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Deep reinforcement learning for efficient measurement of
quantum devices
V. Nguyen1,5, S. B. Orbell 1,5, D. T. Lennon1, H. Moon1, F. Vigneau 1, L. C. Camenzind2, L. Yu2, D. M. Zumbühl 2, G. A. D. Briggs 1,
M. A. Osborne3, D. Sejdinovic 4 and N. Ares 1✉

Deep reinforcement learning is an emerging machine-learning approach that can teach a computer to learn from their actions and
rewards similar to the way humans learn from experience. It offers many advantages in automating decision processes to navigate
large parameter spaces. This paper proposes an approach to the efficient measurement of quantum devices based on deep
reinforcement learning. We focus on double quantum dot devices, demonstrating the fully automatic identification of specific
transport features called bias triangles. Measurements targeting these features are difficult to automate, since bias triangles are
found in otherwise featureless regions of the parameter space. Our algorithm identifies bias triangles in a mean time of <30 min,
and sometimes as little as 1 min. This approach, based on dueling deep Q-networks, can be adapted to a broad range of devices
and target transport features. This is a crucial demonstration of the utility of deep reinforcement learning for decision making in the
measurement and operation of quantum devices.
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INTRODUCTION
Reinforcement learning (RL) is a neurobiologically inspired
machine-learning paradigm where an RL agent will learn policies
to successfully navigate or influence the environment. Neural
network-based deep reinforcement learning (DRL) algorithms
have proven to be very successful by surpassing human experts in
domains such as the popular Atari 2600 games1, chess2, and Go3.
RL algorithms are expected to advance the control of quantum
devices4–21, because the models can be robust against noise and
stochastic elements present in many physical systems and they
can be trained without labelled data. However, the potential of
deep reinforcement learning for the efficient measurement of
quantum devices is still unexplored.
Semiconductor quantum dot devices are a promising candidate

technology for the development of scalable quantum computing
architectures. Singlet–triplet qubits encoded in double quantum
dots22 have demonstrably long coherence times23,24, as well as
high one-25 and two-qubit26–28 gate fidelities. Promising qubit
performance was also demonstrated in single-spin qubits29–31,
and exchange only qubits32,33. However, quantum dot devices are
subject to variability, and many measurements are required to
characterise each device and find the conditions for qubit
operation. Machine learning has been used to automate the
tuning of devices from scratch, known as super coarse tuning34–36,
the identification of single or double quantum dot regimes,
known as coarse tuning37,38, and the tuning of the inter-dot tunnel
couplings and other device parameters, referred to as fine
tuning39–41.
The efficient measurement and characterisation of quantum

devices has been less explored so far. We have previously
developed an efficient measurement algorithm for quantum dot
devices combining a deep-generative model and an information-
theoretic approach42. Other approaches have developed classifi-
cation tools that are used in conjunction with numerical
optimisation routines to navigate quantum dot current

maps37,40,43. These methods, however, fail when there are large
areas in parameter space that do not exhibit transport features. To
perform efficient measurements in these areas, which are often
good for qubit operation, requires prior knowledge of the
measurement landscape and a procedure to avoid over-fitting,
i.e., a regularisation method.
In this paper, we propose to use DRL for the efficient

measurement of a double quantum dot device. Our algorithm is
capable of finding specific transport features, in particular bias
triangles, surrounded by featureless areas in a current map. The
state-of-the-art DRL decision agent is embedded within an
efficient algorithmic workflow, resulting in significant reduction
of the measurement time in comparison to existing methods. A
convolutional neural network (CNN), a popular image classification
tool44,45, is used to identify the bias triangles. This optimal decision
process allows for the identification of promising areas of the
parameter space without the need for human intervention. Fully
automated approaches, such as the measurement algorithm
presented here, could help to realise the full potential of spin
qubits by addressing key difficulties in their scalability.
We focus on quantum dot devices that are electrostatically

defined by Ti/Au gate electrodes fabricated on a GaAs/AlGaAs
heterostructure (Fig. 1a)46,47. All the experiments were performed
using GaAs double quantum dot devices at dilution refrigerator
temperatures of ~30mK. The two-dimensional electron gas
created at the interface of the two semiconductor materials is
depleted by applying negative voltages to the gate electrodes.
The confinement potential defines a double quantum dot, which
is controlled by these gate voltages and coupled to the electron
reservoirs (the source and drain contacts). Depending on the
combination of gate voltages, the double quantum dot can be in
the ‘open’, the ‘pinch-off’ or the ‘single-electron transport’ regime.
In the ‘open’ regime, an unimpeded current flows through the
device. Conversely, when the current is completely blocked, the
device is said to be in the ‘pinch-off’ regime. In the ‘single-electron
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transport’ regime, the current is maximal when the electrochemi-
cal potentials of each quantum dot are within the bias voltage
window Vbias between source and drain contacts.
Our algorithm interacts with a quantum dot environment within

