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The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device
variability. Each device needs to be tuned to operation conditions. We give a key step towards
tackling this variability with an algorithm that, without modification, is capable of tuning a 4-gate
Si FinFET, a 5-gate GeSi nanowire and a 7-gate SiGe heterostructure double quantum dot device
from scratch. We achieve tuning times of 30, 10, and 92 minutes, respectively. The algorithm also
provides insight into the parameter space landscape for each of these devices. These results show
that overarching solutions for the tuning of quantum devices are enabled by machine learning.

INTRODUCTION

Before we can use a quantum computer we first need to
be able to turn it on. There are many stages to this initial
step, particularly for quantum computing architectures
based on semiconductors. Silicon and SiGe devices can
encode promising spin qubits [1], demonstrating excellent
fidelities, long coherence times and a pathway to scal-
ability [2–7]. Many of these key characteristics revolve
around the material itself providing the opportunity to be
purified to a near-perfect magnetically clean environment
resulting in very weak to no hyperfine interactions. As
the material of choice of the microelectronics industry,
gate-defined quantum dots in silicon and SiGe have great
potential for the fabrication of circuits consisting of a large
number of qubits, an essential requirement to achieving a
universal fault-tolerant quantum computer [8, 9].

Despite these ideal traits, material defects and fabrica-
tion inaccuracies result in discrepancies between device
operating conditions. Multiple gate electrodes provide
the ability to tune differing devices into similar operat-
ing regimes. These gate voltages define a big parameter
space to be explored; a time-consuming process if carried
out manually and certainly not scalable for circuits with
millions of qubits. This tuning, which used to rely on
experimentalists’ intuition and knowledge of particular de-
vices, can be automated using machine learning [10]. The
development of machine learning algorithms for quantum
device tuning is even more challenging when looking for
overarching solutions, successful on very different types of
devices. Of all the automatic approaches to tune quantum
devices that have been demonstrated [11–20], as far as
we know ours is the first that is versatile across differ-
ent devices architectures and material systems. Here we
present a machine learning-based algorithm, which we call

‘Cross-Architecture Tuning Solution using AI’ (CATSAI),
able to tune quantum dots in three different device archi-
tectures and material systems. This algorithm, based on
an approach that allowed for the super-coarse tuning of
double quantum dots defined in GaAs heterostructures
[21], has the ability of being able to adapt the parameter
space exploration to the type of device to be tuned. The
origin and gate voltage sweep directions can be arbitrarily
selected for devices operating with accumulation or deple-
tion mode gate electrodes, and either holes or electrons as
majority charge carriers. An advanced signal processing
classification method handles charge switches and other
noise patterns.
We demonstrate our CATSAI algorithm for a

Si accumulation-mode ambipolar FinFET [22–24], a
depletion-mode Ge/Si core/shell nanowire [25–27] and
a laterally-defined device in a SiGe heterostructure, all
operating with holes as charge carriers. We show that
CATSAI outperforms random search and human experts
on all devices. The demonstration of a general algorithm
for the automatic tuning of devices compatible with indus-
try manufacturing standards opens the path to building
quantum circuits at scale for the next generation of quan-
tum computers.

METHODS

The devices

Double quantum dots are defined by applying DC volt-
ages to the gate electrodes V1−V4 for the FinFET, V1−V5

for the nanowire, V1 − V7 for the heterostructure (Fig. 1).
For the FinFET, the lead gate electrodes V1 and V4, open
and close the quasi 1D silicon channel to charge carriers
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Figure 1. Device schematics. Si FinFET (a), GeSi nanowire (b) and SiGe heterostructure (c) device architectures and their
corresponding current pinch-off hypersurfaces for hole transport calculated using a Gaussian process model for one of the tuning
algorithm runs (d, e, f). Three gates are plotted for illustrative purposes with the remaining gates on each device set to a
constant value. The bias was kept constant throughout the experiment. CATSAI was given control over the gate electrodes V1 -
V4, V1 - V5, and V1 - V7 on the FinFET, nanowire and heterostructure, respectively.

