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Low-symmetry nanowire cross-sections for enhanced Dresselhaus spin-orbit interaction
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We study theoretically the spin-orbit interaction of low-energy electrons in semiconducting nanowires with
a zinc-blende lattice. The effective Dresselhaus term is derived for various growth directions, including 〈112̄〉-
oriented nanowires. While a specific configuration exists where the Dresselhaus spin-orbit coupling is suppressed
even at confinement potentials of low symmetry, many configurations allow for a strong Dresselhaus coupling.
In particular, we discuss qualitative and quantitative results for nanowire cross-sections modeled after sectors of
rings or circles. The parameter dependence is analyzed in detail, enabling predictions for a large variety of setups.
For example, we gain insight into the spin-orbit coupling in recently fabricated GaAs-InAs nanomembrane-
nanowire structures. By combining the effective Dresselhaus and Rashba terms, we find that such structures
are promising platforms for applications where an electrically controllable spin-orbit interaction is needed. If the
nanowire cross-section is scaled down and InAs replaced by InSb, remarkably high Dresselhaus-based spin-orbit
energies of the order of millielectronvolt are expected. A Rashba term that is similar to the effective Dresselhaus
term can be induced via electric gates, providing means to switch the spin-orbit interaction on and off. By
varying the central angle of the circular sector, we find, among other things, that particularly strong Dresselhaus
couplings are possible, for example, when nanowire cross-sections resemble half-disks.
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I. INTRODUCTION

Semiconducting nanowires (NWs) are currently among the
most promising building blocks for a large-scale, solid-state
quantum computer. In particular, they may allow not only
for conventional spin [1–5] and charge [6] qubits but also
for topological quantum computing [7–11]. The proposed
schemes usually rely on spin-orbit interaction (SOI), which
is a crucial mechanism in modern fields of condensed matter
physics [12].

For an electron with spin s and momentum h̄k, the SOI can
be considered as a coupling term proportional to bSO(k) · s,
where bSO(k) is an effective magnetic field that depends on
the momentum [13]. Suitable setup geometries in experiments
are often determined by the orientation of bSO(k). For ex-
ample, electric dipole spin resonance is efficient when the
externally applied magnetic field B is perpendicular to the ef-
fective field caused by SOI [14–16]. Furthermore, the special
geometry B ⊥ bSO(k) is assumed in proposals for realizing
Majorana fermions in NWs with proximity-induced supercon-
ductivity [17,18]. Profound knowledge of bSO(k) is therefore
essential. A prominent contribution to the SOI of electrons
is the Rashba spin-orbit interaction (RSOI) [19–22], which
results from structure inversion asymmetry and can be con-
trolled to a great extent by applying electric fields [23–26].
The Dresselhaus spin-orbit interaction (DSOI) [22,27,28],
which arises from an inversion asymmetry of the underly-
ing crystal structure, is an equally important contribution.
The effective DSOI term depends strongly on details of the
electron confinement and, moreover, on the orientation of the

crystallographic axes [22,27–36]. This holds true not only for
two-dimensional (2D) systems, like quantum wells and lateral
quantum dots, but also for one-dimensional (1D) systems like
NWs. If the growth direction, the quantum confinement, and
the applied electric fields are chosen appropriately, the Rashba
and Dresselhaus contributions can result in a large bSO(k) or
even cancel each other, at least in good approximation [30,31],
which can be used to switch the SOI on and off. Such control
over the SOI allows for, among other things, reduced spin
relaxation [28–31]. The interplay between Dresselhaus and
Rashba coupling also provides means to implement spin field-
effect transistors in 2D and 1D devices that can operate in
a nonballistic (or diffusive) regime [37]. Furthermore, it can
give rise to a persistent spin helix in suitably grown quantum
wells [38–41]. We note that a general condition for a collinear
SOI-induced effective magnetic field in 2D electron systems
is discussed in Ref. [42].

Semiconducting NWs have been fabricated for several
decades [43,44]. Their cross-sections depend on details of
the fabrication process. By now, a remarkable variety of
cross-sections has been reported, ranging from approximately
circular [45,46], hexagonal [47–50], or (with various aspect
ratios) rectangular [51–53] to very special shapes. Germanium
hut wires, for instance, are available since 2012 [54] and
attracted wide interest [55–59]. Their cross-section resembles
an obtuse isosceles triangle. In 2018, Friedl et al. [60] reported
the template-assisted growth of InAs NW networks. A striking
feature of these scalable networks is the demonstrated possi-
bility to create Y-shaped NW junctions. Such junctions are
useful, e.g., for braiding Majorana fermions [8,61]. Since the
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NWs of Ref. [60] form on nanomembranes, their cross-section
resembles a (major) circular sector. Due to this unusual NW
cross-section, detailed information about the associated SOI
is desirable.

In this paper, we theoretically study the effective DSOI and
RSOI of low-energy electrons in NWs with low-symmetry
cross-sections. In particular, we consider cross-sections which
are circular sectors of arbitrary central angle. Furthermore,
we allow for a nonzero inner radius and analyze how the
SOI depends on, e.g., the inner and outer radius, the secto-
rial angle, and the orientation of the main crystallographic
axes. In agreement with previous calculations, which were
performed for 〈100〉, 〈110〉, and 〈111〉-oriented NWs [32,34–
36,62], we find that the growth direction affects the effec-
tive DSOI significantly. These earlier works are extended
here by studying novel cross-sections and, moreover, by in-
cluding 〈112̄〉-oriented NWs. As recently demonstrated by
Friedl et al. [60] (see also Ref. [63]) and Aseev et al. [64],
〈112̄〉-oriented NWs can now be used to fabricate scalable
NW networks whose NW junctions may, for instance, enable
topological quantum information processing. We believe that
our qualitative and quantitative results will allow everyone to
quickly obtain reasonable estimates of the spin-orbit coupling,
the effective magnetic field bSO, the spin-orbit length, and
the spin-orbit energy in various NWs. Given the NWs of
Ref. [60], for example, we expect bSO to be parallel to the
substrate and perpendicular to the NW. If the cross-section
of these NWs can be scaled down and if InAs can be re-
placed by InSb [13,64–68], which has a narrower band gap
and a much larger Dresselhaus coefficient [22,69], we find
that the spin-orbit energy may exceed one millielectronvolt
even without applied electric fields and, remarkably, that the
effective SOI may be tuned continuously and switched on/off
(apart from corrections which are cubic in the momentum)
by applying an electric field perpendicular to the substrate.
We also find, among other things, that a particularly strong
DSOI (even though not its extremum) is achievable with
NWs whose cross-sections resemble half-disks. However, as
we show here, a specific orientation of the crystallographic
axes exists with which the effective DSOI is strongly sup-
pressed for all considered cross-sections and despite their low
symmetry.

The paper is organized as follows. In Sec. II, we discuss
the considered NW cross-sections and explain our calculation
of the eigenstates in the absence of SOI. The effective DSOI
term is obtained qualitatively in Sec. III and quantitatively
in Sec. IV. The effective RSOI term is studied in Sec. V,
followed by a concluding discussion in Sec. VI. The Appendix
provides the details of the theory and, among other things,
shows the effective DSOI terms for commonly used NW
growth directions.

