
1

SUPPLEMENTARY INFORMATION

A. SUPPLEMENTARY NOTE: Quantum dot
environment

In DRL, among the key components is the formal model
of the environment with which the agent interacts. There-
fore, we build an environment from the quantum dot
device for training our algorithm and name it the quan-
tum dot environment (QDE). The QDE was developed
to be compatible with the OpenAI Gym interface [1].
This environment is ready to be used for benchmarking
and training existing DRL algorithms. In addition, this
environment is useful for interested DRL researchers to
develop their methods for improving quantum technolo-
gies.

The voltage space of the QDE is delimited by a 640 mV
× 640 mV window defined by the barrier gates. The
window is divided in 32 mV × 32 mV blocks and the
agent is initialised in a randomly selected block.

State

A state s is the statistics set, of a block, consisting of
the means µ and standard deviations σ of the current in
each of the nine sub-blocks.

Instead of making densely overlapping blocks by a mov-
ing kernel horizontally and vertically, we propose to rep-
resent each state by 3 blocks per dimension for simplicity.
In other words, the image is represented by 3d blocks
where d is the dimension. The dimension d corresponds
to the number of gates used. In our setting, each state
in 2 gates includes 9 blocks as the tensor of 9 × 32 × 32
dimensions and 3 gates will have the tensor of 27×32×32.
Examples of the state and blocks using two gates can be
found in Fig. 1 of the main text.

The design of this state representation will bring two
major advantages. This approach ensures that the agent
is less prone to over-fitting during training and more ro-
bust to experimental noise. The second benefit is for
scalability as we can efficiently extend to a higher number
of dimensions. While taking a grid scan measurements,
which scale exponentially with the number of dimensions,
we can use random sampling techniques to obtain con-
vergence in the values of the state representation. This
random sampling technique will scale more favourably
with higher dimensions. Under this representation, the
state includes a statistics vector of 9 × 2 dimensions.

Action

Our action space includes increasing (+) or decreasing
(−) each gate voltage. We have specially designed two
actions to modify both gates simultaneously. In higher
dimensional setting, such as controlling d > 2 gates, this

action space can be generalised wherein the number of
actions is 2 × d+ 2.

Reward

The reward function is carefully constructed to force the
agent to learn to navigate through the voltage landscape
and identify bias triangles using the fewest N measure-
ments. We follow the popular Taxi-v2 environment∗ to
design the reward scores. We summarise the components
of the reward function in Table 1. We note that the utility
of the agent is robust with respect to different magnitudes
of these scores, provided that the detection of a pair of
bias triangles receives a much higher score than block
measurement steps.

Supplementary Table 1. Summary of the reward function.

Instance Reward Termination

Each block measured -1 False
Bias triangle detected +10 True
N equal to Nmax -10 True

We assign high reward to our target state of bias-
triangles. We encourage the algorithm to find the bias-
triangles using the fewest number of measurement by
designing the reward score as follows. We assign the
highest reward r = +10 to the bias-triangles location.
Then, other states will take r = −1. The maximum
number of steps per episode during training is set as 300.
Beyond this threshold, if the algorithm cannot find the
bias-triangles, it will terminate and assign r = −10. The
maximum number of steps controls how far away from a
starting point the device-measurement can go.

B. SUPPLEMENTARY NOTE: Random Pixel
Measurement and Pre-classifier

To assess the state of a block, the algorithm first con-
ducts a random pixel measurement. Pixels are repeatedly
sampled at random from the block and the statistics are
calculated for each sub-block until convergence. The con-
vergence of both the mean and standard deviation of each
sub-block must be satisfied before the measurement is
terminated. The convergence is accepted if the mean
change in the values of the state representation is less
than a threshold percentage (one percent threshold for
this paper) of the state representation prior to the update.
The state vector is then assessed by the pre-classification
stage. If the mean current values, of any of the sub-blocks,

∗ https://gym.openai.com/envs/Taxi-v2/

https://gym.openai.com/envs/Taxi-v2/


2

Supplementary Figure 1. Pixel sampling convergence for
the random pixel measurement in sub-blocks taken from pinch-
off (low current), open (high current), single dot, and double
dot regimes. The threshold values set for the pre-classification
tools are indicated. Therefore, any sub-block within the grey
shaded region will pass the pre-classification. The dashed lines
represent the true means after measuring the sub-blocks using
a 1 mV × 1 mV resolution scan.

falls between the threshold values, calculated using the
initialisation one-dimensional scans, then the block is pre-
classified as a boundary region. The convergence of the
normalised mean current of a sub-block, in the random
pixel sampling measurement method is shown in Fig. 1,
for low and high current, as well as single and double dot
sub-blocks. The sub-blocks with single and double dot
transport features fall within the pre-classifier threshold
values and therefore, in the full algorithm, would be mea-
sured using a grid scan and evaluated by the CNN binary
classifier.