which our DRL decision agent operates to efficiently find the
target transport features. The environment consists of states,
defined by sets of measurements in gate voltage space, and a set
of actions and rewards to navigate that space. This quantum dot
environment has been developed based upon the OpenAI Gym
interface48 (see Supplementary Note A. for further details of the
quantum dot environment’s state, action and reward). Manual
identification and characterisation of transport features requires a
high-resolution measurement of a current map defined by, for
example, barrier gate voltages VB1 and VB2 while keeping other

gate voltages fixed, an example of which is shown in Fig. 1b. A
super coarse tuning algorithm allows us to choose a set of
promising gate voltages and focus on exploring the current map
as a function of two gates, for example the two barrier gates36.
This is the gate voltage space our DRL agent will navigate.
Our DRL algorithm takes the gate voltage coordinates found by

our previous super coarse tuning algorithm36, and divides the gate
voltage space corresponding to the unmeasured current map into
blocks. The size of the blocks is chosen such that they can fully
contain bias triangles (blocks are shown as a white grid in Fig. 1b).
Devices with similar gate architectures often show bias triangles of
similar sizes for a given Vbias. The DRL agent is initiated in a
random block. The agent acquires a reduced number of current
measurements from this block and makes a decision on whether a

Fig. 1 Overview of device architecture and quantum dot environment. a False-colour SEM image of a GaAs double quantum dot device.
Barrier gates, labelled VB1 and VB2, are highlighted in red. The arrow represents the flow of current through the device between source and
drain contacts. b A current map. The white grid represents the blocks available for investigation by the DRL agent. The DRL agent is initiated in
a random block (state) indicated by a filled white square. The filled orange blocks show the available action space for the DRL agent and the
arrow shows a possible policy decision. c and d The nine sub-blocks defined within each block, a 32 × 32mV window in gate voltage space, to
calculate a statistical state vector. These sub-blocks are equal in gate voltage size, five of them are shown in (c) and four in (d). The green sub-
block in (d) contains bias triangles.

V. Nguyen et al.

2

npj Quantum Information (2021)   100 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



high-resolution measurement is required and on which block to
explore next if bias triangles are not observed. The agent has a
possible action space represented by a vector of length six; this
means the agent can decide to acquire measurements in any of
the four contiguous blocks (‘up’, ‘down’, ‘left’, or ‘right’) or in
the two diagonal blocks that permit the agent to efficiently move
between the ‘open’ and the ‘pinch-off’ transport regimes.
These blocks correspond to an increase or decrease of both gate
voltages, which strongly modulates the current through the
device. The remaining two diagonal blocks, which correspond to a
decrease of one gate voltage and an increase of the other, do not
often lead to such significant changes in the transport regime and
are thus not included in the agent’s action space to maximise the
efficiency of the algorithm. The DRL agent can be efficiently
trained using current maps already recorded from many other
devices. This is because their transport features are sufficiently
similar, even though the gate voltage values at which they are
observed vary for different devices.
The decision of which block to explore next is based on the

current measurements acquired by the DRL agent in a given block.
The block is divided into nine sub-blocks (Fig. 1c, d) and the mean
μ and standard deviation σ of the current measurements
corresponding to each sub-block are calculated. These statistical
values, constituting an 18-element vector, provide the agent with
information of its probable location in the current map. The
statistical state vector or state representation vector enables the
DRL decision agent to abstract knowledge about the transport
regime, distinguishing between ‘open’, ‘pinch-off’, and ‘single-

electron transport’ regimes, with a reduced number of measure-
ments. In this way, the state vector defines a state in the quantum
dot environment.
This statistical approach, compared to the alternative of using

CNNs to evaluate acquired measurements, makes the agent less
prone to over-fitting during training and more robust to
experimental noise. To decide whether the agent has found bias
triangles in a given block, the algorithm uses a CNN as a binary
classification tool. Combining a state representation based on
measurement statistics and CNNs in a reinforcement-learning
framework, which makes use of the experience of the agent
navigating similar environments during training, our algorithm
provides a decision process for efficient measurement without
human intervention.