II. NANOWIRE CROSS-SECTIONS AND BASIS STATES

A. Hard-wall confinement

Figure 1 schematically shows a sectorial annular cross-
section (SAC). We assume that the NW is oriented parallel
to the z axis, thus the cross-section lies in the x-y plane.
As sketched in Fig. 1, the four parameters defining the SAC

φE
φS

φtot

x

Ri

Ro

z

FIG. 1. Generic sketch of the sectorial annular cross-section
(SAC) used to approximate the NW cross-section.

are the inner radius Ri � 0, the outer radius Ro > Ri, and
the angles φS and φE (with 0 < φE − φS < 2π ) at which the
cross-section starts and ends, respectively. These four param-
eters also define the confining potential V [Eq. (2)] for the
electrons in our model, because we consider a hard wall at
the boundary of the cross-section. The total sectorial angle is
given by

φtot = φE − φS. (1)

For all results presented in the main text we choose φE =
π − φS , i.e., the NW cross-section is mirror-symmetric with
respect to the y axis. The angles φS and φE are thus related
to φtot through φS = (π − φtot )/2 and φE = (π + φtot )/2, re-
spectively.

A remarkable property of the cross-section in Fig. 1 is the
absence of a rotational symmetry with respect to the NW axis.
Furthermore, it is interesting to consider the limits φtot → 0
and φtot → 2π . For φtot → 0, the area of the cross-section
vanishes. The value φtot = 0 is unphysical (there would be
no NW) and therefore excluded. For φtot → 2π , the bound-
aries at φS and φE in Fig. 1 approach each other. However,
even if we included the extreme case φtot = 2π , rotational
symmetries would remain broken because of the wall at the
angular coordinate φ = φS,E . The absence of a continuous or
discrete rotational symmetry is a major difference to com-
monly studied cross-sections [32,34–36,62,70–79] and leads
to single-electron wave functions that feature a strong angular
dependence even in the ground state.

We would like to point out that the aforementioned confin-
ing potential

V =
{

0, Ri < ρ < Ro and φS < φ < φE ,

∞, otherwise, (2)

with ρ =
√

x2 + y2, x = ρ cos φ, and y = ρ sin φ, is crucial
for our quantitative results. By considering a constant poten-
tial inside the NW and a hard wall at the boundary, we follow
earlier works such as Refs. [70–72,75]. However, as briefly
explained below, it is also important to note that our assump-
tion is not justified for all devices. For example, given V of
Eq. (2), a ground-state electron in our model will have a high
probability density near the center of the NW cross-section.
This holds true if we use V + �ECB instead of V , provided
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TABLE I. Effective DSOI for different orientations of the crys-
tallographic axes. The z axis is parallel to the NW. The axes x and
y are chosen such that 〈kxky〉 = 0. Corrections proportional to k3

z are
listed in Table IV. Details are provided in Appendix B.

x y z HD,eff

[100] [010] [001] bD(〈k2
x 〉 − 〈k2

y 〉)σzkz

[110] [1̄10] [001] 0

[001] [11̄0] [110] − bD
2 (2〈k2

x 〉 + 〈k2
y 〉)σykz

[1̄10] [001] [110] bD
2 (〈k2

x 〉 + 2〈k2
y 〉)σxkz

[1̄11] [11̄2] [110] bD
2
√

3
[〈k2

y 〉(σy + 3
√

2σx ) − 4〈k2
x 〉σy]kz

[112̄] [1̄10] [111] bD√
6
(〈k2

y 〉 − 〈k2
x 〉)σykz

[11̄0] [112̄] [111] bD√
6
(〈k2

y 〉 − 〈k2
x 〉)σxkz

[1̄10] [111] [112̄] bD
2
√

3
(〈k2

x 〉 − 4〈k2
y 〉)σxkz

[111] [11̄0] [112̄] bD
2
√

3
(4〈k2

x 〉 − 〈k2
y 〉)σykz

that throughout the wire, |�ECB| is much smaller than the
ground-state energy of the confined electron. The introduced
function �ECB accounts for position-dependent changes of
the conduction band edge with respect to its average value
inside the NW (defined here as zero). The situation is different
when |�ECB| becomes relatively large. For instance, if the
conduction band edge decreases near the NW boundary in
such a way that the energy of a confined electron in the
ground state is lower than the conduction band edge at the
center, the electron will have a high probability density near
the boundary instead of the center. In such a case, our potential
V should be replaced accordingly. For possible options, see,
e.g., the models of Refs. [35,62,73]. Whether the electrons are
mainly localized near the center of the NW or elsewhere can
depend on details of the device [78,80–82]. We believe that the
simple approximations made here by using V of Eq. (2) will
be sufficiently justified for many novel devices, particularly
when NW cross-sections turn out to be small enough for
the ground-state energy to exceed |�ECB| and large enough
to avoid significant leakage of the ground-state wave func-
tion into the surroundings of the NW. Our choice for V in
Eq. (2), which results in a centered electron distribution, is
also supported by recent calculations. For cross-sections with
areas as small as those in the present work, the authors of
Ref. [78] obtained a centered electron distribution for a wide
range of their model parameters. Some suggestions aimed at
improving the accuracy of our calculations are described in
Sec. VI.

Finally, we wish to emphasize that many qualitative results
in this paper (such as the form of the effective Hamiltonians
in Table I) do not depend on the specific choice for V and
can therefore also be used when Eq. (2) is not applicable
to certain fabricated devices. For example, the formulas in
Appendices B and G or Tables I and IV also hold true for other
confinement potentials and, importantly, various other NW
shapes such as NWs of rectangular cross-section. It is worth
noting, e.g., that for many configurations listed in Table I, a
rectangular cross-section of high aspect ratio can give rise to
strong DSOI effects (large spin splitting).

B. Hamiltonian without spin-orbit interaction

The NWs studied in this work consist of semiconductors
with a zinc-blende lattice. We consider materials such as
GaAs, InAs, or InSb, where the conduction band minimum is
found at the � point. Inside the NWs, the low-energy electrons
are therefore well described by the effective Hamiltonian [22]

H0 = (−ih̄∇ )2

2meff
= − h̄2�

2meff
, (3)

where meff is the effective mass, ∇ is the Nabla operator, and
� = ∇2 is the Laplace operator. We omitted here electric and
magnetic fields and SOI (see Secs. III to V). In cylindrical
coordinates ρ, φ, z, the Hamiltonian of Eq. (3) reads

H0 = − h̄2

2meff

(
∂2
ρ + 1

ρ
∂ρ + 1

ρ2
∂2
φ + ∂2

z

)
. (4)

We note that the function

ψ = [c1Jα (k⊥ρ) + c2Yα (k⊥ρ)](c3eiαφ + c4e−iαφ )eikzz (5)

satisfies

H0ψ = h̄2

2meff

(
k2
⊥ + k2

z

)
ψ, (6)

where k⊥ and kz are wave numbers. The ci in Eq. (5) are
complex coefficients, the Jα and Yα stand for Bessel functions
of the first and second kind, respectively, and the order of
these Bessel functions is denoted by α. Remarkably, given the
properties of the Bessel functions, Eq. (6) is satisfied for an
arbitrary complex number α.

