The multicolored

curves in a-e and the orange one in f represent a common fit of Eq. (3) to all the data presented in this figure.

While the red dashed curves in a-e visualize |J⊥|/h, the blue dashed ones illustrate the exchange modulation

due to the different and anisotropic g-tensors in the absence of SOI. g, Schematic representation of the fin

structure (black and grey lines) overlaid by a three-dimensional surface plot of |J‖|/h. The coloured dashed

rectangles indicate the planes of a-e. The data presented in this figure are taken at VB = −820 mV and the

error bars account for the EDSR linewidth and uncertainties in B-field due to magnetic flux trapping.

values we can, for the first time, reconstruct the full exchange matrix

J = J0




−0.87 0.41 −0.28

−0.49 −0.60 0.64

0.10 0.69 0.72


 . (4)

Because we also find the g-tensors when measuring J‖(α, β) by means of MW spectroscopy, the two-

spin Hamiltonian (2) is fully characterized, thus allowing us to optimize two-qubit gate operations as

discussed later. Furthermore, we can analyze the different contributions to the exchange anisotropy

with Eq. (3): by setting θso to zero, we are left with the effect of the anisotropic g-tensors. We find

that the g-factor contribution to the J‖-anisotropy was minor (dashed blue curves in Figs. 3a-e).

Finally, we remark that the observed rotational exchange anisotropy relies on a strong SOI and the

presence of an external magnetic field [41, 42], as opposed to a weaker Ising-like anisotropy that

can be found in inversion symmetric hole DQDs [43] or at zero magnetic field [44, 45].
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FIG. 4. Fast two-qubit logic with Si hole spin qubits. a, Pulse sequence for the CROT gate operation.

A trapezoidal waveform with a ramp time of 20 ns is used to initialize the spins in the |↓↑〉-state and to readout

their state after applying two microwave bursts resonant with Q2 (f2↓ = 4.25 GHz) and Q1 (f1↑ = 4.66 GHz).

b, Parity measurement of the qubits demonstrating a conditional rotation of Q1 controlled by the state of

Q2. This data is taken at J‖/h' 80 MHz, VB = −810 mV, |B| = 0.146 T, α = 25◦, β = 0◦ and ε = −2.9 meV.

c, Numerically calculated CNOT gate fidelity versus exchange splitting J‖ (in units of ∆EZ) for anisotropic

(blue, with parameters of b) and isotropic (orange) exchange. The shaded regions indicate the precision of

the numerics.

We make use of the large exchange splitting to demonstrate a fast two-qubit gate for holes in

Si, namely a controlled rotation [5, 28, 32, 33, 46]. This gate operation is naturally implemented

by driving just one of the four EDSR transitions (see Fig. 1d), resulting in a rotation of the target

qubit conditional on the state of the control qubit. First, we initialize |Q1,Q2〉 in the |↓↑〉-state by

adiabatically pulsing from ε> 0, where the spin-blockaded |↓↓〉-state is occupied, to ε=−2.9 meV,

where J‖/h' 80 MHz and MW-induced state leakage is suppressed [28] (Supplementary Section 4).

Subsequently, the state of the control qubit Q2 is prepared by a MW burst of length tb2 and

frequency f2↓, and finally a controlled rotation of the target qubit Q1 is triggered by the following

pulse with tb1 and f1↑ (Fig. 4a). The measurement outcome is presented in Fig. 4b, revealing the

characteristic fading in and out of the target qubit’s Rabi oscillations as a function of tb2, that is,

the spin state of the control qubit [5, 46]. A controlled spin flip for Q1 is executed in ' 24 ns, which

is short compared to other realizations with electrons in Si [33] or holes in Ge [5, 46]. We remark

that our transport-based readout scheme severely limits the duration of the qubits’ manipulation

stage [21], such that randomized benchmarking to determine a two-qubit gate fidelity could not be

performed [47].

Two key requirements need to be fulfilled for high-fidelity CROT gates. First, in order to prevent
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a mixing of the antiparallel spin states (|↑↓〉, |↓↑〉), the Zeeman energy difference between the qubits

∆EZ must be much larger than the “perpendicular” exchange coupling J⊥ (see Methods). Second,

either J‖�hfRabi or J‖/
√

15 =hfRabi to avoid unwanted rotations of the off-resonant states [33, 38].

Hence, for electrons with isotropic exchange (J‖= J⊥= J) the speed of high-fidelity CROT gates is

limited by hfRabi� J�∆EZ. However, for hole spins with highly anisotropic exchange interaction

this limit can be overcome. In fact, J‖= J0 while J⊥= 0 is possible, for instance, if the g-tensors

are isotropic, for θso = π/2 and B perpendicular to nso; we remark that the latter condition also

ensures fast single qubit rotations. Consequently, our theory predicts that for holes in comparison

to electrons a controlled-NOT (CNOT) gate (differing from a CROT by a phase factor) with fidelity

above the fault-tolerance threshold of 99% can be realized with much shorter gate times (Fig. 4c).

For the CROT experiment presented in Fig. 4b the magnetic field orientation (marked by the

vertical orange line in Fig. 3b) was chosen such that |J‖| = 0.90 J0 and |J⊥|= 0.05 J0. In Figs. 3a-e

the red dashed curves show the dependence of J⊥ on B/|B|, highlighting that the ideal configuration
(J‖' J0, J⊥' 0) is stretched over a wide range of directions. The CROT sweet spot is consequently

robust against device variations, making it highly suitable for large qubit arrays.

In summary, we investigated the exchange coupling between two hole spins in a Si FinFET and

found it to be both highly anisotropic and tunable, allowing for an interaction strength >0.5GHz.

We identify the strong SOI as the main microscopic origin of this anisotropy and propose a simple

procedure for determining the exchange matrix. This measurement and analysis scheme applies to a

wide variety of devices, for instance also to electron spin qubits with synthetic SOI in the presence

of a magnetic field gradient (Supplementary Section 6) [4, 28, 33]. By fully characterizing the

Hamiltonian of the two coupled spins, the best possible configuration for implementing two-qubit

gates can be identified. A strongly anisotropic exchange results in extended sweet spots in magnetic

field orientation, where both fast and fault-tolerant CROTs can be performed. The robustness of

these sweet spots against device variations makes CROT gate operations with anisotropic exchange

highly attractive for large-scale qubit arrays. Finally, by choosing a close-to-ideal configuration

we realize a CROT gate in just ' 24 ns. The advance reported here in combination with fast

readout [48] and high-fidelity single-qubit operations at temperatures above 1K [21] demonstrate

that industrial FinFET technology has great potential for realizing a universal quantum processor

with all-around high-performance fidelities, integrated on the same chip with the classical control

electronics.
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Methods

Device fabrication. The fin structures are orientated along the [110] crystal direction on a near-

intrinsic, natural Si substrate (ρ> 10 kΩ cm and (100) surface), and are covered by a ' 7 nm-thick,

thermally-grown silicon dioxide (SiO2) layer. Two layers of titanium nitride (TiN) gate electrodes,

which are electrically isolated by a ' 4.5 nm-thick SiO2 layer deposited by atomic layer deposition,

are used for DQD formation. The second gate layer is integrated by means of a self-aligned process,

resulting in a perfect layer-to-layer alignment. The p-type source and drain regions are made

of platinum silicide. Finally, the devices are embedded in a ' 100 nm-thick SiO2 layer and are

measured through contact vias filled with tungsten. Further details on the device fabrication are

provided in Refs. [18, 19].