Satisfactory convergence for a block is achieved in fewer
than 50 pixel measurements in all regimes, compared to
the 1, 024 pixels measured in a grid scan of the block. This
represents a huge improvement in measurement efficiency
and the evaluation of a state of the DRL agent.

C. SUPPLEMENTARY NOTE: CNN Binary
Classifier

A Convolutional Neural Network (CNN) [2, 3] is a
multilayered neural network with a special architecture to
detect complex patterns. To decide whether the agent has
found bias triangles in a given block, the algorithm uses a
CNN as a binary classification tool. If the CNN outputs
a value greater than a 0.5 threshold, corresponding to the
classification of a pair of bias triangles, then the algorithm
is terminated. An optimisation of the threshold value
could enable us to reduce the number of false positive
classifications.

Convolution Max-Pool

Convolution Max-Pool Convolution

32@32x32 32@16x16

64@16x16 64@8x8 64@8x8

1x64 1x32
1x1

0 10 20 30

0

5

10

15

20

25

30 Dense

Dense

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

Supplementary Figure 2. CNN binary classifier architec-
ture.

Supplementary Table 2. CNN binary classifier confusion ma-
trix

Confusion Parameters
True positive 18%
False positive 4%
True negative 76%
False negative 2%

F-measure 85%

Accuracy 94%

Network Architecture

We summarise in Fig. 2 the network architecture and
hyperparameters used. There are a total of 320065 train-
able parameters. The convolutional layers have a Rectified
Linear Unit (RELU) activation function, while the dense
layers have and Exponential Linear Unit (ELU) activation
function. The final, output, layer has a Sigmoid activation
function.

Confusion Matrix

The CNN was trained over 10 epochs using 11425 data
points in the training set, 4896 in the validation set and
6994 in the test set. Data was augmented by applying ro-
tations. We trained the network using an Adam optimiser
[4] and a binary cross-entropy loss function. Regularisa-
tion was achieved using a L2 regulariser, set to 0.0001, as
well as drop-out for the dense layers, set at 0.1. In Table 2
we present a summary of the prediction results on the test
set of the binary classification problem. The confusion
parameter representation is useful for analysing the types
of error that a classifier typically makes. The F-measure
and accuracy are other commonly used metrics to analyse
the efficacy of a binary classification tool.

Positive Examples

As the DRL agent navigates through the environ-
ment, the algorithm evaluates each block using the pre-
classification protocol. If the block passes the pre-classifier
stage, a grid scan of the block is measured and the CNN



3

a

b

Supplementary Figure 3. Example trajectories. (a,b) Ex-
ample trajectories from Fig. 4 a, b of the main text, respec-
tively, with the insets showing the windows which triggered
the stopping condition for the algorithm.

binary classification tool is used to evaluate the block. If
the CNN positively classifies the block as containing bias
triangles the algorithm is terminated and the run treated
as successful. In Fig. 3 we show the blocks that were
positively classified by the CNN, causing the algorithm
to terminate during the real-time measurements.

D. SUPPLEMENTARY NOTE: DRL Decision
Agent

Network Architecture

We first summarise the network architecture and hy-
perparameters used in Table 3. We further illustrate the
model architecture in Fig. 4.