Equation (5) is of the form

ψ (ρ, φ, z) = ψ⊥(ρ, φ)eikzz. (7)

The factor eikzz is consistent with the translational invariance
along the z axis of our model, i.e., with the assumption of
an infinitely long NW. Thus, in order to find the low-energy
eigenstates of the Hamiltonian H0 + V , we need to choose
ψ⊥(ρ, φ) such that the hard-wall boundary conditions given
by V are fulfilled. In the following, we distinguish between
the cases Ri > 0 and Ri = 0.

C. Nonzero inner radius

When Ri > 0, the boundary conditions

ψ⊥(ρ, φS ) = ψ⊥(ρ, φE ) = ψ⊥(Ri, φ) = ψ⊥(Ro, φ) = 0

(8)

must be satisfied for ρ ∈ [Ri, Ro] and φ ∈ [φS, φE ]. A suitable
choice of the coefficients ci yields

ψ⊥ = N⊥[Jα (k⊥ρ) + CYα (k⊥ρ)] sin

(
mπφ

φtot
+ ϕ0,m

)
, (9)

where m ∈ {1, 2, 3, . . .} is a positive integer and

ϕ0,m = −mπφS

φtot
, (10)

α = mπ

φtot
. (11)
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The normalization factor N⊥ ensures that∫ Ro

Ri

dρ ρ

∫ φE

φS

dφ|ψ⊥|2 = 1. (12)

Given the boundary conditions, the wave number k⊥ > 0 and
the coefficient C are chosen such that ψ⊥ vanishes at ρ = Ri

and ρ = Ro. For this, the determinant equation

Jα (k⊥Ri )Yα (k⊥Ro) − Jα (k⊥Ro)Yα (k⊥Ri ) = 0 (13)

must be solved. Having found a suitable k⊥, the respec-
tive value of C can be calculated. We note that in the
limit |C| → ∞, our ansatz [Eq. (9)] corresponds to a func-
tion ψ⊥ whose ρ-dependent part contains solely Yα (k⊥ρ).
However, this special case was not needed for the results
presented in this paper. Furthermore, we note that values
which differ from those described above, such as negative
k⊥ or negative m, do not lead to additional (i.e., independent)
functions ψ⊥ that are normalizable and satisfy the boundary
conditions.

It is worth mentioning that Jα (k⊥ρ) and Yα (k⊥ρ) are real-
valued for real α and k⊥ρ > 0. Consequently, the coefficient
C is always real in our calculations, whereas the normalization
factor N⊥ is only defined up to an arbitrary phase factor.
By choosing N⊥ as real-valued, the function ψ⊥ given in
Eq. (9) is real for φ ∈ [φS, φE ], ρ ∈ [Ri, Ro], k⊥ > 0 and real
α [Eq. (11)]. In our calculations, however, we never chose a
specific phase factor for N⊥, since knowledge of |N⊥|2 was
sufficient for the results presented here.

D. No inner radius

When Ri = 0, ψ⊥ must vanish at ρ = 0. However, since
Yα (k⊥ρ) diverges for ρ → 0, one can set C = 0 in Eq. (9).
Suitable values for k⊥ are therefore simply obtained from
Jα (k⊥Ro) = 0 instead of Eq. (13). We note that Bessel
functions of the first kind have the properties Jα=0(0) = 1
and Jα>0(0) = 0. Consequently, as required by the bound-
ary conditions and the continuity of the wave function,
Jα (k⊥Ri ) = Jα (0) is always zero because of α > 0, see
Eq. (11). Apart from these small and useful changes for
the special case of Ri = 0, the wave functions ψ (ρ, φ, z) =
ψ⊥(ρ, φ)eikzz are calculated exactly as described in Sec. II C
for Ri > 0.

E. Eigenenergies and examples

At kz = 0, the energy of an electron in the NW is

E⊥ = h̄2k2
⊥

2meff
. (14)

Thus, having found the eigenstates of H0 + V at kz = 0, we
can order these eigenstates according to their eigenenergies
E⊥. The energy gaps between them correspond to the gaps
between the subbands of the NW. Since the electron spin is
not affected by the Hamiltonian H0 + V , the spin degeneracy
can be lifted via additional terms only.

Figure 2 shows the orbital ground state (top row) and
first excited state (bottom row) which we calculated with the
Hamiltonian H0 + V for three different NW cross-sections.
More precisely, the probability densities |ψ |2 = |ψ⊥|2 are

(a) E  = 61.1 meV0

(d) E  = 109.7 meV

(b) E  = 47.4 meV0 (c) E  = 165.7 meV

(e) E  = 76.0 meV0 (f) E  = 176.0 meV

0 10.2 0.4 0.6 0.8

FIG. 2. Probability density |ψ |2 = |ψ⊥|2 for the ground state
(top) and the first excited state (bottom) of the Hamiltonian H0 +
V for kz = 0 and three different NW cross-sections. These cross-
sections correspond to examples A [(a) and (d)], B [(b) and (e)],
and C [(c) and (f)] and are described in Sec. II E. The associated
eigenenergies E⊥ were calculated with the effective electron mass
of InAs and yield energy gaps of 48.6, 28.6, and 10.3 meV for
examples A, B, and C, respectively. For each of the three cross-
sections, the ground state was obtained with the number m = 1 and
the first excited state with m = 2. We verified in each case that other
eigenstates, particularly excited ones with m = 1, have a higher E⊥
than the two states depicted here (see Appendix A and Table III for
details). The plots show the position dependence of |ψ |2/|ψmax|2,
where |ψmax| is the maximum value of |ψ |.

plotted for the mentioned states. The three cross-sections in
Fig. 2 have the outer radius Ro = 20 nm and are referred
to as examples A, B, and C. Example A corresponds to a
half-disk and is obtained by setting Ri = 0 and φtot = π . As
it will become apparent in Secs. III and IV, a half-disk is a
particularly promising NW cross-section for realizing strong
DSOI due to its x-y confinement ratio. Example B is defined
by Ri = 0 and φtot = 3π

2 , which is a circular sector of central
angle 270◦. Example C corresponds to a SAC of nonzero inner
radius. Its parameter values are φtot = 3π

2 and Ri = 10 nm.
The eigenenergies and energy gaps provided in Fig. 2 were
calculated with meff = 0.0229m0 for InAs [22], where m0 is
the free electron mass.

The InAs NWs fabricated by Friedl et al. [60] were an
important motivation for the present work. These NWs are
located on top of GaAs nanomembranes, which were grown
on GaAs(111)B substrates. The nanomembranes and NWs are
parallel to crystallographic directions of type 〈112̄〉. Based on
the results in Ref. [60], we now consider a NW along the
[112̄] direction and assume that this NW sits on the (31̄1)
and (1̄31) facets of a nanomembrane. The total sectorial angle
in our model is therefore φtot = 2π − 2 arccos(2

√
2/11) ≈

1.65π , which is equivalent to 297◦. Figure 3 shows the cross-
section of a GaAs-InAs nanomembrane-NW structure grown
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FIG. 3. Annular dark field scanning transmission electron mi-
croscopy (ADF-STEM) image of a nanomembrane-NW structure
grown by Friedl et al. [60]. The ADF-STEM image was provided by
authors of Ref. [60] and shows a cross-section of the structure. The
InAs NW, whose cross-section we colored here in magenta, formed
on top of a GaAs nanomembrane (green). The superimposed image
illustrates the probability density (see also Fig. 2) of a ground-state
electron when the NW cross-section is approximated with a circular
sector of about 20 nm radius and 297◦ central angle.

by Friedl et al.; it is superimposed by the calculated ground
state (analogous to Fig. 2) for the parameter values Ri = 0,
Ro = 20 nm, and φtot = 1.65π .