Experimental setup. All measurements are performed using a Bluefors dry dilution refrigerator

with a base temperature of ∼ 40 mK and a three-axis magnet that provides arbitrary control of the

magnetic field vector B. The DC voltages are supplied by a low-noise voltage source (BasPI SP927)

and the fast pulses applied to the P1-gate (Fig. 1a) by an arbitrary waveform generator (Tektronix

AWG5208), which also controls the I and Q inputs of a vector signal generator (Rohde&Schwarz

SGS100A) for generating sideband-modulated EDSR microwave pulses. The source-to-drain cur-

rent is measured with a current-to-voltage amplifier (BasPI SP983c) and a lock-in amplifier (Signal

Recovery 7265), chopping the microwave signal at a frequency of 89.2Hz for better noise rejection.

Further details are provided by Supplementary Section 1.

Derivation of the fit function for the exchange matrix. Using a Fermi-Hubbard model with

a single orbital state |i〉 per site i = {1, 2}, our DQD system is described by the Hamiltonian

HFH =
∑

i,j∈{1,2}

∑

ss′∈{↑,↓}
H̃ss′
ij a

†
isajs′ + U

∑

i∈{1,2}
ni↑ni↓ . (5)

Here a†is (ais) creates (removes) a hole on site i and spin s = {|↑〉 , |↓〉}, nis = a†isais is the occupation

number operator, and U is the charging energy. The single-particle Hamiltonian H̃ is given by

H̃ =
ε̃

2
τz + tc cos(θso)τx + tc sin(θso)τynso · σ +

1

2
µBB ·

[
1 + τz

2
g1σ +

1− τz
2

g2σ

]
, (6)

and contains spin-conserving inter-dot tunnelling tc cos(θso)τx and a SOI-induced spin-flip hopping

term tc sin(θso)τynso ·σ. Here (τx, τy, τz) are the Pauli matrices for the orbital degree of freedom, e.g.

τz = |1〉〈1| − |2〉〈2|, σ is the vector of Pauli matrices acting on the spin degree of freedom, nso the
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direction of the spin-orbit field and θso = d/λso is the spin rotation angle due to tunnelling [49]. In

the lab frame, as defined in Fig. 1, the g-tensors g1 and g2 are symmetric (Supplementary Section 3).

Finally, ε̃ is the energy difference for a hole occupying the left or the right QD, and is expressed in

terms of the detuning energy ε between the (1,1) and (0,2) charge states by ε̃ = ε+ U − U0.

We perform a transformation from the lab frame to the so-called “spin-orbit frame” and find

H̃so = U †soH̃Uso =
ε̃

2
τz + tcτx +

1

2
µBB ·

[
1 + τz

2
gso

1 σ +
1− τz

2
gso

2 σ

]
. (7)

In the spin-orbit frame non-spin-conserving tunnelling is gauged away by the unitary transformation

Uso = exp(−iθsoτznso ·σ/2), and the g-tensors are given by gso
1 = g1Rso(θso) and gso

2 = g2Rso(−θso).

Here Rso(ϕ) denotes a counterclockwise rotation around nso by an angle ϕ. Since our DQD system

is operated close to the |S02〉-|S〉 anticrossing, the Hamiltonian HFH can be represented in the basis

{|S02〉 , |S〉 , |T−〉 , |T+〉 , |T0〉}

H5×5 =




U0 − ε
√

2tc 0 0 0
√

2tc 0 − δbx+iδby√
2

δbx−iδby√
2

δbz

0 − δbx−iδby√
2

b̄z 0
b̄x−ib̄y√

2

0
δbx+iδby√

2
0 −b̄z b̄x+ib̄y√

2

0 δbz
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0




, (8)

where the average and gradient Zeeman fields b̄ = µBB(gso
1 +gso

2 )/2 and δb = µBB(gso
1 −gso

2 )/2 were

introduced. In the spin-orbit frame, the singlet subspace {|S02〉 , |S〉} is coupled by the total tunnel

coupling tc and the hybridized singlets S± have energies ES+ = U0−ε+J0 and ES− = −J0 with J0 =
√

2 tan(γ/2) = −(U0 − ε)[1 −
√

1 + 8t2c/(U0 − ε)2]/2 and mixing angle γ = arctan[
√

8tc/(U0 − ε)].
Furthermore, we remark that J0 ' 2t2c/(U0 − ε) in the limit of tc/(U0 − ε) � 1. Because S+

couples only weakly to the triplet states, our Hilbert space can be restricted to the four levels

{|S−〉 , |T−〉 , |T+〉 , |T0〉} and we obtain

H4×4 =




−J0 − δbx+iδby√
2

cos(γ2 )
δbx−iδby√

2
cos(γ2 ) δbz cos(γ2 )

− δbx−iδby√
2

cos(γ2 ) b̄z 0
b̄x−ib̄y√

2
δbx+iδby√

2
cos(γ2 ) 0 −b̄z b̄x+ib̄y√

2

δbz cos(γ2 )
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0



. (9)

Hole spin manipulation is performed deep in the (1,1) charge stability region, allowing us to intro-

duce the localized spin operators σso
1 and σso

2 . The Hamiltonian (9) can then be written as

Hso
(1,1) =

1

2
µBB · gso

1 σ
so
1 +

1

2
µBB · gso

2 σ
so
2 +

1

4
J0σ

so
1 · σso

2 , (10)
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revealing that the exchange interaction is isotropic in the spin-orbit frame. To find an expression

for the experimentally measured values, we first rewrite Eq. (10) in the lab frame

H lab
(1,1) =

1

2
µBB · g1σ1 +

1

2
µBB · g2σ2 +

1

4
σ1 · Jσ2 . (11)

Here J = J0Rso(−2θso) represents the exchange matrix in the lab frame, σ1 = Rso(−θso)σso
1 and

σ2 = Rso(θso)σso
2 . In addition, independent rotations R1 and R2 are applied to Q1 and Q2, such

that the single particle terms of the Hamiltonian (11) become diagonal:

HQ
(1,1) =

1

2
EZ,1σ

Q
z,1 +

1

2
EZ,2σ

Q
z,2 +

1

4
σQ

1 · J QσQ
2 , (12)

where EZ,ie
Q
z = µBRigiB is the i-th site’s Zeeman splitting, eQ

z the spin quantization axis and

J Q = J0R1Rso(−2θso)RT2 the exchange matrix in the so-called “qubit frame”, wherein the exchange

splitting J‖ is experimentally observed. To obtain an expression for J‖ we rewrite the Hamiltonian

of Eq. (12) in matrix form using the two-qubit basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}