RESULTS
Description of the algorithm
The algorithm is comprises different modules for classification and
decision making (Fig. 2). In the initialisation stage, two low-
resolution current traces are acquired by the algorithm as a
function of VB1 (VB2) with VB2 (VB1) set to the maximum voltage
given by the gate voltage window to be explored. The algorithm
extracts from these measurements the maximum and minimum
current values and its standard deviation, which will be used in a
later stage by the classification modules. The gate voltage regions
we explore are delimited by a 640 × 640mV window centred in
the gate voltage coordinates proposed by a super coarse tuning

Fig. 2 Schematic depicting the algorithmic workflow (see main text for a full description). In the initialisation stage, starting from the gate
voltages coordinates proposed by a coarse tuning algorithm, the algorithm measures low-resolution current traces as a function of VB1 (VB2)
with VB2 (VB1) set to the maximum voltage given by the gate voltage window of interest (i). The algorithm then performs a random pixel
measurement in the block corresponding to the proposed starting gate voltages (ii). In this measurement, mean current values and standard
deviation are calculated for nine sub-blocks within the block until convergence. The statistical state representation vector (state vector)
obtained is then assessed by the pre-classification stage (iii). If the mean current value corresponding to any of the sub-blocks falls within
threshold values given by the initialisation stage, then the block is pre-classified as corresponding to a possible single-electron transport
regime. In this case, the block is explored further by performing a high-resolution scan. This block measurement is normalised and input into a
CNN binary classification algorithm (iv). If the CNN identifies bias triangles, then the algorithm terminates. If either the pre-classifier or the
CNN classifier rejects a block, then the state vector is input into the DRL decision agent (v). The decision agent subsequently selects an action
on the gate voltages, which determines the next block to measure via the random pixel method.
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algorithm, as mentioned in the Introduction, and the current
traces in this stage have a resolution of 6.4 mV.
The gate voltage region is divided in 32 × 32mV blocks and the

agent is initialised in a randomly selected block. The algorithm
takes random pixel measurements of current within this block.
Each pixel is 1 × 1mV. As these measurements are performed, the
algorithm estimates the 18-dimensional state vector given by μ
and σ for each of the 9 sub-blocks in which the block is divided.
Pixels are sampled randomly from the block until the statistics
from the state representation have converged. Convergence is
generally achieved after sampling fewer than 100 pixels,
significantly less than the 1024 pixels in a block (see Supplemen-
tary Note B. for the convergence curves and the convergence
criterion).
The state vector is first evaluated by a pre-classification module. A

block is classified as corresponding to the single-electron transport
regime if any of the nine μ values, corresponding to the nine sub-
blocks, falls between two predefined values. These values are set to
be 0.01 to 0.3 times the maximum current range detected in the
initialisation stage (see Supplementary Note B. for further details
about the design of the pre-classifier). We have found that the
choice of such hyperparameters does not have a significant impact
in the performance of the algorithm. If the pre-classifier identifies
the block as corresponding to the single-electron transport regime, a
high-resolution current measurement (1024 pixels, 1 × 1mV resolu-
tion) of the block is acquired. This block measurement is normalised
and evaluated by a CNN binary classifier. For any output value >0.5,
the block is identified as containing bias triangles. If bias triangles
are identified within the block, the algorithm is terminated. Figure 3a
shows the blocks in a current map that would be identified by the
pre-classifier as corresponding to the single-electron transport
regime, while Fig. 3b shows the blocks that would be evaluated
by the CNN binary classification to determine if bias triangles are
observed (see Supplementary Note C. for a summary of the CNN’s
architecture and its training).
If the pre-classifier considers the block to correspond to the

‘open’ or ‘pinch-off’ regimes, or if the CNN does not identify bias
triangles within the block, the DRL agent has to decide which
block to explore next. With this objective, the state vector is
normalised using the variance and mean current values obtained
in the initialisation stage, and fed into a deep neural network,
which controls the DRL decision agent. The agent will then
propose an action, which it expects will lead to the highest long-
term reward. This action at, given by at ¼ argmax

a0
Qπðst; a0Þ, is the

action, which maximises the Q-function for the agent’s stochastic
policy π in the state-action pair ðst; a0Þ at time t. The Q-function

measures the value of choosing an action a0 when in state st and
therefore the action at represents the agent’s prediction for the
most efficient route to bias triangles. In our quantum dot
environment setting, the action determines the next block to
explore and the algorithm begins a new iteration.