III. CALCULATION OF EFFECTIVE DRESSELHAUS
SPIN-ORBIT INTERACTION

A. Orientation of crystallographic axes

In order to provide an insight into how the orientation
of the crystallographic axes impacts the magnitude of the
DSOI, we performed detailed calculations for two different
sets of crystallographic basis vectors. In the “noncoincident”
configuration, the z axis (parallel to the NW) corresponds
to the [112̄] direction, while the x and y axes (see Fig. 1)
correspond to [1̄10] and [111], respectively. This orientation
of the crystallographic axes is sketched in Fig. 4 and agrees
with the NWs of Ref. [60]. The second configuration, referred
to as the “coincident” configuration, is obtained when x, y,
and z correspond to the directions [100], [010], and [001],
i.e., when the coordinate axes coincide with the main crys-
tallographic axes. We comment on additional configurations
in Appendix B.

B. Effective Dresselhaus term

For the semiconductors considered in this work, the DSOI
of low-energy electrons in bulk material is [22,28]

HD = bD
({

kx′ , k2
y′ − k2

z′
}
σx′ + c.p.

)
, (15)

where x′, y′, and z′ are the main crystallographic axes given
by the zinc-blende lattice, σν are the Pauli operators for the
electron spin, bD [83] is a material-dependent coefficient,

FIG. 4. Sketch of the “noncoincident” configuration, where x ‖
[1̄10], y ‖ [111], and z ‖ [112̄]. The arrows in this image correspond
to normalized vectors and illustrate the orientations of the associated
axes (see labels). The axes x′, y′, and z′ coincide with the main
crystallographic directions [100], [010], and [001], respectively. The
z axis is parallel to the NW.

{A, B} = (AB + BA)/2, and the abbreviation “c.p.” stands for
cyclic permutations. We keep the notation in this paper simple
by using the notation kν both for momentum operators (might
also be written as k̂ν , for example) and wave numbers (i.e.,
scalars).

In order to study the dominant effects of the DSOI in
systems with quantum confinement, it is often convenient
to derive an effective DSOI term from Eq. (15), as ex-
plained in Ref. [28]. For instance, in the special case of
a quantum well with strong confinement along the z′ axis
one obtains an effective Dresselhaus term HD,eff ∝ (ky′σy′ −
kx′σx′ ) for the low-energy electrons in the quantum well [28].
Effective Dresselhaus terms for NWs can be derived analo-
gously [34–36], see Appendix B for details and Table I for
several examples. In summary, we simplify HD by projecting
it onto the two (two because of the spin degree of freedom)
lowest-energy subbands of the NW. For this, we compute
the average of HD with respect to the orbital ground-state
wave function ψ⊥,g in the x-y plane (NW cross-section). This
average will be referred to by the short-hand notation

〈O〉 = 〈ψ⊥,g| O |ψ⊥,g〉 , (16)

where O stands for an arbitrary operator. The additional sub-
script “g” in ψ⊥,g simply indicates the ground state, i.e., we
use here the function ψ⊥ (see Sec. II) whose associated energy
E⊥ given in Eq. (14) is minimal. We note that an average
with respect to ψ⊥,g neither affects the spin operators nor
the momentum along the NW. In fact, as briefly mentioned
above, 〈O〉 corresponds to a projection of O onto the two
lowest-energy subbands. In the derivation of the effective
DSOI terms, we furthermore use kνkμ = kμkν , meaning that
we omit orbital corrections from magnetic fields, if present.
Finally, the operator kz is replaced by the wavenumber kz (in
agreement with the translational invariance along the z axis)
and terms proportional to k3

z are omitted because these are
small in the considered regime where k2

z � 〈k2
x,y〉. Neverthe-

less, the kz-cubic terms can be found in Appendix B, if needed.
By proceeding as described above, we obtain the effective

DSOI term

H [112̄]
D,eff = bD

2
√

3

(〈
k2

x

〉 − 4
〈
k2

y

〉)
σxkz = βeffσxkz (17)
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for the noncoincident configuration. The details of the deriva-
tion are explained in Appendix B 1. The coefficient βeff

introduced in Eq. (17) is an effective Dresselhaus parameter
(EDP). It solely depends on the NW cross-section and the
material-dependent coefficient bD. It can be seen that βeff

vanishes for 〈k2
x 〉 = 4〈k2

y 〉, which can be fulfilled with a cross-
sectional confinement that is stronger in the x than in the y
direction. As evident from H [112̄]

D,eff = βeffσxkz, the DSOI gives
rise to an effective magnetic field parallel to the x axis (see
Fig. 1). For the NWs of Ref. [60], this corresponds to an
effective magnetic field which is parallel to the substrate (i.e.,
in-plane) and perpendicular to the NW. The conclusions we
can draw from the form of Eq. (17) apply also to recently
realized 〈112̄〉-oriented NWs on InP(111)B substrates [64],
for example. In stark contrast to Eq. (17) for the noncoincident
configuration, we obtain

H [001]
D,eff = bD

(〈
k2

x

〉 − 〈
k2

y

〉)
σzkz = β̄effσzkz (18)

for the coincident configuration. Here the DSOI leads to an ef-
fective magnetic field parallel to the NW. Moreover, the EDP
β̄eff becomes zero for 〈k2

x 〉 = 〈k2
y 〉, i.e., for x : y confinement

ratios of 1 : 1. This is consistent with previous calculations
for 〈100〉-oriented NWs [32,35,36]. Additional information
about the effective Dresselhaus term in the case of z ‖ [001]
is provided in Appendix B 2.

C. Scaling properties

The EDPs βeff and β̄eff introduced in Eqs. (17) and (18)
have important properties. Given the SAC of Sec. II A (Fig. 1)
with φE = π − φS = (π + φtot )/2, we find

βeff = bD

R2
o

f (φtot, r), (19)

β̄eff = bD

R2
o

f̄ (φtot, r), (20)

where the two functions f and f̄ depend solely on the total
sectorial angle φtot = φE − φS and the ratio r = Ri/Ro of in-
ner to outer radius. As expected, Eqs. (19) and (20) imply
that the EDPs are inversely proportional to the area R2

o(1 −
r2)φtot/2 of the SAC when φtot and r are kept constant. The
equations analogously imply that βeff ∝ d−2 and β̄eff ∝ d−2

for any fixed φtot and r, where

d = Ro − Ri = Ro(1 − r) (21)

is the radial thickness of the SAC. The material dependence
of the EDPs results from the proportionality to bD. Due to the
hard-wall confinement in our model, the EDPs are indepen-
dent of the effective mass meff . We note that

〈
k2

x

〉 = 4 f̄ − 2
√

3 f

3R2
o

= 4β̄eff − 2
√

3βeff

3bD
, (22)

〈
k2

y

〉 = f̄ − 2
√

3 f

3R2
o

= β̄eff − 2
√

3βeff

3bD
. (23)

Furthermore, we would like to emphasize that f and f̄ are
dimensionless, which is a convenient property. For details, see
Appendix E.