HQ
(1,1) =




EZ + 1
4J

Q
zz 0 0 0

0 1
2∆EZ − 1

4J
Q
zz

1
2J⊥ 0

0 1
2(J⊥)∗ −1

2∆EZ − 1
4J

Q
zz 0

0 0 0 −EZ + 1
4J

Q
zz



. (13)

Here we neglect every coupling that would contribute to the eigenvalues in O(J2
0/EZ) and introduce

J⊥ = [JQ
xx+JQ

yy+ i(JQ
xy−JQ

yx)]/2, EZ = (EZ,1 +EZ,2)/2 and ∆EZ = EZ,1−EZ,2. The eigenenergies
of Eq. (13) are

E↑↑ = EZ +
1

4
JQ
zz , E↓↓ = −EZ +

1

4
JQ
zz , (14a)

E↑̃↓ =
1

2
∆ẼZ −

1

4
JQ
zz , E↓̃↑ = −1

2
∆ẼZ −

1

4
JQ
zz , (14b)

with ∆ẼZ =
√

∆E2
Z + |J⊥|2. We thus find for the exchange splitting, which is defined as the energy

difference between the two transitions flipping the same spin, J‖ = E↑↑ −E↑̃↓ − (E↓̃↑ −E↓↓) = JQ
zz.

The matrix element JQ
zz in turn is given by

JQ
zz = J‖ = eQ

z · J QeQ
z = n1 · Jn2 = J0 n1 ·Rso(−2θso)n2 . (15)

Eq. (15) is the fit function employed to describe the observed exchange anisotropy, where the effect

of both spin-orbit interaction and the anisotropy of the g-tensors is accounted for. We note that

an explicit dependence on the magnetic field direction arises from ni = giB/|giB|. Further details
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of the derivation are found in Supplementary Section 5.

Numerical calculation of the CNOT gate fidelity. The CROT gate operation is modeled by

numerically evaluating the Hamiltonian’s time evolution

CROTnum = T exp

[
− i
~

∫ tπ

0
dtHQ

(1,1)(t)

]
. (16)

Here T denotes time-ordering, tπ is the spin-flip time, and the time-dependent HamiltonianHQ
(1,1)(t)

results from Eq. (13) after adding the drive hfRabi sin(2πf1↑ t)σx,1, where the Rabi frequency fulfils

the condition hfRabi = J‖/
√

15 in order to suppress off-resonant driving [33, 38]. Finally, the

CNOT gate fidelity is determined by F = 1
4Tr [CNOTnum CNOT], where CNOT is the ideal gate

matrix and CNOTnum is obtained by applying single-qubit phase corrections to Eq. (16). For more

details see Supplementary Section 7.
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S1. SETUP

In this section we discuss the experimental setup as well as the qubit operation. A schematic

of the setup is presented in Fig. S1a. We performed all experiments by measuring direct current

through a hole double quantum dot (DQD) at the base temperature ∼ 40mK of a Bluefors XLD

dilution refrigerator. Spin-to-charge conversion and spin initialization were realized using Pauli

spin blockade. The pulse scheme for each experiment cycle is described in Fig. S1b. Coherent

single-qubit spin driving is demonstrated by a Rabi chevron measurement, presented in Fig. S1c.

A more detailed description is found in the Supplementary Material to Ref. [1]. A key difference to

the previously reported setup is the use of side-band modulation (SB) in the amplitude-quadrature

(IQ) mixing of the microwave signal, which allows to quickly address different qubit frequencies in

a single experiment cycle, thus enabling two-qubit experiments.

AWG5208 DAQ
USB-6363

Bias-tee

Wainwright 
WDKX11

Lock-in
7265

R&S 
SGS100AI

Q
PM

DAC
LNHR 927

IV
LSK389A

Subtr.
SP 944

IV
LSK389A

-

a b

Device

SB

Ferrite core
c

V P1

Manipula�on

 ACP

Ini�alisa�on Read-out
t

tb2 tb1

 A1 A2

 f1= fMW + fSB1  f2= fMW - fSB2

tramptramp

FIG. S1. Setup and single qubit control. a, Schematic of the experimental setup. The following

instruments were used: a arbitrary waveform generator AWG5208 from Tektronix, a diplexer WDKX11+10-

DC-1000/1300-15000-60S3 from Wainwright, a microwave signal generator SGS100A from Rhode&Schwarz,

a lock-in amplifier Model 7265 DSP from Signal Recovery, a data acquisition card USB-6363 from National

Instruments. Further, a voltage subtractor SP944, two current-voltage converters LSK389A and a digital-

analogue converter LNHR927, all from Basel Precision Instruments, were used. b, Initialization, two-qubit

manipulation and readout schematic. c Typical Rabi chevron measurement of Q1.
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S2. SPECTROSCOPY DATA FOR QUBIT ANISOTROPY CHARACTERISATION

Here we present the raw data of the qubit spectroscopy experiments that were used to extract

the g-tensors of Q1 and Q2 and the exchange matrix J . Further, we observe correlations between

the qubit readout signal in the lock-in current and the DC current through the base line of the bias

triangle.

a

z

x

y

α

β

B

b c

d e f

FIG. S2. Qubit spectroscopy data. a-e, Spectroscopy measurement as a function of magnetic field

orientation (α, β) for sweeping B along 5 different planes with VB = −820mV and ε = −4.025meV. For a

fixed magnetic field orientation 4 transitions can be identified as described in Fig. 1, which allows to extract

EZ,i and J‖ for each configuration. The gaps in the data come from a vanishing qubit readout signal for

certain magnetic field orientations. Note that for some orientations only 1-3 transitions are vanishing. For

a-c we additionally show the direct current IDC of the zero detuning transition of the DQD as a function

of magnetic field orientation at |B| = 0.1T. A correlation between a large current and a vanishing qubit

visibility is observed. f Coordinate system and definition of the sweep parameters α and β.
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S3. g-TENSORS FOR Q1 AND Q2

The g-tensors were extracted according to Ref. [2] by measuring EZ,i by MW spectroscopy in at

least 6 different orientations. The extraction was performed on the data presented in Fig. S2.

g1 =




2.31 0.50 −0.06

0.50 2.00 0.06

−0.06 0.06 1.50


 , g2 =




1.86 −0.57 0.09

−0.57 2.76 −0.01

0.09 −0.01 1.46


 (1)

The g-tensors can be diagonalized, such that the effective g-factors along the principal axes can be

easily read off:

gdiag
1 = diag (2.68, 1.68, 1.46) , gdiag

2 = diag (3.04, 1.62, 1.42) . (2)
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S4. ADIABATIC 2-QUBIT INITIALIZATION

The qubits are initialized by pulsing from the spin-blocked region to the (1,1) manipulation

point with a linear ramp within the time tramp. By varying tramp and observing the allowed qubit

transitions in a spectroscopy experiment (see Fig. S3), we identify the necessary ramp time of

∼ 20 ns to initialize adiabatically into the |↓↑〉 state. The background of the measurement shows

an interference pattern. This could be explained by Landau-Zener-Stückelberg interference due to

repeatedly pulsing the system across an anticrossing [3].