Training

We present the pseudo code for the training of the
DRL decision agent with prioritised experience replay in
Fig. 5. The training process starts as follows. An agent
initially will make random action choices to gain expe-

Supplementary Table 3. Deep Reinforcement Learning Archi-
tecture

Hyper-parameters Used
Discount factor 0.5
Optimizer Adam
Number of episodes 10000
Mini batch-size 32
Decay rate in ε greedy 1e−4

Replay buffer 20000
PER-β (start, final, no steps) (1.0, 0.6, 1000)
Learning rate 2.5e−6

FC Layers 128, 64, 32
FC Layers (Dueling) 64, 1

Fully Connected LayersState Input

V(s)

+−+−
Gate A

Gate B

Statistical Feature

+− All 
Gates

Action

Next measurement

9 × 2
μ

σ

A(s,a)

Q(s,a)
Supplementary Figure 4. Summary of DRL framework.
Our deep reinforcement learning framework using a statistical
state representation.

riences which will be stored in a replay buffer B. From
this buffer, the data sample will be randomly selected at
a rate proportional to the temporal difference (TD) error.
Particularly, it prefers to pick samples with unexpected
transitions since these contain more information to learn
than from others samples. Then, the neural network will
be updated given such ‘unexpected’ samples to improve
the networks policy for the next iterations.

We then illustrate the learning process of our DRL
agent by showing the N measurements required to locate
bias triangles, in the training and testing devices as a
function of the number of training episodes in Fig. 6.
This training was performed to assess the learning rate
of the DRL network and is performed in an environment
where the bias triangles are labelled in advance by human
experts and the CNN and pre-classifier modules are not
used.

Performance

We summarise the online performance, in Table 4 and
the offline performance in Table 6, of the DRL decision
agent with respect to the random decision agent. We
use the two-tailed Wilcoxon signed rank test [5] to assess
the null hypothesis that the DRL and Random agent’s
performances are drawn from the same distribution. The
p-value, given in Table 5 and Table 7 for online and offline
tests respectively, represents the confidence in the null



4

Supplementary Figure 5. Pseudocode. Training the dueling
deep Q-network with prioritised experience replay.

Supplementary Table 4. Summary of the online performance
of the DRL and Random decision agents online in the two
parameter regimes. The performance metrics used are the
number of blocks measured, N , before identifying a pair of
bias triangles and the corresponding lab time.

Agent DRL Random

Region I median lab time (s) 932 683
10% percentile time (s) 228 222
90% percentile time (s) 2430 4844

Region II median lab time (s) 822 989
10% percentile time (s) 181 349
90% percentile time (s) 1766 1500

Region I N̄ 41 54
10% percentile N 9 15
90% percentile N 104 135

Region II N̄ 32 85
10% percentile N 10 50
90% percentile N 94 143

hypothesis. The null hypothesis can only be rejected
with confidence, at a level of 2%, in the online results
in the case of N̄ in region II. For the offline results, the
null hypothesis can be rejected for N̄ in both regions. A
one-tailed Wilcoxon signed rank test demonstrates that
the median of the differences (N̄DRL − N̄Random) is less
than zero. We can therefore conclude that the DRL agent
offers a statistically significant advantage over the random
agent.

1. Policy

In the reinforcement learning context, a policy defines
what an agent does to accomplish a task. We present

0 2000 4000 6000 8000 10000

Episode

0

20

40

60

80

100

120

140

N

Starting from pinch-off regime

Starting from open regime

Starting from single-dot regime

0 2000 4000 6000 8000 10000

Episode

0

20

40

60

80

100

120

140

N

Starting from pinch-off regime

Starting from open regime

Starting from single-dot regime

a

b

Supplementary Figure 6. Training convergence. We eval-
uate the performance of our DRL agent during training in
an environment with different starting locations. The bias
triangles are labelled in advance by experts rather than using
the CNN and pre-classifier modules. a The performance is
recorded on the same quantum device in which training is
performed and b a different device. This demonstrates that
our algorithm is flexible and robust against device variability.

Supplementary Table 5. Summary of the Wilcoxon signed
rank test analysis on the online performance of the DRL
and Random decision agents in the two parameter regions.
The performance metrics used are the number of blocks mea-
sured, N , before identifying a pair of bias triangle and the
corresponding lab time.

Wilcoxon signed rank p-value

Region I lab time 0.72
Region II lab time 0.58
Region I N 0.72
Region II N 0.02

the optimal policies at different training stages in Fig.
7 wherein we use arrows to indicate the action, i.e., the
direction to move in the gate voltage space to perform the
next measurement. The algorithm learns that it should
move towards more positive gate voltages if the state is
pinch-off (low-current) or go towards more negative gate
voltages if the state is the open regime (high-current).