D. Spin-orbit length and spin-orbit energy

Our model and approximations lead to an effective 1D
Hamiltonian of type

H1D = h̄2k2
z

2meff
+ βkzσ j (24)

for the two energetically lowest subbands in the NW. The term
βkzσ j , where β is an EDP and σ j a Pauli operator, corre-
sponds to the effective DSOI, see Sec. III B and Appendix B.
It is well known that the spectrum of the Hamiltonian H1D

in Eq. (24) is composed of two parabolas in the energy-kz

diagram [20,21,74,79]. These parabolas cross at kz = 0 and
their minima occur at kz = ±λ−1

SO. The spin-orbit length

λSO = h̄2

meff |β| (25)

and the spin-orbit energy

ESO = h̄2

2meffλ
2
SO

= meffβ
2

2h̄2 (26)

are two quantities that are of great interest regarding the re-
alization of, among other things, Majorana fermions [7,8,11],
spin filters [84], or quantum logic gates via electric dipole spin
resonance [4,14–16]. In the next section, we will therefore
discuss not only the EDPs but also the spin-orbit lengths and
energies obtained with our calculations.

IV. NUMERICAL RESULTS

A. Methods and remarks

The numerical results presented in Secs. IV B and IV C
were obtained as follows. For given values of the parameters
Ri, Ro, and φtot, the function ψ⊥ that belongs to the ground
state of the Hamiltonian H0 + V was calculated as explained
in Sec. II. In order to indicate the ground state, this function
is also denoted by ψ⊥,g (Sec. III B). Next, we calculated the
expectation values 〈k2

x 〉 = 〈ψ⊥,g| k2
x |ψ⊥,g〉, 〈k2

y 〉, and 〈kxky〉
via numerical integration, using the abovementioned function
ψ⊥,g and the operators

kx = −i∂x = −i cos φ ∂ρ + i
sin φ

ρ
∂φ, (27)

ky = −i∂y = −i sin φ ∂ρ − i
cos φ

ρ
∂φ (28)

in position-space representation. As a consistency check, we
performed the numerical integration both in Cartesian and
cylindrical coordinates. Apart from tiny differences due to
the finite numerical precision, the results from both methods
were always identical. Moreover, 〈kxky〉 always vanished. We
note that 〈kxky〉 = 0 is indeed expected because of the mirror
symmetry of the cross-section with respect to the y axis. For
a discussion on how strongly 〈kxky〉 usually depends on the
choice of the axes x and y, we refer to Appendix C. Finally,
having evaluated 〈k2

x 〉 and 〈k2
y 〉 for the given parameter values,

we calculated

f (φtot, r) = R2
o

2
√

3

(〈
k2

x

〉 − 4
〈
k2

y

〉)
, (29)

195444-6



LOW-SYMMETRY NANOWIRE CROSS-SECTIONS FOR … PHYSICAL REVIEW B 103, 195444 (2021)

f̄ (φtot, r) = R2
o

(〈
k2

x

〉 − 〈
k2

y

〉)
. (30)

In agreement with Appendix E, we obtained the same val-
ues (apart from tiny differences related to the numerical
precision) for f or f̄ , respectively, when Ri and Ro were
changed such that their ratio r = Ri/Ro remained constant.
The results for f and f̄ , which are dimensionless and material-
independent, also enabled us to calculate the EDPs βeff and
β̄eff [Eqs. (19) and (20)] and, furthermore, the associated
spin-orbit lengths [Eq. (25)] and energies [Eq. (26)]. For
these material-dependent quantities, we considered InAs and
chose meff = 0.0229m0 and bD = 27.18 nm3meV [22,83]. In
Appendix F, we provide conversion factors with which our
results for InAs can easily be adapted to other semiconductors
such as InSb.

The expectation values of the operators kx, ky, k3
x , k3

y ,
kxk2

y , and k2
x ky must vanish because the electrons are trapped

inside the NW. In the derivation of the effective DSOI
terms (Appendix B and Sec. III B), we thus set 〈kx,y〉 =
〈k3

x,y〉 = 〈k2
x,yky,x〉 = 0. By evaluating these expectation val-

ues numerically as a consistency check, we became aware
of artifacts [85] in the results for 〈k3

y 〉 and 〈k2
x ky〉. As ex-

plained in Appendix D, these artifacts are not caused by the
numerical integration; they arise from the hard-wall boundary
conditions, which generally allow for wave functions with
discontinuous derivatives at the interfaces, and the fact that the
considered NW cross-sections have no mirror symmetry with
respect to an axis parallel to the x axis. Fortunately, the numer-
ically calculated 〈k2

x 〉 and 〈k2
y 〉 are free of such artifacts, which

justifies our assumption of hard-wall confinement in order to
gain insight into the effective DSOI. Furthermore, we note
that the evaluated expectation values 〈kx,y〉, 〈k3

x 〉, and 〈kxk2
y 〉

always vanished, as expected. For detailed information, see
Appendix D. All aforementioned artifacts can be eliminated
with a smoothened confinement potential [85]. In addition,
we would like to point out that the operator k3

y is completely
absent in HD [Eq. (15)] for both the noncoincident [Eq. (B9)]
and the coincident configuration.

B. No inner radius

If Ri = r = 0, the cross-section of the NW is a circular
sector with central angle φtot. The functions f (φtot, 0) and
f̄ (φtot, 0) for this special case are plotted in Fig. 5. In combi-
nation with the equations provided in Sec. III and Appendix B,
the data in Fig. 5 allows to quickly obtain an estimate of the ef-
fective DSOI for any radius Ro, any central angle φtot, and any
of the discussed growth directions (see, e.g., Table I). Consid-
ering a fixed radius Ro, an extremum of the EDP βeff for the
noncoincident configuration is found at φtot ≈ 36◦, i.e., when
the NW cross-section is one tenth of a disk. The extremum of
β̄eff for the coincident configuration occurs at φtot ≈ 141◦, i.e.,
when the cross-section is approximately two fifths of a disk.
A comparison between these two configurations for a given
cross-section yields |βeff | > |β̄eff | if φtot � 40◦.

Some examples with Ri = r = 0 are listed in Table II,
where we focus on three different values for φtot. First,
φtot = 1.65π = 297◦ is of particular interest because this an-
gle applies to a NW that forms on the (31̄1) and (1̄31)

f � tot , r � 0�

f � tot , r � 0�

0 50 100 150 200 250 300 350
�20

�10

0

10

20

tot

FIG. 5. Angular dependence of the functions f (φtot, r) (solid
line) and f̄ (φtot, r) (dashed line) at r = 0, in which case the NW
cross-section is a circular sector of central angle φtot . For small
angles φtot � 13◦, it turns out that 〈k2

x 〉 > 4〈k2
y 〉 at r = 0, and so

f (φtot, 0) and f̄ (φtot, 0) are both positive. In contrast, both f (φtot, 0)
and f̄ (φtot, 0) are negative at large angles, because with r = 0 one
finds 〈k2

x 〉 < 〈k2
y 〉 for φtot � 63◦. As expected, f and f̄ diverge when

φtot vanishes, since 〈k2
x 〉 → ∞ and 〈k2

y 〉/〈k2
x 〉 → 0 for φtot → 0. The

minima of f (φtot, 0) and f̄ (φtot, 0) occur at φtot ≈ 36◦ and φtot ≈
141◦, respectively.