by controlling the size of the tunnel barrier between the
quantum dots and the source and drain. The left and
right plunger gate electrodes V2 and V3, control the occu-
pation of the left and right quantum dot respectively. A
current is driven through the FinFET by applying a bias
voltage Vbias of 7.6 mV (+ 3.8 mV at the source, - 3.8 mV
at the drain) to NiSi contacts [28]. The gate voltages of
the FinFET are operated such that the charge carriers
are holes confined by accumulation. For the nanowire,
gates V2 and V4 act as left and right plunger gates for
the quantum dots formed within the 1D channel with the
remaining gates mainly controlling the tunnel barriers.
Hole quantum dots are formed in depletion mode. We
set Vbias = 4 mV. For the SiGe heterostructure, V5 and
V3 operate as the left and right plunger gate electrodes
respectively, with the remaining gate electrodes utilised
as barrier gates. The white arrow denotes the flow of
current. We set Vbias = 0.5 mV and the charge carriers
are holes confined in depletion mode. The values of Vbias

are set to be above typical charging energies for single
quantum dots in each device. The choice of Vbias can be
left to an optimiser. For the heterostructure experiments
were performed at 300 mK, for the nanowire at 1.5 K and
for the FinFET at 800 mK.

Voltages applied to the gate electrodes of the devices
can cause the current flow to pinch-off, transitioning from
a relatively high current to a near-zero value. These volt-
ages where pinch-off occurs define a hypersurface within
the entire voltage space for each device. CATSAI has
no knowledge of the device architecture and generates a
model of the hypersurface after a given number of iter-
ations. The resulting hypersurface for different devices
is shown in Fig. 1d–f. Three gates are plotted for the
ease of visualisation and the remaining gates are kept
constant at their average value at pinch-off across the
hypersurface (see Supplementary Material). The hypers-
ufaces corresponding to different devices present different
curvatures, leading to different tuning landscapes. The
FinFET hypersurface (Fig. 1d) is near symmetrical in the
plunger gates plane, V2 − V3. This is expected as these
gate electrodes are nominally identical. Although V1 is
wider than the plunger gates, its effect is not stronger.
The curvature of the nanowire’s hypersurface is similar in
the planes V1(V5) − V3, since these planes are defined by
the outer-middle barrier gates (Fig. 1e). The heterostruc-
ture’s hypersurface has almost planar dependence on gate
voltages V2,4,6 (Fig. 1f). The hypersurface’s curvature in
the V2 – V4 plane is evidently similar to that in the V6 –
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V4 plane, in agreement with the gate architecture. This
hypersuface is qualitatively different to that reported in
Ref. [21] for a relatively similar gate architecture patterned
on a different heterostructure (AlGaAs/GaAs). The more
pronounced curvature of the hypersufaces corresponding
to the FinFET and the nanowire are expected given the
larger gate couplings that are typically observed in these
devices. Hypersurface characterisation could be used
to inform device design and quantify device variability.
Despite the stark differences in gate voltage landscapes,
which evidence the difficulties of cross-architecture tuning,
CATSAI is able to tune across all three device architec-
tures.

The CATSAI algorithm

CATSAI’s workflow consists of three stages, the initial-
isation stage, the sampling stages and the investigation
stage (Fig. 2). In the initialisation stage Vbias is fixed,
and the current range, i.e. the maximum and minimum
current flowing through the device, is determined by mea-
suring the current both with all the gate electrodes set
to 0 V and to their maximum permissible magnitude. To
avoid damage to the device the algorithm is given voltage
bounds in which it can operate each gate electrode (see
Supplementary Material). After the initialisation stage,
the algorithm turns to the sampling stage. Since the algo-
rithm is unaware of the characteristics of the device, for
the first i iterations of the sampling stage, the algorithm
selects a vector u at random in the gate voltage space of
the device. This vector consists of all the gate voltages
considered for tuning. The algorithm then sweeps the
gate voltages along that direction until pinch-off occurs.
The algorithm identifies the onset of pinch-off as a current
drop below a certain threshold (0.5% of the measured
current range). The N -dimensional hypersurface is delim-
ited by the pinch-off voltages of the N gate electrodes for
each device.