FIG. S3. Adiabatic qubit initialization. MW spectroscopy measurement as a function of ramp time

tramp for a trapezoid initialization and readout pulse (see Section S1). The vanishing contrast of the inner

two transitions indicates an initialization into the |↓↑〉 state, which only allows transitions with the highest

and lowest frequency. This experiment was used to calibrate tramp ∼ 20 ns for the CROT experiment in the

main paper (see Fig. 4).
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S5. DERIVATION OF EXCHANGE MATRIX FORMALISM AND FITTING FORMULA

In this section, starting from a two-site Hubbard model we derive the effective Hamiltonian of the

(1, 1) charge sector of a double QD and show that the exchange interaction in this approximation

can be written as a 3D rotation. We present the effective Hamiltonian in three different frames

with the intention to assist future work on the experimental as well as theoretical side. We obtain a

fitting formula for the exchange splitting as a function of magnetic field orientation, facilitating the

extraction of the full exchange matrix from the MW transitions measured in the two-qubit system.

Finally, we verify that in the present experiment the exchange interaction is well described by a

rotation matrix, and that including an additional Ising anisotropy [4, 5], which splits triplet states

at zero magnetic field, does not improve the fitting of the presented results.

We describe our double QD setup using a two-site Fermi-Hubbard model where each QD (QD1

and QD2, respectively) is described by a single orbital state |1〉 and |2〉. The Hamiltonian reads

HFH =
∑

i,j∈{1,2}

∑

s,s′∈{↑,↓}
H̃ss′
ij a

†
isajs′ + U

∑

i∈{1,2}
ni↑ni↓ , (3)

where a†i,s (ai,s) creates (annihilates) a hole on site i with spin s, and obeys fermionic anticommu-

tation relations. Furthermore, nis = a†i,sai,s is the spin-resolved particle number operator of dot

i and U is the charging energy. The single particle Hamiltonian H̃ss′
ij = 〈is| H̃ |js′〉 acting on the

orbital and spin degrees of freedom reads

H̃ =
ε+ U − U0

2
τz + t cos(θso)τx + t sin(θso)τynso · σ

+
1

2
µBB ·

[
1 + τz

2
g1σ +

1− τz
2

g2σ

]
,

(4)

where τk are Pauli matrices acting on the orbital degrees of freedom, e.g., τz = |1〉 〈1| − |2〉 〈2|, and
σ = (σx, σy, σz) are also Pauli matrices acting on the spin degree of freedom {|↑〉 , |↓〉}. The first

term of Eq. (4) accounts for the detuning between the left and right QDs, where ε is measured

from the singlet-singlet anticrossing. Furthermore, since the charging energy U in the experiment

is measured at a different barrier height than the exchange anisotropy, we introduced U0 as a

fitting parameter that accounts for the shift of the singlet-singlet anticrossing. The tunnel-coupling

between the QDs is characterized by a (spin-conserving) hopping term ∝ t cos(θso), while spin-orbit

interaction is described by the spin-flip hopping ∝ t sin(θso). For spatially homogeneous SOI, the

rotation angle is given by the dot-dot distance over the spin-orbit length i.e., θso = d/λso, and nso

is the direction of the spin-orbit axis [6]. The g-tensors of the two QDs are taken into account in

the most general form, where the spin quantization axis is fixed such that the g-tensors g1 and g2
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are symmetric if B is in the lab frame [7].

Spin-orbit frame. In order to eliminate the spin-flip tunnelling term and thus obtain a simpler

matrix form of the Hamiltonian, we move to the spin-orbit frame. The corresponding unitary basis

transformation is given by H̃so = U †soH̃Uso, where Uso = exp(−iθsoτznso · σ/2), which rotates the

spin-quantization axes on the two sites in opposite directions. In this spin-orbit frame, the spin-

conserving and spin-flip tunnelling transform as t cos(θso)τx → t cos2(θso)τx − t sin(2θso)τynso · σ/2
and t sin(θso)τynso · σ → t sin2(θso)τx + t sin(2θso)τynso · σ/2, respectively, and the Hamiltonian in

Eq. (4) reads

H̃so =
ε+ U − U0

2
τz + tτx +

1

2
µBB ·

[
1 + τz

2
gso

1 σ +
1− τz

2
gso

2 σ

]
, (5)

where the spin-orbit rotated g-tensors are gso
1 = g1Rso(θso) and gso

2 = g2Rso(−θso) with Rso(ϕ)

denoting the right-handed rotation around the spin-orbit axis nso by an angle ϕ. The transformation

of the g tensors is straightforward

U †so

[
1 + τz

2
g1σ

]
Uso =


exp(iθsonso · σ/2)g1σ exp(−iθsonso · σ/2) 0

0 0


 =

1 + τz
2

g1Rso(θso)σ, (6)

keeping in mind the transformation rule for the vector of Pauli matrices. Note that the spin-flip

tunnelling does not appear in this formulation, but the gso
i matrices are not symmetric anymore.

Since the quantization axis has been rotated by ∓θso around nso for the left and right sites,

respectively, the on-site Hubbard term Uni↑ni↓ has the same form as in the lab frame. The Hamil-

tonian in Eq. (3) using the single-particle term of Eq. (5) is then projected to the lowest-energy

two-particle sector using the basis states

|S(0, 2)〉 = a†2↑a
†
2↓ |0〉 , (7a)

|S〉 =
1√
2

(a†1↑a
†
2↓ − a

†
1↓a
†
2↑) |0〉 , (7b)

|T0〉 =
1√
2

(a†1↑a
†
2↓ + a†1↓a

†
2↑) |0〉 , (7c)

|Tss〉 = a†1sa
†
2s |0〉 , (7d)

where |0〉 is the vacuum state for holes and we omitted the S(2, 0) state since we operate close to

the S(0, 2)− S anticrossing, i.e., ε� U − U0. The low-energy 5× 5 Hamiltonian of the DQD then
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reads

H5×5 =




U0 − ε
√

2t 0 0 0
√

2t 0 − δbx+iδby√
2

δbx−iδby√
2

δbz

0 − δbx−iδby√
2

b̄z 0
b̄x−ib̄y√

2

0
δbx+iδby√

2
0 −b̄z b̄x+ib̄y√

2

0 δbz
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0




, (8)

where the order of the basis states is [S(0, 2), S, T↑↑, T↓↓, T0] and we introduced the average- and

gradient Zeeman fields as b̄ = (b1 + b2)/2 = µBB(gso
1 + gso

2 )/2 and δb = (b1−b2)/2 = µBB(gso
1 −

gso
2 )/2, where the second equality defines the Zeeman field bi for the ith site. Furthermore the

charging energy U of the doubly occupied singlet S(0, 2) is compensated by our definition of the

detuning ε̃ = ε+ U − U0, in Eq. (4), and U0 remains a fitting parameter (much smaller than U).