facets of a nanomembrane [60], see Sec. II E and Fig. 3. The
second value φtot = 3π

2 = 270◦ may be used as a relatively
simple approximation for various structures. For instance,
a [112̄]-oriented NW might alternatively be grown on a
nanomembrane with (51̄2) and (1̄52) facets, leading to a
central angle of φtot = 1.564π = 281.5◦, or a [001]-oriented
NW might in principle be grown on (1̄10) and (110) facets,
in which case a central angle of exactly 270◦ would be ex-
pected. In fact, it turns out that our EDPs for φtot = 297◦ and
φtot = 270◦ differ by less than a factor of two, so the latter
angle can also serve as a reasonable approximation for the
NWs of Ref. [60]. The third value φtot = π = 180◦ leads to a
cross-section that corresponds to a half-disk. As evident from
Table II, a relatively strong DSOI is obtained for this NW
shape. We would like to emphasize that other cross-sections
exist where the expected DSOI exceeds that for a half-disk
(see, e.g., Fig. 5). However, the half-disk is an especially
interesting case because of its simplicity and because the angle
φtot = 180◦ may be realized experimentally via a single planar
interface.

C. Nonzero inner radius

For the three special values of φtot discussed in Sec. IV B,
the calculated data in Figs. 6 and 7 show the dependence of
f (φtot, r) and f̄ (φtot, r), respectively, on the ratio r. Examples
for associated spin-orbit lengths and energies in the case of
InAs NWs are listed in Table II. We note that the continuum
model (envelope function approximation, k · p theory [22])
employed in Sec. II will eventually lose validity if the area
of the NW cross-section is reduced until it is based on a
few atoms only. We therefore set d = Ro − Ri � 5 nm in all
examples presented here.
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TABLE II. Numerical results for f ( f̄ ), the EDP βeff (β̄eff ), and the associated spin-orbit length λSO (λ̄SO) and energy ESO (ĒSO) obtained
in the noncoincident (coincident) configuration. The listed examples correspond to NW cross-sections with a radial thickness d of 5, 10, or
20 nm. We find that f , f̄ , βeff , and β̄eff are negative for all examples in this table. It is important to note that the EDPs, the spin-orbit lengths,
and the spin-orbit energies are material-dependent. The results listed here were calculated for InAs as explained in the text. They can easily be
adapted to other semiconductors via the conversion factors in Appendix F.

Ri Ro d |βeff | λSO ESO |β̄eff | λ̄SO ĒSO

φtot r (nm) (nm) (nm) | f | | f̄ | (meV nm) (μm) (μeV) (meV nm) (μm) (μeV)

180◦ 0 0 5 5 11.7 7.4 12.7 0.26 24.2 8.0 0.42 9.61
270◦ 0 0 5 5 7.3 3.3 7.9 0.42 9.48 3.5 0.93 1.90
297◦ 0 0 5 5 6.2 2.0 6.7 0.49 6.77 2.2 1.49 0.74
270◦ 0.17 1 6 5 8.8 3.2 6.6 0.50 6.67 2.4 1.36 0.90
270◦ 0.5 5 10 5 22.4 7.1 6.1 0.54 5.59 1.9 1.71 0.56
270◦ 0.75 15 20 5 88.0 27.1 6.0 0.55 5.40 1.8 1.80 0.51
180◦ 0 0 10 10 11.7 7.4 3.2 1.05 1.51 2.0 1.67 0.60
270◦ 0 0 10 10 7.3 3.3 2.0 1.68 0.59 0.89 3.75 0.12
297◦ 0 0 10 10 6.2 2.0 1.7 1.98 0.42 0.55 6.05 0.05
270◦ 0.091 1 11 10 7.8 3.1 1.8 1.90 0.46 0.69 4.81 0.07
270◦ 0.5 10 20 10 22.4 7.1 1.5 2.19 0.35 0.48 6.88 0.04
180◦ 0 0 20 20 11.7 7.4 0.79 4.20 0.09 0.50 6.67 0.04
270◦ 0 0 20 20 7.3 3.3 0.50 6.71 0.04 0.22 >10 0.01
297◦ 0 0 20 20 6.2 2.0 0.42 7.92 0.03 0.14 >10 <0.01

D. Comparisons and outlook

It is evident from the numbers in Table II that small NW
cross-sections are needed in order to obtain a strong SOI
which originates from the DSOI in InAs. This holds true for
both the noncoincident and the coincident configuration. The
main reason for this result is the fact that the Dresselhaus
coefficient bD of InAs is not extraordinarily large, even though
InAs has a rather narrow energy gap between the lowest
conduction band and the highest valence band. For instance,

f�180 , r�
f�270 , r�
f�297 , r�

0.0 0.2 0.4 0.6 0.8

�80

�60

�40

�20

0

r �Ri�Ro

FIG. 6. Dependence of the function f (φtot, r) on the ratio r of
inner to outer radius for the values 180◦ (blue), 270◦ (red), and 297◦

(black) of the angle φtot . The results for r → 0 are consistent with
the solid line in Fig. 5. It turns out that f and f̄ (Fig. 7) diverge
when r → 1, in agreement with the expected behavior of 〈k2

x 〉 and
〈k2

y 〉 when d/Ro → 0.

the values of bD obtained perturbatively from an extended
Kane model for the semiconductors GaAs, AlAs, InAs, CdTe,
and ZnSe are all in the range 10–50 nm3 meV [22,83]. As
a consequence, it may not be surprising that the authors of
Ref. [60] concluded from their magnetotransport measure-
ments that the SOI was very weak, with an estimated lower
bound of 280 nm for the spin-orbit length. We note that this
lower bound is consistent with the long λSO (micrometers)
listed in our Table II for NWs like the one in Fig. 3. However,
it is expected that several subbands were occupied during such

f �180 , r�

f �270 , r�

f �297 , r�

0.0 0.2 0.4 0.6 0.8

�80

�60

�40

�20

0

r �Ri�Ro

FIG. 7. Dependence of f̄ (φtot, r) on r for the values 180◦ (blue),
270◦ (red), and 297◦ (black) of φtot . The results shown here corre-
spond to the coincident configuration and may be directly compared
with the related results for f (φtot, r) in Fig. 6, corresponding to
the noncoincident configuration. For r → 0, the values of f̄ (φtot, r)
plotted here are consistent with the dashed line in Fig. 5.
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experiments because of high electron densities [60,63]. In
contrast, our results were obtained by considering individual
electrons in the lowest subbands. Consequently, we believe
that our theory will be most useful for new devices, where
the charge carrier densities in the NWs may be reduced, e.g.,
via electric gates. For further information, see Appendix J. In
addition, our theory may prove helpful when working with
NW-based quantum dots occupied by single (or a few) elec-
trons. Such quantum dots are particularly promising platforms
for quantum computation [1].