At the start of the investigation stage, once pinch-off is
found in a given gate voltage direction, a high-resolution
current trace is performed. This current trace, which
starts at the pinch-off location and runs diagonal to the
plane defined by the plunger gates, was set to have a
fixed length of 128 pixels and resolution 1.56 mV/pixel for
the nanowire and 0.78 mV/pixel for the FinFET and the
heteroturecture. The plunger gates, selected before run-
ning the algorithm, are those expected to predominantly
shift the electrochemical potential in left and right dots.
Using a random forest classifier [29, 30], the algorithm
determines whether Coulomb peaks are present in the
current trace. This approach is more robust against noise
and switches than the simple peak-finding package used
in Ref. [21] (see Supplementary Material). If Coulomb
peaks are found by the classifier then a low-resolution
current map (16 × 16 pixels, 5 mV/pixel for the nanowire
and 9 mV/pixel for the FinFET and the heteroturecture)
is taken by sweeping the plunger gates. The current map
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Figure 2. CATSAI’s workflow. The initialisation stage
consists of setting Vbias then measuring the maximum and
minimum current flowing through the device. The sampling
stage detects pinch-off locations in gate voltage space. For
the first i iterations (left-hand branch of the sampling stage),
the algorithm selects u at random and travels along it until
the hypersurface is found. After the ith iteration (right-hand
branch of the sampling stage), the algorithm selects u based
on the model it generates of the hypersurface and of the
probability of finding Coulomb peaks in a given location in
gate voltage space, P̃peaks. In the investigation stage the
algorithm sweeps the plunger gates to generate current traces
and low-resolution and high-resolution current maps if the
conditions are satisfied. The peak detection is a random forest
classifier which determines whether Coulomb peaks are present
or not within a current trace. After the investigation stage, the
algorithm returns to the sampling stage. In each iteration, the
algorithm outputs a high-resolution current map if acquired.

is believed to contain double quantum dot features if it
scores above a threshold, which is fixed and can be opti-
mised. We use the same score function as in Ref. [21]. If
double quantum dot features are believed to be present, a
high-resolution current map (48× 48 pixels, 4.2 mV/pixel
for the nanowire and 2.5 mV/pixel for the FinFET and
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the heteroturecture) is taken. CATSAI runs for a certain
number of iterations. A posteriori, to benchmark the
algorithm’s performance, humans can verify if the double
quantum dot features were successfully identified by the
algorithm.
After the ith iteration, a model of the hypersurface is

built using a Gaussian process, as shown in Fig. 1d–f, and
u is chosen by incorporating the knowledge gained during
the peak detection module in the investigation stage. The
algorithm achieves this by generating a set of candidate
pinch-off locations on the hypersurface and using the
probability of finding Coulomb peaks in a given location
of gate voltage space, P̃peaks, as a weighting for the choice
of u [21]. Using Thompson sampling, the algorithm then
selects one of the candidate pinch-off locations, defining
a new u. In each of the following iterations, the pinch-
off locations and the information gathered by the peak
detection are used to update the hypersurface model and
P̃peaks, respectively.

CATSAI is benchmarked against a version of this algo-
rithm which does not use a weighted hypersurface model
to influence the sampling of the hypersurface. It instead
continues to sample the hypersurface at random after the
first i iterations, thus remaining on the left-hand branch
of the sampling stage (Fig 2). We call this version of
CATSAI ‘Random Search’, although it is important to
highlight that it still relies on peak detection.

Tuning across architectures and material systems

To make the algorithm general across different charge
carriers and modes in which gate electrodes are designed
to act (depletion or accumulation), the origin, bound, and
direction of the gate-voltage space exploration used in the
sampling stage are set in a configuration file (Fig. 3). The
algorithm starts in the gate voltage configuration which
delivers the highest current and sweeps gate voltages
in the direction of decreasing current with the aim of
locating the boundary between the two regions. This
flexibility in the search of gate voltage space, combined
with a noise-tolerant classification of Coulomb peaks in the
investigation stage, makes CATSAI robust across device
architectures and material systems. The Coulomb peak
classifier is trained on current traces acquired in different
Si FinFET and GeSi nanowire devices (see Supplementary
Material). This random forest classifier can successfully
handle both noise and charge switches, resulting in a
robust Coulomb peak detection. The number of false
positives in the classification that are accepted for the next
step of the investigation stage is thus reduced, significantly
shortening device tuning times.