The deep reinforcement-learning agent
Our algorithm makes use of the deep Q-learning framework, which
uses deep neural networks to approximate the Q-function1. The Q-
function is defined by Qπðst; atÞ ¼ E Rtjs ¼ st; a ¼ at; π½ �, which
gives an expected reward Rt for a chosen action at taken by an
agent with a policy π in the state st. This expected reward is defined
as Rt ¼

P1
τ¼t γ

τ�trτ , where γ∈ [0, 1] is a discount factor that trades-
off the importance of immediate rewards rt, and future rewards rτ >
t. The agent aims to maximise Rt via the Qπ(st, at) learnt by the
neural network. In particular, we chose to implement the dueling
deep Q-network (dueling DRL decision agent (DQN))49 architecture
for our DRL decision agent. This architecture factors the neural
network into two entirely separate estimators for the state-value
function and the state-dependent action advantage function49. The
state-value function, VπðstÞ ¼ Eat�πðstÞ Q

πðst; atÞ½ � gives a measure
for how valuable it is, for an agent with a stochastic policy π in the
search for a promising reward, to be in a given state st. The state-
dependent action advantage function49 gives a relative measure of
the importance of each action, given by Aπ(st, at)=Qπ(st, at)− Vπ(st).
In dueling DQN, when combining the state-value function and the
state-dependent action advantage function, it is crucial to ensure
that given Q we can recover Vπ(st) and Aπ(st, at) uniquely. For this
purpose, the advantage function estimator is forced to be zero at
the chosen action at

49. Our dueling DQN consists of three fully
connected layers with 128, 64, and 32 units respectively. The
dueling component is defined by a further fully connected layer
with 64 units for the action advantage function estimator and one
unit for the state-value function estimator.
This approach allows the agent, through the estimation of Vπ(st),

to learn the value of certain states in terms of their potential to
guide the agent to a promising reward. This is particularly
beneficial in our case, since different state vectors can correspond
to the same transport regime and thus be equally valuable in the
search of bias triangles. Consequently the most beneficial action in
these states would often coincide. For example, in most states
corresponding to the ‘pinch-off’ regime, the most beneficial action
is often to increase both gate voltages.
To train the DRL agent, we designed a reward function to

ensure that the agent would learn to efficiently locate bias

Fig. 3 Classification tools. a Example of blocks considered by the pre-classifier as corresponding to the ‘single-electron transport’ regime
overlaid on the corresponding current map. The colour-bar represents the number (M), out of nine, of sub-blocks, which were not rejected by
the pre-classification stage. b Blocks in (a), displaying features corresponding to the ‘single-electron transport’ regime, overlaid on the
corresponding current map. Inset: A block displaying bias triangles and the corresponding output value of the CNN binary classifier.

V. Nguyen et al.

4

npj Quantum Information (2021)   100 Published in partnership with The University of New South Wales



triangles. To this end, during training, the agent is rewarded for
the detection of bias triangles and penalised for the number of
blocks explored or measured in a single algorithm run, N. The
reward r=+10 is assigned to the blocks exhibiting bias triangles.
Other blocks are assigned r=−1. During training, the maximum
number of blocks that could be measured in a given run, Nmax, is
set to 300. If after Nmax block measurements the agent had not
found bias triangles, the algorithm is terminated and the agent is
punished with r=−10 (see Supplementary Note A. for further
details regarding the design of the reward function). In other
words, Nmax determines how far from the starting block the agent
can reach in gate voltage space, as it can only explore contiguous
blocks.
We trained the dueling DQN using the prioritised experience

replay method50 from a memory buffer. This method ensures that
successful policy decisions are replayed more frequently in the
DRL agent’s-learning process. The agent does not benefit from an
ordered sequence of episodes during learning, yet it is able to
learn from rare but highly successful policy decisions and it is less
likely to settle in local minima of the decision policy. We trained
the agent over 10,000 episodes (algorithm runs) using the Adam
optimiser51, each time initialised in a random block for four
different current maps, which were previously recorded. The
training takes less than an hour on a single CPU (Intel(R) Core(TM)
i5-8500 CPU @ 3.00GHz).