The authors of Ref. [60] also mentioned that a stronger
SOI may be achieved in future devices by using InSb NWs.
In Appendix F, we therefore provide conversion factors.
Compared with the abovementioned semiconductors, InSb
has a remarkably large Dresselhaus coefficient bD of about
760 nm3 meV [22,83]. By analyzing our results (e.g., Table II)
also for InSb, we conclude that an unusually strong DSOI,
with associated spin-orbit energies above 1 meV, should be
possible with InSb NWs for both the noncoincident and the
coincident configuration. As explained in Appendix H, how-
ever, we also expect HD [Eq. (15)] to cause large intersubband
couplings in thin NWs, particularly for InSb. Thus, future
calculations that involve many subbands (see also Sec. VI)
may lead to significant corrections, which might be crucial
for thin InSb NWs.

It is important to note that we have thus far focused on the
Dresselhaus contribution to the SOI. The Rashba term will be
considered next.

V. EFFECTIVE RASHBA SPIN-ORBIT INTERACTION

The RSOI of electrons is described by a term of type

HR = aR(k × E ) · σ = aR(σ × k) · E, (31)

where aR is a Rashba coefficient [86], σ is the vector of Pauli
matrices, and E is an effective electric field that accounts
for the structure inversion asymmetry of the confining poten-
tial [20–22]. In stark contrast to DSOI, the RSOI Hamiltonian
does not depend on the orientation of the crystallographic
axes. Projecting HR onto the two lowest subbands of the NW
yields the effective RSOI term

HR,eff = 〈HR〉 = aR(Exσy − Eyσx )kz (32)

for the low-energy electrons. In combination with the effective
DSOI terms derived in Sec. III B, we thus obtain

H [112̄]
D,eff + HR,eff = [(βeff − aREy)σx + aRExσy]kz (33)

for the noncoincident configuration and

H [001]
D,eff + HR,eff = (−aREyσx + aRExσy + β̄effσz )kz (34)

for the coincident configuration. The components Ex and Ey of
the effective electric field E inside the NW can be controlled
via electric gates in the experimental setup.

Equation (33) describes the SOI of low-energy electrons
in the recently grown NWs of Ref. [60]. As briefly explained
below, the predicted SOI in these NWs may be very useful
for applications. If the cross-section (i.e., the associated con-
fining potential) of the NW is mirror-symmetric with respect

to the y axis, as sketched in Fig. 1, and if the same applies
to the externally induced potential (modifiable via gate volt-
ages), one finds Ex = 0. Consequently, Eq. (33) simplifies to
(βeff − aREy)σxkz, which corresponds to an electrically tun-
able SOI proportional to σx. Moreover, since the Dresselhaus
and Rashba contributions have the same form, the effective
SOI can in principle be set to zero even if βeff is nonzero
(DSOI and RSOI cancel each other). By tuning Ex and/or
Ey via electric gates, the SOI may then be changed from
zero to a desired form considering Eq. (33). In the coincident
configuration, for example, the effective SOI cannot be set
to zero unless Ex, Ey, and β̄eff all vanish, as evident from
Eq. (34).

Our results for βeff and β̄eff in Sec. IV reveal that EDPs
of about 10 meV nm = 10−11 eVm are possible with InAs
and GaAs NWs. Using the value aInAs

R = 1.2 nm2e [22,86]
for InAs, we note that aInAs

R |E| = 10−11 eVm is satisfied
with |E| = 8.5V/μm, i.e., with a moderate electric field.
In stark contrast to the Dresselhaus coefficients bGaAs

D and
bInAs

D , which are almost equivalent (see Appendix F and
Ref. [87]), the Rashba coefficients aGaAs

R = 0.052 nm2e and
aInAs

R differ by a factor of about twenty [22]. Consequently,
a stronger electric field |E| = 0.19 V/nm is needed in or-
der to achieve aGaAs

R |E| = 10−11 eVm for GaAs. These fields
below 1 V/nm are feasible with electric gates located near
the NWs.

In the case of InSb NWs, we can make use of Eq. (F4),
so our results in Sec. IV suggest that EDPs of about 3 ×
10−10 eVm are possible. This example corresponds to a re-
markably high spin-orbit energy of about 8 meV due to
DSOI, despite the small effective mass mInSb

eff = 0.0139m0.
By setting aInSb

R = 5.2 nm2e [22,86], one finds aInSb
R |E| = 3 ×

10−10 eVm at |E| = 0.06 V/nm, which is feasible. For com-
parison, aInSb

R |E| = 10−11 eVm is satisfied at |E| = 1.9V/μm
already. Since the EDPs decrease rapidly when the size of the
NW cross-section is increased, as explained in Sec. III C and
Appendix E, it turns out that even for InSb (large bD) NWs
of medium-sized cross-section, electric fields of the order
of V/μm are usually sufficient to induce a RSOI which is
stronger than the effective DSOI term. Our results adapted
to medium-sized cross-sections are thus consistent with the
calculations by Campos et al. [36], who studied the RSOI
and DSOI in zinc-blende InSb NWs which have hexagonal
cross-sections and widths of several tens of nanometers. The
authors pointed out that the RSOI clearly dominates in these
NWs when an electric field of 4 V/μm is applied. For small
cross-sections, such as those with d � 10 nm in Table II, we
find that the DSOI can be the main contribution to the effective
SOI even in the presence of electric fields of the order of
V/μm.

As described in Appendix G, we used an extended model
and calculated corrections to Eq. (33) which arise from ex-
cited subbands in the NW. Remarkably, even with these
corrections the effective SOI can be switched on and off
electrically. In Appendix I, we discuss electric-field-induced
energy shifts that occur in InAs, GaAs, and InSb NWs
when the effective SOI is switched off. For all InAs NWs
studied in this paper, these energy shifts are well below
the semiconductor band gap. However, in the case of very
thin GaAs or InSb NWs, our calculations suggest that the
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valence band might provide strong contributions. For details,
see Appendix I.

VI. DISCUSSION

One of the main aims of our work for this paper was to gain
information about the SOI of electrons in the novel NWs fab-
ricated by Friedl et al. [60]. By allowing for a nonzero inner
radius, analyzing the parameter dependence, and considering
different growth directions, the calculations were extended
such that our results can be readily adapted to a large variety of
NWs. For example, the introduced functions f and f̄ are use-
ful because they are dimensionless and material-independent.
Therefore, given our results, it is straightforward to recalculate
quantities such as the spin-orbit length and energy, if needed,
for any desired material parameters, even if these differ from
the material parameters of Ref. [22] considered here. For
instance, values for the Dresselhaus coefficient bD [83] may
be chosen based on related experimental data [26,87–97].

For the 〈112̄〉-oriented InAs NWs of Ref. [60] (an example
is shown in Fig. 3), we find that the effective DSOI is weak
when the radius is about 20 nm, as evident from the last row
in Table II. However, we also find that the nanomembrane-
NW structures of Ref. [60] allow for a strong DSOI with an
associated spin-orbit energy of the order of meV, provided
that the NWs can be made of InSb and their cross-sections
can be scaled down. Moreover, by applying an electric field in
the out-of-plane direction (perpendicular to the substrate), the
induced RSOI enables a cancellation of Rashba and Dressel-
haus contributions, so the resulting SOI term can be switched
on and off. Our estimates show that the electric field needed
for this switching would be well below V/nm, even for the
strong DSOI mentioned above, and may therefore be applied
via electric gates. As explained in Sec. V, such a cancellation
of RSOI and DSOI would not be possible for the coincident
configuration. The NW networks of Refs. [60,63,64], to which
the noncoincident configuration in our model applies, are
therefore promising platforms for applications which require
an electrically controllable SOI.