RESULTS

The algorithm was run for 250 iterations for all ex-
periments performed. The number of iterations that the
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Figure 3. Gate-voltage space exploration. Different charge
carriers (gate operation modes) are represented in different
columns (rows). Each panel illustrates the initial placement
of the origin (white circle), search boundary (red cross), and
search direction (black arrow). The gate voltage space is
divided into regions of near-zero (blue) and non-zero (pink)
current. Regions of voltage space which cannot be explored
due to the gate voltage bounds set to avoid device damage are
greyed out.

algorithm runs without an hypersurface model, i, which
can be separately optimised, was fixed to twelve in this
case. A few examples of output currents maps produced
by CATSAI for the different devices considered are dis-
played in Fig. 4. Although accurate most of the time, the
score function that the algorithm uses to detect double
quantum dot regimes can sometimes be tricked by charge
switches, as observed in Fig. 4i.
To benchmark the performance of the algorithm, the

output current maps were labelled by human experts at
the end of the tuning experiment to verify whether they
corresponded to the double quantum dot regime (see Sup-
plementary Material). The human experts were unaware
whether the current maps to be labelled were the output
of CATSAI or Random Search. We define C as the num-
ber of humans who labelled a current map as containing
double quantum dot features. In each iteration of the
algorithm, we cumulatively sum the value of C normalised
by the total number of human labellers (four). The re-
sulting quantity, C̄, provides a measure of the number of
double dot regimes found by the tuning algorithm while
considering disagreements between human labellers.
Figure 5a–j shows C̄ as a function of laboratory time

for 12 runs of CATSAI and Random Search for each of
the devices considered. CATSAI outperforms Random
Search in the total number of double quantum dot regimes
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Figure 4. Device tuning. Examples of current map outputs
on the different devices in which CATSAI was run. High
resolution maps are generated during the investigation stage
by sweeping the plunger gates of each device Vp1,p2; for the
FinFET V3,2 (a,b,c), the nanowire V4,2 (d,e,f) and the het-
erostructure V3,5 (g,h,i). These current maps are labelled
a posteriori by humans to verify whether they correspond
to the double quantum dot regime. C indicates the num-
ber of humans out of four who labelled the current map as
corresponding to a double quantum dot regime. Red (blue)
indicates regions of high (low) current in each map.

located in all cases. The Random Search algorithm did
relatively well in locating double quantum dot regimes in
the nanowire but did not locate any double quantum dot
regime in the FinFET (Fig. 5b) and struggled to locate
more than one double quantum dot regime in the SiGe
heterostructure device (Fig. 5j).

The probability of Coulomb peaks estimated for a given
number of iterations, P(peaks), is plotted as a function of
laboratory time for each algorithm run and each device
in Fig. 5c–l. For the Random Search and the first i
iterations of CATSAI, the algorithm chooses pinch-off
locations randomly, and thus P(peaks) does not show a
definite trend. For the subsequent iterations, we expect
CATSAI to learn which are the promising locations in
gate voltage space, and P(peaks) should thus increase as
a function of time. This increase would not be monotonic,
since the algorithm balances a exploration/exploitation
trade-off [21].

The trend of P(peaks) as a function of laboratory time
observed in most CATSAI runs is similar for the FinFET,
nanowire and the heterostructure devices. The saturation
after 1–2 hours is expected given that transport feature
can only be found in a limited portion of the gate voltage

space.
For the FinFET device and the heterostructure, the

values of P(peaks) are on average larger for the Random
Search than for CATSAI runs. Given we expect faster
tuning times for CATSAI, either the majority of the
transport features found by Random Search correspond
to single quantum dots instead of double quantum dots,
or the score function fails to identify double quantum
dot features. The latter is unlikely to be the dominant
factor given that the Random Search algorithm is run for
3000 iterations for this device and the score function is
successful in identifying double dot features via CATSAI.

Tuning Times (minutes)
Device CATSAI Random Search

GeSi Nanowire 9.5 (6.7, 12) 17 (9.9, 26)
Si FinFET 30 (26, 37) -
SiGe Het. 92 (71, 120) 360 (190, 830)

Table I. Median device tuning times with 80% credible in-
tervals (equal tailed) corresponding to CATSAI and Random
Search algorithm runs for all devices considered. We estimate
these credible intervals as described in Ref. [21]. The Random
Search tuning time for the FinFET is unknown as no double
quantum dot regimes were located.

CATSAI tuned all devices faster than Random Search.
The median tuning times are 10 minutes for the nanowire,
30 minutes for the FinFET, and 90 minutes for the het-
erostructure (Table I). The Random Search algorithm was
surprisingly quick at tuning the nanowire, while unable
to tune the FinFET successfully within 12 runs of the
algorithm, which totals a laboratory time of 19 hours.
Reduced tuning times for the FinFET device could prob-
ably be achieved by fixing the lead gate voltages. The
difference between the upper and lower credible interval of
the tuning times achieved in the heterostructure device is
an order of magnitude less than that achieved by Random
Search.