Experimental results
We demonstrate the real-time (‘online’) performance of our
algorithm in a double quantum dot device. The algorithm
performance is evaluated according to the number of blocks
explored in an algorithm run, N, which is equal to the number of
blocks explored to successfully identify bias triangles unless
N ¼ Nmax, and according to the laboratory time spent in this task.
For training and testing the algorithm’s performance we use
different devices, both similar to the device shown in Fig. 1a. We
ran the DRL algorithm in two different regions of gate voltage
space, I and II, which are centred in the coordinates from our super
coarse tuning algorithm36. We ran the algorithm ten times in each
region. The DRL agent was initiated in a different block for every
run, sampled uniformly at random. From these repeated runs, we
can estimate the median N of the distribution of values of N
obtained for a given region. We can also estimate (L, U), where L
and U are the lower and upper deciles of the distribution. To
identify bias triangles, the DRL agent required N ¼ 40(9, 104) for
region I and N ¼ 32(10, 94) for region II. In both regions
considered, our algorithm efficiently located bias triangles in a
mean time of 30 min and, on one occasion, in <1min. This is an
order of magnitude improvement in measurement efficiency
compared to the laboratory time required to acquire a current
map with the grid scan method, i.e., measuring the current while
sweeping VB2 and stepping VB1, which is ~5.5 hours with pixel
resolution (1 × 1mV resolution). This time corresponds to the
measurement of the whole gate voltage window to be explored
with no automatic bias triangle identification or any other
computational overheads. This is the most time-consuming
measurement strategy, but the most common approach until this
work. The agent cannot move outside of the gate voltage window,
nor can it measure the same block twice. In the worst case
scenario, the algorithm will thus measure as many blocks as the
traditional grid scan method with a small computational over-
head. A grid scan of each 32 × 32mV block with 1 × 1mV pixel
resolution takes 50 s. For the online runs of our algorithm, each
block was measured and assessed for a median time of 23 s in
region I and 26 s in region II. This demonstrates the low-
computational overhead required for the pre-classification, CNN
classification, and forward pass of the DRL agent, as well as the
efficacy of our random pixel measurements. Using a single CPU of

a standard desktop computer, the algorithm is not limited by
computation time. It can thus be run with the computing
resources available in most laboratories.
Example trajectories of the agent within the gate voltage space

give an insight into the transport properties that the agent has
implicitly learnt from its environment. When initiated in a
transport regime corresponding to pinch-off (low current), the
agent reduces the magnitude of the negative voltage applied to
the gate electrodes, as humans experts would do (Fig. 4a).
Conversely, when initiated in a transport regime corresponding to
higher currents, the agent increases the magnitude of the
negative voltage applied to the gate electrodes (Fig. 4b). The
policy thus leads to block measurements in the areas of gate
voltage space where bias triangles are usually located. These areas
can be anywhere within the defined parameter space.
We have performed an ablation study. Ablation studies are used

to identify the relative contribution of different algorithm
components. In this case, our aim is to determine the benefit of
using a DRL agent. We thus produced an algorithm in which the
DRL decision agent was replaced with a random decision agent.
We compared its performance with the DRL algorithm. The
random agent selects an action, sampled uniformly and randomly.
The quantum dot environment’s (QDE’s) action space is six-
dimensional except in instances where the agent is in a state
(block) along the edges (five-dimensional action space) and in the
corners (four-dimensional action space) of the gate voltage
window considered. This measurement strategy is similar to a
random walk within the gate voltage space, but unlike a pure
random walk strategy, it will not measure the same block twice.
The random decision agent’s measurement run will be terminated
when the CNN classifies a block measurement as containing bias
triangles. The random agent was initialised in the same random
positions as the DRL agent so that a fair comparison could be
made between their performances. We performed ten runs of
each algorithm in each of the two different regions of parameter
space considered in this work, I and II (Fig. 4c, d). The DRL agent
outperforms the random decision agent in the value of N, and
thus in the laboratory time required to successfully identify bias
triangles. Note that the relation between N and the laboratory
time is not linear, as high-resolution block measurements are only
performed for each block classified as corresponding to the single-
electron transport regime by the pre-classification stage.
In region II, the random agent requires N equal to 85 (50, 143),

which is ~2.6 times larger than the N corresponding to the DRL
agent (see Supplementary Note D. for the value of N in region I
and corresponding lab times). The good performance of the
random decision agent can be explained by its use of the pre-
classifier, which makes the random search efficient. The random
decision agent is an order of magnitude quicker than the grid scan
method.
To test the statistical significance of the DRL agent’s advantage,