5

V
B1 

(mV)

V
B2

(mV)

-790-1090
-720

-420

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

V
B1 

(mV)

V
B2

(mV)

-790-1090
-720

-420

V
B1 

(mV)

V
B2

(mV)

-790-1090
-720

-420

I (nA)

Supplementary Figure 7. Optimal policies. For a current map Upper, we plot the optimal policies learned at Center early
stage and Lower later stage of the training process. The arrows indicates, at the given location, the optimal direction to
move. Two arrows represent two probable actions which both with high chances of being optimal. At the early stage of the
training, the agent’s policy has more uncertainty regarding which action to select. While at the later stage, after being trained,
it consistently makes the optimal decision.



6

Supplementary Table 6. Summary of the offline performance
of the DRL and Random decision agents online in the two
parameter regions. The performance metrics used are the
number of blocks explored, N , before identifying a pair of bias
triangles (the lower the N , the better the performance). For
offline experiments, lab times are not a performance metric to
be considered.

DRL agent Random agent

Region I N̄ 6 22
10% percentile N 1 2
90% percentile N 64 46

Region II N̄ 17 30
10% percentile N 2 3
90% percentile N 31 101

Supplementary Table 7. Summary of the Wilcoxon signed
rank test analysis on the offline performance of the DRL and
Random decision agents in the two parameter regions. The
performance metrics used are the number of blocks measured,
N . For offline experiments, lab times are not a performance
metric to be considered.

Wilcoxon signed rank p-value

Region I N <0.001
Region II N <0.001

E. SUPPLEMENTARY NOTE: The Nelder-Mead
numerical optimisation method

We construct a fitness function by taking the L2-norm
of a probability vector defining a difference metric be-
tween the current state, i.e. a given transport regime, and
the target state or transport regime. In slight variance
from the implementation in [6], we have defined the prob-

ability vector of the current state as (p(s), 1 − p(s))
T

and
the target vector defined as (1, 0)T . s is a coordinate in
gate voltage space and this coordinate’s fitness value is
calculated, as above, by evaluating the CNN prediction
p(s) of the probability that a window (32 mV × 32 mV)
defined around s contains bias triangles. Thus, in sin-
gle and double dot transport regimes, the value of p(s)
should be higher than in the pinch-off and open regimes.
The value of the L2-norm should have minima at the
locations of bias triangles. The Nelder-Mead numerical
optimisation method, with two gate voltages as free pa-
rameters, then automated the location of these minima.
This method converges on local minima, in n dimensions,
by evaluating a set of n+ 1 test coordinates within the
optimisation landscape, called a simplex. We defined the
initial simplex similarly to [6], as the fitness value of the
starting (s) and two additional coordinates obtained by
reducing the voltage on each of the barrier gate voltages
one at a time by 75 mV.

SUPPLEMENTARY REFERENCES

[1] Brockman, G. et al. OpenAI Gym. Preprint at http:

//arxiv.org/abs/1606.01540 (2016).
[2] Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature

521, 436–444 (2015).
[3] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet

classification with deep convolutional neural networks.
NeurIPS 25 ,1097-1105, (2012)

[4] Kingma, D. P. & Ba, J. L. Adam: A method for stochastic
optimization. Preprint at https://arxiv.org/abs/1412.

6980 (2015).
[5] Wilcoxon, F. Individual Comparisons by Ranking Methods.

Biometrics Bulletin 1, 80 (1945).
[6] Zwolak, J. P., Kalantre, S. S., Wu, X., Ragole, S. & Taylor,

J. M. QFlow lite Dataset: A Machine-Learning approach
to the charge states in quantum dot experiments. PLoS
ONE 13, 10 (2018).

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

	Supplementary Information
	SUPPLEMENTARY NOTE: Quantum dot environment
	State
	Action
	Reward

	SUPPLEMENTARY NOTE: Random Pixel Measurement and Pre-classifier
	SUPPLEMENTARY NOTE: CNN Binary Classifier
	Network Architecture
	Confusion Matrix
	Positive Examples

	SUPPLEMENTARY NOTE: DRL Decision Agent
	Network Architecture
	Training
	Performance
	Policy

	SUPPLEMENTARY NOTE: The Nelder-Mead numerical optimisation method

	Supplementary references