The difference between median tuning times for differ-
ent devices begs the question whether the dimensionality
of the gate voltage space is the key factor affecting tuning
times or if there is a more subtle characteristic at play.
The faster median tuning times were achieved in those
devices for which the gate voltage space has the fewer
dimensions, i.e. the FinFET and the nanowire. Although
the nanowire does have greater gate electrode dimension-
ality than the FinFET, we still observe faster tuning times
for the nanowire. There would seem to be more double
quantum dot regimes in the nanowire gate voltage space
than there are in that of the FinFET.
This hypothesis is reinforced by the lack of double

quantum dot regimes found in the FinFET by Random
Search and it is in agreement with the experience of
human experts when tuning these devices.
A reason for the lack of double quantum dot regimes

is the sharp pinch-off that occurs as a function of the
lead gate electrodes. The probability of finding lead gate
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Figure 5. Benchmarking the algorithm’s performance. Cumulative sum of the average number of double quantum dot regimes
verified by humans C̄ (first and second columns) and probability of finding Coulomb peaks P(peaks) (third and fourth columns),
as a function of laboratory time for each run of CATSAI and Random Search algorithms. Rows correspond to the different
devices. Only the first 4 hours of each tuning run are shown for ease of visualisation. CATSAI outperforms Random Search in
the number of double quantum dot regimes located for all devices. The value of C̄ remains at 0 in many of the Random Search
runs, and thus are not visible in the plots of C̄ as a function of time. The increase in P(peaks) as a function of laboratory time
observed for the CATSAI runs after the first 12 iterations can be explained by the algorithm ‘learning’ a better model of the
hypersurface as the Gaussian process regression acquires more observations.

voltages that enable current flow and plunger gate voltages
that lead to double quantum dot regimes is inherently low.
As mentioned previously, faster tuning times for FinFETS
would thus be expected for CATSAI and Random Search
if the lead gate voltages, V1 and V4, are fixed.

CONCLUSION

CATSAI is the first to allow for the tuning of quantum
devices across material compositions and gate architec-
tures. We achieved tuning times faster than that of human

experts in a Si FinFET, a GeSi nanowire and a SiGe het-
erostructure device. The tuning times reported are as
low as 30, 10 and 92 minutes respectively. The capability
to tune these devices from scratch completely automat-
ically, prepares the pathway laid out for the scaling of
semiconductor qubits that lend themselves to industrial
scale manufacture.

An analysis of the hypersurfaces corresponding to dif-
ferent device types and material systems could minimise
variability and boost device performance by an informed
device design. The size of the gate voltage space is also an
important consideration in this context. While the Fin-
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FET and the nanowire gate-voltage spaces at mv resolu-
tion have approximately 1014 and 1017 pixels respectively,
the mean tuning times are only different by a factor of
3, and surprisingly the median tuning time is shorter for
the nanowire device.
The heterostructure, with a gate-voltage space at mv

resolution of 1023 pixels, shows a mean tuning time only
3 times longer than the nanowire. This would suggest
that other factors, such as the design of the gate archi-
tecture and the disorder potential, might have a very
significant role in how quickly a device can be tuned.
Faster tuning times could be achieved by using device
information, for example by grouping gate electrodes with
similar functions. While the size of the gate voltage space
is determined both by device properties and fabrication
methods, the volume of the hypersurface and the vol-
ume of gate voltage space in which transport features are
found could be useful to quantify device variability and
to characterise and design different device architectures.
Radio-frequency reflectometry measurements would

also lead to faster tuning times and the possibility of
efficiently tuning large device arrays. Our work evidences
the potential of machine learning-based algorithms to find
overarching solutions for the control of complex quantum
circuits.

DATA AVAILABILITY

The data acquired by the algorithm during experiments
is available from the corresponding author upon reason-
able request.
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SUPPLEMENTARY MATERIAL

Supplementary Methods

3D hypersurface plots

The 3D plot of the hypersurface for each device was
generated by relying on the same method that CATSAI
uses to generate the hypersurface of each device as it
proceeds to coarsely tune it. The main difference being
that no sampling is involved; the surface is generated by a
model that makes use of the pinch-off locations detected
during an algorithm run selected at random (CATSAI run
10). The model of the hypersurface used was a Gaussian
Process (Matern52 Kernel). This model is then used as an
interpolation method to generate the 3D plots; regularly
spaced points in gate voltage space are considered and the
model is used to determine whether these points lie within
the hypersurface. The gate voltages not considered for
the plots are kept constant at their respective mean gate
voltage values for which pinch-off was observed during
the experiment (Supplementary Table II).