we have tested the performance of both algorithms in a much
larger number of runs. To perform this statistical convergence test
would have been too costly in laboratory time, so we used
previously recorded current maps, which were measured by the
grid scan method. We will call this performance test ‘offline’, as
opposed to ‘online’ in the case of real-time measurements. By
initiating both agents 1024 times in each of the blocks in I and II,
we obtained a histogram of the N blocks measured to successfully
terminate the algorithm (see Fig. 4e, f for I and II, respectively). We
observe a higher number of runs for which the DRL algorithm
performed fewer block measurements for successful termination.
In region II, the DRL agent requires N of 17 (2, 31), while the N for
the random agent is 30 (3, 101) (see Supplementary Note D. for
the value of N for region I). Our results suggest that the DRL
advantage is statistically significant. The two-tailed Wilcoxon-
signed rank test52 allows us to make a statistical comparison of the
two distributions corresponding to the DRL and the random
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agent. We have applied this test to the offline performance for
regions I and II (see Supplementary Note D. for the results of the
Wilcoxon-signed rank test applied to the online performance test,
for which critical values for the test threshold are used instead of
assuming a normal approximation, given the number of algorithm
runs is below 20). The two-tailed Wilcoxon-signed rank test yields
a p-value < 0.001 for both regions. This means that the null
hypothesis, stating there is no difference in the median
performance between the two agents, can be rejected. In
addition, the median of the differences ðNDRL � NRandomÞ, esti-
mated using the one-tailed Wilcoxon-signed rank test, is less than
zero. We can therefore confirm that the DRL agent offers a
statistically significant advantage over the random agent.
To further illustrate the advantages of our algorithm, we

compared its performance with a Nelder–Mead numerical
optimisation method applied to achieve automatic tuning of
quantum dots38,43. To ensure a fair comparison with our
reinforcement-learning method, our implementation of the
Nelder–Mead optimisation (see Supplementary Note E. for further
details) was terminated when the CNN classified a block as
exhibiting bias triangles in the same way as our DRL algorithm, i.e.,
when the output value of the CNN classifier was >0.5. In the
original implementation, stricter numerical stopping conditions
must be met, thereby increasing the number of measurements
performed before termination.
The Nelder–Mead, random decision, and DRL decision algo-

rithms were compared offline. We have initiated the algorithms in
each block within each gate voltage region and estimated N,
creating a performance distribution or heat-map (Fig. 5). We
observe that large areas of gate voltage space that do not exhibit

transport features correspond to large flat areas in the optimisa-
tion landscape and thus severely limit the Nelder–Mead method.
Often the simplex was initiated in these areas and in those cases,
the Nelder–Mead algorithm just repeatedly measured the area
around the initial simplex. On other occasions, the algorithm
moved away from the initial simplex but then became trapped in
other areas of the parameter space in which transport features are
not present. The method only succeeded in locating bias triangles
when it was initiated in the double dot regime. The DRL decision
agent’s performance is non-uniform as the ‘pinch-off’ regime is
less effectively characterised by the agent than the ‘open’ and
‘single-electron transport’ regimes. The performance of the
random decision agent is also non-uniform, as it completes
the tuning procedure more efficiently when initiated close to the
target transport features.
The Nelder–Mead algorithm was also tested online under the

same conditions as the DRL and random decision agents. None of
20 runs succeeded before reaching the predefined maximum
number of measurements, Nmax, and thus the results are not
presented alongside the online results of grid scan, random
decision, and DRL decision algorithms in Fig. 4. Other numerical
optimisation methods, better suited to the task, could offer
significantly better performances.

DISCUSSION
We have demonstrated efficient measurement of a quantum dot
device using reinforcement learning. We are able to locate bias
triangles fully automatically, from a set of gate voltages defined by
a super coarse tuning algorithm36, in a mean time of <30min and