The [S(0, 2), S] block of the Hamiltonian in Eq. (8) can be diagonalized exactly, leading to

hybridized singlet states at energies ES+ = U0 − ε + J0 and ES− = −J0, respectively, where

J0 =
√

2t tan(γ/2) = −(U0− ε)[1−
√

1 + 8t2/(U0 − ε)2]/2 and the angle γ = arctan[
√

8t/(U0− ε)].
In the limit of large detuning U0− ε� t we obtain J0 = 2t2/(U0− ε) as in Eq. (1) of the main text.

After the transformation of the singlet sector one obtains

H5×5 =




U0 − ε+ J0 0 − δbx+iδby√
2

sin(γ2 )
δbx−iδby√

2
sin(γ2 ) δbz sin(γ2 )

0 −J0 − δbx+iδby√
2

cos(γ2 )
δbx−iδby√

2
cos(γ2 ) δbz cos(γ2 )

− δbx−iδby√
2

sin(γ2 ) − δbx−iδby√
2

cos(γ2 ) b̄z 0
b̄x−ib̄y√

2
δbx+iδby√

2
sin(γ2 )

δbx+iδby√
2

cos(γ2 ) 0 −b̄z b̄x+ib̄y√
2

δbz sin(γ2 ) δbz cos(γ2 )
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0




.

(9)

Since the couplings between S+ and the triplet states are small, i.e. ∝ δb sin(γ/2), we can restrict

our Hilbert space to the lowest 4 states {S−, T↑↑, T↓↓, T0}, obtaining the effective Hamiltonian to

linear order in B that accounts exactly for the tunnel coupling, as

H4×4 =




−J0 − δbx+iδby√
2

cos(γ2 )
δbx−iδby√

2
cos(γ2 ) δbz cos(γ2 )

− δbx−iδby√
2

cos(γ2 ) b̄z 0
b̄x−ib̄y√

2
δbx+iδby√

2
cos(γ2 ) 0 −b̄z b̄x+ib̄y√

2

δbz cos(γ2 )
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0



, (10)

where the neglected couplings to the higher singlet only give perturbative corrections to the Hamil-

tonian in Eq. (10) that are O[δb2/(U0− ε+J0)]. Therefore, in the case of sufficiently weak Zeeman

field anisotropy [δb � (U0 − ε + J0)], Eq. (10) remains accurate throughout the singlet-singlet
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anticrossing. On the contrary, one would need to resort to perturbation theory in t/(U0 − ε)� 1,

when the 5 × 5 Hamiltonian is written in the lab frame, causing significantly larger errors in the

approximation because of the large spin-flip tunnelling terms.

From Eq. (10) it is apparent that the singlet-hybridization simply renormalizes the relative

Zeeman field by a factor of cos(γ/2). In order to find the renormalized Zeeman fields of the left

and right QDs, we write them in terms of the average and the renormalized relative fields to get

b′1 = b1 − sin2(γ/4)(b1 − b2) and similarly b′2 = b2 + sin2(γ/4)(b1 − b2). In the cases considered

in this work, sin2(γ/4) . 0.004, and thus we disregard the singlet-hybridization corrections and use

b′1 ≈ b1 and b′2 ≈ b2. We note also that this approximation is rather accurate in general, because

the these corrections are bounded by sin2(γ/4) < 0.15 since |γ| < π/2 by definition.

In the weak tunnelling regime S− ≈ S(1, 1) and the Hamiltonian of Eq. (10) is restricted to the

(1, 1) charge sector. One can then introduce the localized spin operators σso
1 , and σso

2 , where the

subscript ’so’ refers to the spin-orbit transformation in Eq. (5). The Hamiltonian in the spin-orbit

frame can be rewritten in terms of these operators as

Hso
(1,1) =

1

2
µBB · gso

1 σso
1 +

1

2
µBB · gso

2 σso
2 +

1

4
J0σ

so
1 · σso

2 . (11)

Using the language of localized spin operators allows us to use simple rotations to transform the

Hamiltonian (i) back to the lab frame, where the g-tensors are symmetric and (ii) to the qubit

frame where the single-qubit part of the Hamiltonian is diagonal, allowing us to identify which

matrix elements of the exchange matrix lead to the observed splitting.

Lab frame. The formulation of Eq. (11) facilitates to transform the effective Hamiltonian to the

lab frame by means of real-space rotation matrices. A rotation can be applied on both left and

right spin operators, independently as Rso(−θso)σso
1 = σ1, and Rso(θso)σso

2 = σ2. The rotations

bring the g tensors back to the symmetric form, and the lab frame Hamiltonian reads

H lab
(1,1) =

1

2
µBB · g1σ1 +

1

2
µBB · g2σ2 +

1

4
σ1 · Jσ2 , (12)

where J = J0Rso(−2θso) is the exchange matrix in the lab frame. From the nonperturbative treat-

ment of the SOI in the two-site Hubbard model, we obtained that the anisotropy of the exchange

interaction is given by a 3D rotation in accordance with Refs. [8, 9]. However, more elaborate

models might lead to corrections to the exchange that cannot be written as a simple rotation

matrix [5, 10]. If one would account for the effect of higher orbital states in each QD, for the

effect of a SOI cubic in momentum or the orbital effects of the magnetic field on the lowest 4 × 4
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subspace perturbatively, the Zeeman terms would only be renormalized, but the exchange matrix

could obtain additional anisotropies, e.g., Ising anisotropy. Later we consider this correction on

the phenomenological level, and show that the inclusion of an additional Ising anisotropy does not

significantly improve the fit and therefore we conclude that the corresponding corrections must be

negligible compared to the rotational anisotropy.

Qubit frame. In order to find which matrix elements of the exchange interaction are responsible

for the splitting observed in the double QD spectrum, we move to the frame where the Zeeman

terms are diagonal, and consider the exchange interaction as a perturbation. Starting from the lab

frame Hamiltonian of Eq. (12), using independent rotations R1 and R2 on Q1 and Q2, respectively

the Hamiltonian can be rewritten in the qubit frame. In this frame the single particle terms of the

Hamiltonian are diagonal, i.e.,

HQ
(1,1) =

1

2
EZ,1σ

Q
z,1 +

1

2
EZ,1σ

Q
z,2 +

1

4
σQ1 · J QσQ2 , (13)

where µBR1g1B = EZ,1e
Q
z is the Zeeman splitting on Q1 and µBR2g2B = EZ,2e

Q
z is the Zeeman

splitting of Q2, with eQz being the qubit quantization axis. The exchange matrix in this frame

incorporates also the rotations of the qubit bases, i.e., J Q = J0R1Rso(−2θso)RT2 . Note that the

exchange matrix can still be characterized as a single rotation matrix as J Q = J0Rñ(−2θ̃), where

θ̃ and ñ can be expressed in terms of the g-tensors, the magnetic field and the spin-orbit vectors.