Coulomb peak detector

Due to the different types of current noise observed for
each of the devices considered, a robust Coulomb peak
detector was required. We thus developed a random forest
Coulomb peak classifier.

A set of 128-pixel current traces was obtained running
the tuning algorithm developed by Moon et al. [21] on dif-
ferent devices to those for which CATSAI was tested (Sup-
plementary Table I); two different 5-gate GeSi nanowires
(400 mV-long current traces), and a single 3-gate Si Fin-
FET (200 mV-long current traces). We gathered 1095
current traces from GeSi nanowire device 1, 1321 from
GeSi nanowire device 2, and 4306 from the Si FinFET
device 1. The 6722 current traces were labelled by a single
labeller (Brandon Severin), from which there were 553
labelled as positive (current traces containing Coulomb
peaks) and the remainder (6169 current traces) were la-
belled as negative. 553 negative examples were randomly
picked from the shuffled 6169 negative examples, to make
up an even dataset of 1106 current traces. The breakdown
of the data subsets include, for the positives: 115 traces
from GeSi nanowire device 1, 100 from GeSi nanowire
device 2 and 338 from the Si FinFET device 1. For the
negative subset: 83 from GeSi nanowire device 1, 113
from GeSi nanowire device 2, and 357 from the Si Fin-
FET device 1. Randomly chosen current traces from the
even dataset of 1106 current traces were used to train and
test the random forest Coulomb peak classifier; 70% of the
traces chosen were used to train the classifier, and 30%
were used to test it. No characteristic feature engineering
or data pre-processing was done other than normalisation.
The characteristic features the random forest classifier

was trained on were the normalised current values of each
trace at each pixel point, thus each sample had 128 charac-
teristic features. The classifier relies on the Scikit-learn’s
ensemble RandomForestClassifier package [30]. An accu-
racy of 84% was achieved. The random forest classifier
was then retested on 1562 current traces from a 5-gate
GeSi heterostructure device 1 and an accuracy of 92% was
achieved (Supplementary Table I, Test 2). This relatively
high accuracy contrasts the Coulomb peak detector used
in Ref. [21], which achieved an accuracy of 20% classifying
the current traces obtained for the GeSi heterostructure
device 1.

Algorithm configuration for the different type of devices
studied

Across all devices the initialisation of the algorithm is
set to 12 iterations (the first 5% of the total number of
iterations for each run). In this work we did not apply any
pruning rules [21]. When searching for the hypersurface,
the algorithm looks for current drops below 0.5% of the
maximum current range. The parameters chosen to run
the algorithm can be separately optimised. The model
of the hypersurface is built via a Gaussian Process as in
Ref. [21].
Other configuration parameters depend on the type

of device to be explored (Supplementary Table III &
IV). These parameters include: voltage bounds (origin
and limit) set for each gate electrode to prevent device
damage, the value at which the bias voltage is fixed, the
noise and segmentation thresholds, and the size in gate
voltage space of current traces (diag_trace), as well as
low and high resolution current maps (2d_lowres and
2d_highres, respectively).

During the investigation stage the current traces have
a length of 128 pixels, the low resolution current maps
have a size of 16 × 16 pixels, and the high resolution
have a size of 48 × 48 pixels. The dimensions of the
traces and the scans in voltage space are device dependent
(Supplementary Table IV).

The bias voltages were chosen to be slightly larger than
typical charging energies expected for single quantum
dots in each device. The noise and segmentation thresh-
olds were chosen according to expected values; these can
easily be replaced by a fixed percentage of the maximum-
minimum current range across devices. The size of current
traces and current maps in the investigation stage was
larger for the GeSi nanowires, since the gate lever arms
in these devices is often smaller compared to the other
devices. These hyperparameters could also be optimised
in future implementations.

Labelling procedure

The current maps that are classified by the Algorithm
as corresponding to a double dot regime are checked and
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labelled by human beings at the end of the experiment to
benchmark the Algorithm’s performance (Supplementary
Table V & VI). There is often disagreement between
humans about what current maps correspond to a double
quantum dot regime. The current maps for each type of
device were thus labelled by 4 different and independent
human labellers. Three datasets were collected, one for
each device (nanowire, heterostructure and FinFET). For
each device, the current maps collected by Random Search
and CATSAI were grouped together and shuffled to avoid
labellers’ confirmation bias. Median tuning times were
calculated using a Bayesian model based on the resultant
labels as in Ref. [21].