Fig. 4 Performance benchmark. a, b Example trajectories of the DRL agent in gate voltage space. a (b) Corresponds to region I (II). The
trajectories are indicated by inverting the colour scale of the current map for the blocks measured by the algorithm. The full current map
measured by the grid scan method is displayed for illustrative purposes and it is not seen by the DRL agent. The red and orange squares
indicate the start and end of the trajectory, respectively. c, d Real-time performance corresponding to the grid scan method (green line), the
algorithm with a random decision agent (blue) and the algorithm with a DRL decision agent (red). The box plots indicate the laboratory time
(right) and the corresponding number of blocks explored, N, (left) for regions of the gate voltage space I and II in c and d, respectively. The
laboratory time and N are not proportional, as each block requires a different measurement and computational time depending on whether a
block measurement is performed and processed by the CNN. The results of all ten runs for both agents in each regime are plotted as points.
The central line of the box plot corresponds to N, while the upper and lower boundaries of the box display the upper (Q3) and lower (Q1)
quartiles. The minimum and maximum whisker bars display (Q1− 1.5 × IQR) and (Q3+ 1.5 × IQR) respectively, where IQR is the interquartile
range. e, f) Histograms of values of N for the random and DRL decision agents over 10 algorithm runs for each region, I (e) and II (f). This
performance test was performed offline for better statistical convergence. The insets show the box plots, indicating the quartiles and N values
for the DRL and random agents. In the inset only the outlier points are plotted.
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in as little as 1 min. Our approach gives a ten times speed up in
the median time required to locate bias triangles compared with
grid scan methods. The approach is also less dependant on the
transport regime in which the algorithm is initiated, compared to
an algorithm based on a random agent and to a Nelder–Mead
numerical optimisation method. We have also demonstrated the
statistical advantage of a DRL decision agent over a random
decision agent. Our DRL approach is also robust against
featureless areas in the parameter space, which limit other
approaches. Our algorithm uses statistics calculated via pixel
sampling to explore the transport landscape. This statistical state
representation allows us to efficiently measure the transport
regime (or the state of the environment in DRL terms) and avoid
over-fitting during agent training. Other options for state
representation that go beyond a statistical summary of current
values could be considered. The measurement time remains,
however, the dominant contribution in the time required to
identify transport features. Fast readout techniques such as radio-
frequency reflectometry can be used to reduce measurement
times53–58. However, these techniques are better suited to the
measurement of small gate voltage windows. A full tuning
procedure could consist of a super coarse tuning algorithm,
followed by this algorithm to locate bias triangles, and a fine-

tuning algorithm such as the one described in ref. 39. Different
pairs of bias triangles could be explored. Once a pair of bias
triangles is chosen, now within a reduced gate voltage window,
the fast readout can be optimised.
Our method is inherently flexible and modular such that it could

be generalised to automate a variety of efficient measurement
tasks. For example, the reward function could be modified so that
the agent could learn to locate and score multiple bias triangles
within the current map. Furthermore, by retraining the CNN
classifier and the DRL agent, the method would be able to locate
different types of transport features. Our algorithm could also
incorporate other gate electrodes by increasing the action space
and retraining. This approach would significantly speed up super
coarse, coarse and fine-tuning algorithms. We also expect DRL
approaches to scale better than random searches as the
dimensionality of the problem increases.
We envisage possible extensions of our approach using

probabilistic reinforcement-learning methods including: Bayesian
deep reinforcement learning59–61 and model-based reinforcement
learning62,63, where the goal is to estimate the uncertainty when
making a decision and incorporate domain knowledge into the
reinforcement-learning model. The resulting reinforcement-

Fig. 5 Offline performance distribution. The performance of different algorithms is evaluated by initiating an algorithm run in each block
and estimating N for regions I and II. Black areas indicate that the algorithm failed when initiated at those blocks. a Performance distribution
(heat-map) for the Nelder–Mead method, b the DRL decision agent, and (c) the algorithm with a random decision agent.
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learning model may be more efficient, especially when a limited
amount of data is available.
An additional benefit of reinforcement learning is the capacity

of the network’s policy to be continuously updated. Thereby, the
agent’s policy can be updated in real-time as the algorithm
becomes familiar with a new device. This not only improves the
general policy but also means that, over time, the pre-trained
agent could learn the particularities of a specific device. To tune
large quantum device arrays, due to the increasing dimensionality
of the parameter space, DRL could offer a large advantage over
conventional heuristic methods. Our algorithm can be implemen-
ted in arrays by considering double quantum dots indepen-
dently64, and compensating for the cross talk. Our quantum dot
environment and algorithmic framework offer a valuable resource
to develop and test other algorithms and decision agents for
quantum device measurement and tuning. Additionally, our
dueling deep Q-network methods can be translated to further
applications in experimental research.

DATA AVAILABILITY
The data sets used for the training of the model are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
A documented implementation of the algorithm is available at https://github.com/
oxquantum-repo/drl_for_quantum_measurement.
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