This frame is used here to obtain the experimentally measured exchange splitting J‖. As it will be

shown below, the splitting J‖ is given by the diagonal matrix element of the exchange matrix J Q

in the direction of the qubit quantization axis.

The exchange splitting J‖ is defined as a difference between two transitions where one of the

spins (either Q1 or Q2) is flipped while the other one is in either the |↑〉 or the |↓〉 state. In order

to obtain an estimate for this quantity we write the Hamiltonian of Eq. (13) in the matrix notation

and neglect every coupling that would contribute to the eigenvalues in O(J2
0/EZ) to obtain

HQ
(1,1) =




EZ + 1
4J

Q
zz 0 0 0

0 1
2∆EZ − 1

4J
Q
zz

1
2J⊥ 0

0 1
2(J⊥)∗ −1

2∆EZ − 1
4J

Q
zz 0

0 0 0 −EZ + 1
4J

Q
zz



, (14)

where the order of the basis states is {↑↑, ↑↓, ↓↑, ↓↓} and we defined J⊥ = [JQxx + JQyy + i(JQxy −
JQyx)]/2. In our work J0/EZ ∼ 0.02, rendering the effect of the off-diagonal terms negligible. The
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eigenenergies of the Hamiltonian in Eq. (14) are then simply given by

E↑↑ = EZ +
1

4
JQzz , E↓↓ = −EZ +

1

4
JQzz , (15a)

E↑̃↓ =
1

2
∆ẼZ −

1

4
JQzz , E↓̃↑ = −1

2
∆ẼZ −

1

4
JQzz , (15b)

where ∆ẼZ =
√

∆E2
Z + |J⊥|2. The exchange splitting is defined as J‖ = E↑↑ − E↑̃↓ − (E↓̃↑ − E↓↓)

leading to J‖ = JQzz. Writing the matrix element JQzz in a basis-independent form we arrive at

J‖(B) = J0 ez ·R1Rso(−2θso)RT2 ez = J0 n1 ·Rso(−2θso)n2 , (16)

that straightforwardly accounts for spin-orbit interaction and the anisotropy of the g-tensors.

Note that nj = gjB/|gjB| provides an explicit dependence on the magnetic field orientation for

given g-tensors. The g-tensors can be related to measurable quantities (transition energies) as

E↑↑ −E↓̃↑ + (E↑̃↓ −E↓↓) = 2EZ + ∆ẼZ ≈ 2µB|g1B| and E↑↑ −E↑̃↓ + (E↓̃↑ −E↓↓) = 2EZ −∆ẼZ ≈
2µB|g2B|, where we use the approximation EZ,1, EZ,2 � ∆ẼZ −∆EZ . This approximation allows

us to extract g independently from J , avoiding iterative processes. Hence, spectroscopy measure-

ments for different magnetic field orientations (see Supplementary Section 2) suffice to determine

the g-tensors (see Supplementary Section 3). Finally, inserting the g-tensors into eq. (16), a fitting

formula is obtained that allows to straightforwardly extract the exchange matrix J from the same

spectroscopy measurement used to extract g. In the main paper we use this formula to fit 5

independent parameters, where 3 fitting parameters are in Rso(−2θso), i.e. αso, βso (defining nso)

and λso = θso/d, and 2 fitting parameters are in J0, i.e. t and U0.

Additional anisotropies. The relevance of the neglected higher-orbital corrections can be in-

vestigated by allowing for additional Ising anisotropy effects in the exchange interaction J , e.g.
zero-field splitting of triplet states [4, 5]. As explained in Ref. [5], the Ising anisotropy of the ex-

change can be written as δJ = D nso ◦ nso, where the anisotropy axis is the spin-orbit axis nso,

and D is the zero-field splitting. If such an effect is present, the fitting formula of Eq. (16) can be

extended by the term

δJ‖ = D (nso · nL)(nso · nR) , (17)

leading to a single fitting parameter in addition to J0, nso, and θso. For the present dataset

we obtained D = 13 ± 2MHz for the zero-field splitting, while the other fitting parameters have
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only changed within their respective error-bars. The exchange matrix and its zero-field splitting

correction then read

J = J0




−0.87 0.41 −0.28

−0.49 −0.60 0.64

0.10 0.69 0.72


 , δJ = J0




0.00 0.00 −0.01

0.00 0.02 0.05

−0.01 0.05 0.12


 . (18)

Since the overall quality of the fit remained unchanged, we conclude that the simplified form of the

exchange matrix used in the main text is indeed capturing the main source of exchange anisotropy,

that is the direct Rashba SOI (linear in momentum).

S6. EXCHANGE MATRIX FOR ELECTRON QDS IN SILICON

Our analysis can be straightforwardly extended to the case of electron QDs in silicon where the

SOI is induced by the gradient field of a micromagnet [11–13]. The inhomogeneous magnetic field

induced by the magnet is fixed in the lab frame as opposed to the external magnetic field, the

direction of which needs to be changed in order to map out the g-tensors and the exchange matrix.

The low-energy Hamiltonian of such a double QD system with two-electron occupation in the (1, 1)

charge configuration is similar to Eq. (12) but needs to be extended by the magnetic field of the

micromagnets as

H(1,1) =
1

2
µB(B + M1) · g1σ1 +

1

2
µB(B + M2) · g2σ2 +

1

4
σ1 · Jσ2 , (19)

where Mi is the magnetic field induced by the micromagnet on site i, and the exchange matrix

is still anisotropic due to the spin-flip tunnelling process induced by the spatially inhomogeneous

magnetic field between the two QDs. In analogy with the case of SOI, the spin rotation angle can

be estimated as tan(θso) ∼ µB|M1−M2|/~ω0, where ~ω0 is the orbital splitting of the QD. Because

this angle is typically small, the exchange interaction is roughly isotropic, in agreement with the fact

that no exchange anisotropy was reported in recent works with micromagnets [12, 13]. The strong

exchange anisotropy to date is unique to hole systems with strong SOI. As it will be presented in

the next section, this anisotropy can be the key to achieve fast and high-fidelity two-qubit gates for

holes that keep up with the exceptionally fast single-qubit gates in these systems.

In the case of electrons, fitting the parameters of the model in Eq. (19) involves an additional

step due to the field of the micromagnet. This field can be mapped out component by component,

by changing the strength of the magnetic field along a given direction and determining the offset

of the minimum of the Zeeman splitting with respect to B = 0. Accounting for this fixed magnetic
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field on each QD, one could proceed to fit the g tensors and the exchange matrix as presented in

Sec. S5 using nj = gj(B + Mj)/|gj(B + Mj)|.