Supplementary Tables

Device Train Test 1 Test 2 Algorithm run
GeSi Nanowire 0 - - - x
GeSi Nanowire 1 x x - -
GeSi Nanowire 2 x x - -
Si FinFET 0 - - - x
Si FinFET 1 x x - -

GeSi Heterostructure 0 - - - x
GeSi Heterostructure 1 - - x -

Supplementary Table I. Devices used throughout this work.
All devices used for training and or testing are different to
the devices used in the experiment. Devices used for the
experiment algorithm runs only are numbered as zero.
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Supplementary Table II. Bounds used for the 3D hypersurface plots.

Device V1 (V) V2 (V) V3 (V) V4 (V) V5 (V) V6 (V) V7

Si FinFET, origin -6.5 -1.5 -1.5 -5.0 - - -
Si FinFET, limit -2.5 0.0 0.0 -5.0 - - -

GeSi Nanowire, origin 0.0 0.56 0.0 1.1 0.0 - -
GeSi Nanowire, limit 4.0 0.56 2.5 1.1 4.0 - -

SiGe Heterostructure, origin 0.48 0.0 0.74 0.0 0.79 0.0 0.41
SiGe Heterostructure, limit 0.48 2.0 0.74 2.0 0.79 2.0 0.41

Supplementary Table III. Gate voltage space explored by CATSAI and Random Search algorithms for each of the devices
considered.

Device V1 (V) V2 (V) V3 (V) V4 (V) V5 (V) V6 (V) V7 (V)
Si FinFET, origin -6.5 -1.5 -1.5 -6.5 - - -
Si FinFET, limit 0.0 0.0 0.0 0.0 - - -

GeSi Nanowire, origin 0.0 0.0 0.0 0.0 0.0 - -
GeSi Nanowire, limit 4.0 2.5 2.5 4.0 4.0 - -

SiGe Heterostructure, origin 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SiGe Heterostructure, limit 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Supplementary Table IV. Differences in the configuration of the algorithm for each of the devices considered.

Device Vbias (mV) Noise
Threshold (pA)

Segmentation
Threshold (pA)

diag_trace:
size (mV)

2d_lowres:
size (mV)

2d_highres:
size (mV)

Si FinFET 7.6 2 20 100 80 × 80 120 × 120
GeSi Nanowire 4 2 1000 200 150 × 150 200 × 200

SiGe Heterostructure 0.5 10 30 100 80 × 80 120 × 120
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Supplementary Table V. Total number of current maps labelled as positive (i.e. corresponding to the double quantum dot
regime) found by each labeller (Labeller 1, 2, 3, 4) for each device and for each run of CATSAI. Runs marked with a an asterisk
were excluded because the cryostat temperature was slightly higher than base temperature.

Experiment Iterations Time (hours) Labeller 1 Labeller 2 Labeller 3 Labeller 4
Si FinFET, run 1 250 3.47 2 2 2 3
Si FinFET, run 2 250 4.17 12 12 10 10
Si FinFET, run 3 250 3.62 5 5 5 5
Si FinFET, run 4 250 4.15 9 6 6 7
Si FinFET, run 5 250 3.30 9 9 6 8
Si FinFET, run 6 250 3.90 9 9 7 9
Si FinFET, run 7 250 3.30 3 2 1 3
Si FinFET, run 8 250 3.86 13 13 7 13
Si FinFET, run 9 250 3.25 4 4 4 4
Si FinFET, run 10 250 3.81 10 11 8 11
Si FinFET, run 11 250 3.57 5 5 5 6
Si FinFET, run 12 250 3.83 13 13 13 13

GeSi Nanowire, run 1 250 8.42 45 58 74 48
GeSi Nanowire, run 2 250 8.26 46 61 80 54
GeSi Nanowire, run 3 250 8.57 38 60 77 49
GeSi Nanowire, run 4 250 9.18 40 64 79 46
GeSi Nanowire, run 5 250 8.21 38 52 73 47
GeSi Nanowire, run 6 250 8.90 38 64 78 54
GeSi Nanowire, run 7 250 8.12 39 46 70 46
GeSi Nanowire, run 8 250 8.68 46 59 79 48
GeSi Nanowire, run 9 250 9.05 50 67 84 48
GeSi Nanowire, run 10 250 9.31 51 64 78 52
GeSi Nanowire, run 11 250 9.38 50 64 82 54
GeSi Nanowire, run 12 250 9.02 43 63 78 55