S7. THEORETICAL LIMIT OF THE CNOT GATE FIDELITY

In this section we numerically calculate the fidelity of a CNOT gate, implemented via a con-

trolled rotation (CROT) and additional correction gates. For this purpose, we extend the qubit

Hamiltonian including anisotropic exchange with a driving term. Using the rotating wave approxi-

mation (RWA), we show that Rabi oscillations for Q1 can be controlled by the state of Q2. We find

sequences of single- and two-qubit gates to transform a CROT into a CNOT and simulate CNOT

fidelites for anisotropic and isotropic exchange interaction. We show that for anisotropic exchange

and certain magnetic field orientations, the CNOT gate errors are strongly reduced in comparison

to isotropic exchange and faster gate speeds are possible. Further, we show that the CNOT gate

fidelity for isotropic exchange is strongly limited by J⊥.

Starting from Eq. (14) we add the drive HMW = νR sin(ωMWt)σx,1 to Q1, where νR = hfR is

the strength of the drive for zero frequency detuning and ωMW is the frequency of the drive, and

obtain

HQ
(1,1)(t) =




EZ + 1
4J‖ 0 νR sin(ωMWt) 0

0 1
2∆EZ − 1

4J‖
1
2J⊥ νR sin(ωMWt)

νR sin(ωMWt)
1
2(J⊥)∗ −1

2∆EZ − 1
4J‖ 0

0 νR sin(ωMWt) 0 −EZ + 1
4J‖



. (20)

The gate operation that is applied to the qubits in the experiment is found by numerically calculating

the time evolution of the Hamiltonian in Eq. (20)

CROTnum = T exp
[
− i

~

tπ∫

0

dtHQ
(1,1)(t)

]
, (21)

where tπ is the time needed to perform a spin-flip on the target qubit and T indicates the time-

ordered exponential. Next, we want to compare the numerically computed CROT gate operation

to a perfect CNOT gate. For this purpose, we need to apply a sequence of correction gates that

turn a CROT into a CNOT, which can be identified by analyzing the Hamiltonian (20) analytically.

First, we move to a rotating frame to eliminate the time-dependence in HQ
(1,1)(t), in which the

Hamiltonian is given by

Hrot = −i~U †rotU̇rot + U †rotH
Q
(1,1)(t)Urot , (22)
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where Urot(t) = diag[exp(−iωMWt), 1, 1, exp(iωMWt)] is the transformation between the rotat-

ing frame and the qubit frame. Using the RWA we drop the rapidly oscillating terms, e.g.,

∝ exp(−i2ωMWt), and find

HRWA =




EZ + 1
4J‖ − ~ωMW 0 i

2νR 0

0 1
2∆EZ − 1

4J‖
1
2J⊥

i
2νR

− i
2νR

1
2(J⊥)∗ −1

2∆EZ − 1
4J‖ 0

0 − i
2νR 0 −EZ + 1

4J‖ + ~ωMW



. (23)

Then, we transform to the eigenbasis of the Hamiltonian (14). This transformation accounts for

the mixing of |↑↓〉 and |↓↑〉 basis states by J⊥ and is defined as H̃RWA = U †φ,ξHRWAUφ,ξ, where the

transformation matrix is given by

Uφ,ξ =




1 0 0 0

0 cos φ2 −e−iξ sin φ
2 0

0 eiξ sin φ
2 cos φ2 0

0 0 0 1



, (24)

with exp(iξ) = J⊥/|J⊥| and the mixing angle φ = arctan(|J⊥|/∆EZ). Note that this transformation

commutes with Urot(t). We obtain

H̃RWA =




−1
2∆ẼZ − 1

4J‖
i
2e
iξνR sin φ

2
i
2νR cos φ2 0

− i
2e
iξνR sin φ

2
1
2∆ẼZ − 1

4J‖ 0 i
2νR cos φ2

− i
2νR cos φ2 0 −1

2∆ẼZ − 1
4J‖ − i

2e
−iξνR sin φ

2

0 − i
2νR cos φ2

i
2e
−iξνR sin φ

2
1
2∆ẼZ + 3

4J‖



, (25)

where we substituted the resonance condition for the transition that we want to drive, i.e. |↓↑〉 →
|↑↑〉, as ~ωMW = EZ + 1

2∆ẼZ + 1
2J‖. We note that, depending on the sign of J‖, we obtain a CROT

or a not-controlled rotation (NCROT). In the RWA Hamiltonian we call the off-diagonal terms

that connect degenerate states resonant transitions, i.e. |↓↑〉 → |↑↑〉, whereas terms connecting two

states that are not degenerate are the off-resonant transitions. Off-resonant transitions are highly

suppressed by the energy mismatch, hence we neglect all off-resonant terms. Note that off-resonant

terms that include sin(φ/2) vanish completely for φ = 0, i.e. J⊥ = 0, reducing the error introduced

by the approximation for this specific case.

Next, we calculate the complete time evolution of the qubit states. Within the rotating frame and

the RWA, the time evolution of a state in the qubit frame is given by |ψ(t)〉 = Urot(t)URWA(t) |ψ(0)〉,
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where URWA(t) is the free time evolution according to the RWA Hamiltonian (23). Because

Uφ,ξ commutes with the rotating frame transformation Urot, one may write Urot(t)URWA(t) =

Uφ,ξUrot(t) exp(−i/~H̃RWAt)U
†
φ,ξ = Uφ,ξUrot(t)ŨRWA(t)U †φ,ξ. The full time evolution under the

Hamiltonian in the mixed basis is then

C̃ROT =Urot(tπ)ŨRWA(tπ) =



0 0 e
iπκ

(
−EZ
J‖
− 1

4

)

0

0 e
iπκ

(
−∆ẼZ

2J‖
+ 1

4

)

0 0

−e
iπκ

(
∆ẼZ
2J‖

+ 1
4

)

0 0 0

0 0 0 e
iπκ

(
EZ
J‖
− 1

4

)




,
(26)

where the operation time for a π-rotation is tπ = h/(2νR cos(φ/2)) and we imposed νR cos(φ/2) =

J‖/κ with κ =
√

16k2 − 1 and k is an integer as in Ref. [14]. These conditions restrict the maximal

driving strength to νR = J‖/
√

15, but ensure that no net spin rotation of Q1 occurs for the |↓〉-state
of the control qubit Q2. This is standard practise to reduce fidelity loss due to off-resonant driving

effects [12].

The controlled rotation in the mixed basis in Eq. (26) is now compared to an ideal CNOT, which

is controlled by Q2 and targeted on Q1, in the basis {↑↑, ↑↓, ↓↑, ↓↓}

CNOT =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



. (27)

This allows us to find a sequence of elementary single-qubit gates such that

C̃ROT = eiπ(∆EZ/2νR+J‖/4νR+1)X1 Z
EZ,2/νR+1/2
2 Z

−EZ,1/νR+1/2
1 CNOTZ

−J‖/2νR+1/2

1 . (28)

Here, Zi is the Z-gate with the convention (−1)a = eiπa and Xi is the X-gate acting on the ith

qubit. We consider the gate Zai = (Zi)
a as directly accessible for spin qubits, since arbitrary Z-

rotations can be implemented e.g. by an arbitrary detuning pulse [1, 15] or by virtual phase gates

[12]. Note that the decomposition into correction gates is not unique.

If Uφ,ξ = 1 at φ = 0, hence the mixed basis is equal to the qubit basis, the CNOT gate can

be constructed from the CROT gate using Eq. (28). However, having a finite mixing angle φ,
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i.e. J⊥ 6= 0, we also have to account for the additional transformation CROT = Uφ,ξ C̃ROTU †φ,ξ.

Hence, we have to decompose Uφ,ξ into elementary gates

Uφ,ξ = Z
−ξ/π−1/2
1 X1 (CZ)φ/2πX1X2 (CZ)φ/2πX2 (SWAP)−φ/π Zξ/π+1/2

1 , (29)

where the controlled-Z gate (CZ) is controlled by Q1 and targeted on Q2. Note that this decomposi-

tion contains in addition to elementary single-qubit gates also multiple two-qubit gates. Introducing

additional two-qubit gates creates new sources for errors, that can lower the overall-fidelity of the

CNOT gate. Additionally, this creates a large overhead of correction gates, making it desirable to

work in the regime of ∆EZ � J⊥, where Uφ,ξ ≈ 1. Further, since SWAP and CZ gates typically

require opposite regimes of ∆E � J‖ and ∆E � J‖, these correction gates are not practical in any

experimental realization and will only be considered here to investigate the sources of errors.

Finally, we define CNOTnum as the numerically simulated CROT gate from Eq. (21) after

applying single-qubit correction gates as described in Eq. (28). The fidelity of this two-qubit gate

is then calculated by comparing it to the ideal CNOT gate:

F =
1

4
Tr [CNOTnumCNOT] , (30)

Analogously, we define CNOTφ,ξnum as the numerically simulated CROT gate from Eq. (21) after

applying both the single-qubit correction gates from Eq. (28) as well as the single- and two-qubit

correction gates from eq. (29) and calculate the fidelity analogously.

We perform the numerical simulations of the fidelity (see Fig. S4) for four different cases, which

differ by the exchange interaction (isotropic vs anisotropic exchange) and the correction gates that

are applied (only single-qubit corrections or both correction sequences). We present the CNOT

fidelity as a function of J‖/∆EZ . Since J‖ =
√

15νR was fixed for maximal driving strength

without inducing unwanted off-resonant driving, this can be seen as evaluating the fidelity as a

function of gate speed. Overall, we see a drop of fidelity with gate speed, which is much more

pronounced for isotropic than anisotropic exchange. For the case of isotropic exchange, the fidelity

drops rapidly for large J‖/∆EZ , even when applying all correction gates (CNOTφ,ξnum). This loss of

fidelity can be understood as the effect of the off-resonant terms that were neglected in eq. (25),

which become relevant at large driving strength. When looking at isotropic exchange and only

single-qubit correction gates (CNOTnum), we see a further reduction of fidelity, which originates

from the strong mixing of qubit basis states due to large J⊥ = J‖. This is the dominant effect for

the loss of fidelity of the CNOT gate at small driving speeds J‖/∆EZ < 0.5. Note that the wiggle

features in the fidelity probably originate from an interplay of the single-qubit correction gates
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FIG. S4. CNOT gate fidelities as a function of J‖ and driving strength (νR = J‖/
√

15) using (i) anisotropic

exchange interaction (green) for the configuration used in Fig. 4; (ii) and isotropic exchange interaction (or-

ange) e.g. for electrons in silicon. CNOT gates obtained using single-qubit correction gates only (CNOTnum)

are shown as solid lines, while CNOT gates also corrected for basis mixing errors (CNOTφ,ξnum) are shown as

dashed lines. Red line and blue points indicate the working point of the present experiment and fidelities

measured in Ref. [12], respectively. The horizontal gray line marks the fault tolerance threshold (F = 99%).

The shaded regions indicate the precision of the numerics.

and the unwanted effects of Uφ,ξ that are not corrected here. Comparing the theoretical fidelity

to current experimental realizations of CROT gates with isotropic exchange, e.g. Noiri et al. [12],

we find that the fidelity seem to be limited mainly by the experimental implementation. Further,

these experiments are performed at very small driving strength, where the maximum theoretical

CNOT fidelity is not significantly limiting the fidelity of the implemented gate.

In the anisotropic case, the fidelity depends on the magnetic field orientation, since it determines

J⊥. Here, we look at the case of the magnetic field orientation and J of the CROT experiment in

Fig. 4 of the main paper. In Fig. S5 we show J‖ and J⊥ as a function of magnetic field orientation

and indicate the orientation that was used with a red star, showing a large |J‖| = 0.902J0 and small

|J⊥| = 0.049J0. We note that there is a large range of orientations, where such a combination of

|J‖|/|J⊥| � 1 can be found. In this case, the fidelity stays above the threshold for error correction

of 99% up to strong driving of J‖/∆EZ ∼ 1. There is almost no difference between CNOTnum and

CNOTφ,ξnum, indicating that the basis mixing by Uφ,ξ is not limiting the fidelity. This is expected,

since for the chosen magnetic field orientation |J⊥| � ∆EZ and thus Uφ,ξ ∼ 1. The main reduction

in fidelity originates from neglecting the off-resonant terms and the rapidly oscillating terms in

the RWA. Hence, two-qubit correction gates, which are relevant in the isotropic case already at
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★ ★

FIG. S5. Exchange interaction |J‖| and |J⊥| as a function of magnetic field orientation (α, β), using the

experimental g-tensors, spin rotation angle θso and SOI orientation nso. Red stars denote the magnetic field

direction used for the implementation of the CROT gate in the main paper and for calculating the gate

fidelity in Fig. S4.

small driving strength, are not needed here. For much stronger driving J‖/∆EZ & 0.5 the benefits

for fidelity of anisotropic exchange become even stronger: In this regime, even when using the

impractical two-qubit correction gates, the fidelity for isotropic exchange is limited to much smaller

values than for anisotropic exchange.

The red dashed line in Fig. S4 indicates the value of J‖/∆EZ ∼ 0.2 that was used in this

experiment, showing that the fidelity of our CROT implementation is not significantly limited

by the maximum theoretical fidelity. However, for isotropic exchange this diving strength would

already induce a significant reduction of fidelity, unless the very hard to realize and computationally

demanding two-qubit correction gates are implemented. Hence, this experiment already benefits

from the anisotropic exchange interaction.
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