SiGe Heterostructure, run 1 250 3.38 2 4 5 3
SiGe Heterostructure, run 2 250 2.50 2 3 2 2
SiGe Heterostructure, run 3 250 2.39 1 1 0 1
SiGe Heterostructure, run 4* 250 3.17 1 2 0 1
SiGe Heterostructure, run 5 250 3.04 3 2 2 1
SiGe Heterostructure, run 6 250 3.66 2 3 4 3
SiGe Heterostructure, run 7 250 3.19 1 1 1 2
SiGe Heterostructure, run 8 250 2.81 2 1 2 1
SiGe Heterostructure, run 9 250 3.19 1 1 1 1
SiGe Heterostructure, run 10 250 3.22 1 0 1 1
SiGe Heterostructure, run 11 250 2.91 3 4 1 2
SiGe Heterostructure, run 12 250 3.50 1 2 2 1
SiGe Heterostructure, run 13* 250 3.42 2 2 2 3
SiGe Heterostructure, run 14* 250 3.31 4 3 5 3
SiGe Heterostructure, run 15 250 2.99 3 4 4 4
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Supplementary Table VI. Total number of current maps labelled as positive (i.e. corresponding to the double quantum dot
regime) found by each labeller (Labeller 1, 2, 3, 4) for each device and for each run of Random Search. Runs marked with a an
asterisk were excluded because the cryostat temperature was slightly higher than base temperature.

Experiment Iterations Time (hours) Labeller 1 Labeller 2 Labeller 3 Labeller 4
Si FinFET, run 1 250 1.62 0 0 0 0
Si FinFET, run 2 250 1.68 0 0 0 0
Si FinFET, run 3 250 1.69 0 0 0 0
Si FinFET, run 4 250 1.58 0 0 0 0
Si FinFET, run 5 250 1.64 0 0 0 0
Si FinFET, run 6 250 1.62 0 0 0 0
Si FinFET, run 7 250 1.51 0 0 0 0
Si FinFET, run 8 250 1.45 0 0 0 0
Si FinFET, run 9 250 1.49 0 0 0 0
Si FinFET, run 10 250 1.52 0 0 0 0
Si FinFET, run 11 250 1.63 0 0 0 0
Si FinFET, run 12 250 1.56 0 0 0 0

GeSi Nanowire, run 1 250 4.40 11 18 23 15
GeSi Nanowire, run 2 250 4.06 5 13 20 10
GeSi Nanowire, run 3 250 4.44 9 17 28 11
GeSi Nanowire, run 4 250 3.82 3 12 21 8
GeSi Nanowire, run 5 250 4.66 12 20 30 14
GeSi Nanowire, run 6 250 4.58 10 22 32 17
GeSi Nanowire, run 7 250 4.17 11 11 22 13
GeSi Nanowire, run 8 250 3.92 7 14 21 10
GeSi Nanowire, run 9 250 4.53 14 23 30 17
GeSi Nanowire, run 10 250 4.37 12 19 23 16
GeSi Nanowire, run 11 250 4.59 11 20 30 14
GeSi Nanowire, run 12 250 4.21 19 23 28 18

SiGe Heterostructure, run 1 250 2.22 1 1 1 1
SiGe Heterostructure, run 2 250 1.83 0 0 0 0
SiGe Heterostructure, run 3 250 1.82 0 0 0 0
SiGe Heterostructure, run 4 250 1.85 0 0 0 0
SiGe Heterostructure, run 5 250 1.89 0 1 0 0
SiGe Heterostructure, run 6 250 1.82 0 0 0 0
SiGe Heterostructure, run 7 250 1.72 0 0 0 0
SiGe Heterostructure, run 8 250 1.68 0 0 0 0
SiGe Heterostructure, run 9 250 1.69 1 2 1 1
SiGe Heterostructure, run 10 250 1.81 0 0 0 0
SiGe Heterostructure, run 11 250 1.95 0 0 0 0
SiGe Heterostructure, run 12 250 1.52 1 1 1 1
SiGe Heterostructure, run 13* 250 1.64 0 0 1 0
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