In addition to the RSOI discussed in Sec. V, an elec-
tric field E applied perpendicular to a NW leads to a term
e(Exx + Eyy) in the Hamiltonian, where e is the elementary
positive charge. As a consequence, the electron is pushed
towards the boundary of the NW cross-section, affecting also
the expectation values of operators such as k2

x and k2
y . For

weak and moderate electric fields, the ground-state wave func-
tions obtained in the absence and presence of E usually do
not differ significantly [98], thus one may assume for sim-
plicity that 〈k2

x 〉 and 〈k2
y 〉 remain unchanged when electric

fields are applied. However, more accurate results will be
obtained when the effects of E on 〈k2

x 〉 and 〈k2
y 〉 are fully

taken into account. These corrections generally depend not
only on E but also on the effective electron mass and the
details of the NW cross-section. In some cases, accounting
for the electric-field-induced changes of 〈k2

x 〉 and 〈k2
y 〉 may

even be crucial, particularly when E is relatively strong. Let
us consider, for example, a cylindrical NW and the coincident
configuration, i.e., z ‖ [001] for the NW axis, x ‖ [100], and
y ‖ [010]. The cylindrical symmetry of the confining poten-

tial leads to 〈kxky〉 = 0 and 〈k2
x 〉 = 〈k2

y 〉, and so the effective
DSOI term HD,eff = bD(〈k2

x 〉 − 〈k2
y 〉)σzkz (see, e.g., Table I)

vanishes. By applying an electric field in the x or y direction,
〈k2

x 〉 > 〈k2
y 〉 or 〈k2

y 〉 > 〈k2
x 〉 can be achieved, resulting in a

nonzero HD,eff . This means that the Dresselhaus contribution
to the effective SOI can be turned on and off via E. If the
electric field is so strong that the electrons are pushed far into
one half of the circular cross-section, 〈k2

x 〉 and 〈k2
y 〉 may be

estimated via one of the low-symmetry cross-sections (e.g., a
half-disk) considered in this paper. To some extent, our results
are therefore also applicable to NWs where the symmetry is
broken by strong electric fields. However, a detailed analysis
of how exactly the ground states and associated expectation
values 〈k2

x 〉 and 〈k2
y 〉 depend on E and the NW properties

remains an open task. More suggestions aimed at improving
the accuracy are described below.

Future calculations may address mechanisms and correc-
tions which were beyond the scope of the present paper.
For example, we used here the parameter values of bulk
semiconductors [22]. In the presence of strong confinement,
adapted values may be chosen in order to obtain more precise
results. In general, corrections which originate from other
NW subbands and other bands of the semiconductor may
be included [22,82,99] (see also Appendices G, H, and I).
If available, detailed information about the given system
may be taken into account, such as the strain distribution,
changes in the material composition, and the details of the
confining potential (see also Sec. II A). Nonuniform strain,
for instance, causes position-dependent shifts of the band
edges of the semiconductor [22,100–102], leading not only
to rescaled band structure parameters but also to a modified
confinement potential for the electrons in the NW. Interest-
ing SOI effects are expected, e.g., for NWs whose electrons
are mainly near the surface [34,35,62,73] instead of the cen-
ter. Electron-electron interactions can also play an important
role [82,103–105]. Sophisticated numerical methods and tools
are probably necessary in order to study all these correc-
tions. The transport behavior in the presence of disorder will
depend on the system and the regime of operation [106].
Furthermore, it is important to note that we focused here
on SOI which originates from bulk and structure inversion
asymmetry [22]. Additional contributions to the SOI can arise
from interface inversion asymmetry [22,107–118]. It would
therefore be very interesting to analyze these contributions for
various NWs and interfaces and combine them with our re-
sults. For purely wurtzite GaAs/AlGaAs core/shell NWs, for
instance, interface-induced SOI was found to be of high rel-
evance [117]. Recent calculations for InAs/InAsP core/shell
NWs suggest that interface-related contributions to the SOI
will also be important for many zinc-blende NW heterostruc-
tures [118].

A special result of our work is evident from Table I. Pro-
vided that the axes x and y are defined such that 〈kxky〉 = 0 is
satisfied, it turns out that HD,eff = 0 for x ‖ [110], y ‖ [1̄10],
z ‖ [001]. Furthermore, kz-cubic terms are absent in HD for
this configuration (see the appended Table IV). We wish to
emphasize that these results are independent of 〈k2

x 〉 and 〈k2
y 〉.

The DSOI is therefore strongly suppressed even if electric
fields are present, provided that they are applied in such a way
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that 〈kxky〉 = 0 is conserved. The relation 〈kxky〉 = 0 holds
true, e.g., if the NW cross-section (more precisely, the associ-
ated confining potential) is mirror-symmetric with respect to
the x or y axis and E is applied parallel to this axis.

In Sec. I, we introduced the effective magnetic field bSO,
which is induced by SOI. Our results provide some insights
into not only the strength but also the orientation of bSO

for various setups. They also suggest that there are setups
where the orientation of bSO is to a large extent insensitive
to the strength of an applied electric field. As an example,
we briefly discuss this by considering a NW whose con-
finement potential is mirror-symmetric with respect to the
y axis, which implies 〈kxky〉 = 0. An electric field E ‖ y
leads to the effective Rashba term HR,eff ∝ |E|σx. For the
coincident configuration, i.e., x ‖ [100], y ‖ [010], z ‖ [001],
one finds HD,eff ∝ (〈k2

x 〉 − 〈k2
y 〉)σz, and so the combination

HR,eff + HD,eff leads to a magnetic field bSO in the x-z plane.
The orientation of bSO depends on the relative strengths of the
Rashba and Dresselhaus terms. Given the coincident config-
uration, HD,eff vanishes if 〈k2

x 〉 = 〈k2
y 〉, and so bSO ‖ x would

be expected, e.g., for a circular or square cross-section. How-
ever, we recall that the electric field E can lead to 〈k2

x 〉 �=
〈k2

y 〉 when the aforementioned corrections are included. As a
consequence, even for a square or circular cross-section, the
orientation of bSO might strongly depend on E. In contrast, the
configurations listed in the second, fourth, seventh, and eighth
rows of Table I have the properties HD,eff = 0 or HD,eff ∝ σx

for any 〈k2
x 〉 and 〈k2

y 〉, and so one obtains HR,eff + HD,eff ∝
σx corresponding to bSO ‖ x. We would like to mention that
contributions beyond these effective Rashba and Dresselhaus
terms may substantially affect bSO for any configuration. Nev-
ertheless, the discussed example suggests that some setups
might allow for a high degree of certainty in the orientation
of bSO.

In conclusion, there are two promising strategies when one
wants to switch the SOI in a NW on and off by applying an
electric field E which is controllable via electric gates. In the
first case, the setup is chosen such that the E-independent
contributions (see, e.g., the DSOI terms in Secs. III and IV) to
the effective SOI are nonzero and can be canceled out via the
E-induced contributions (see, e.g., the RSOI terms in Sec. V).
In the second case, the choices are made such that without
E, the effective SOI is suppressed. The resulting SOI is then
fully determined by the terms induced by E. We note that in
the first (second) case, a nonzero E is needed to turn the effec-
tive SOI off (on). For both strategies, however, it is essential
to understand how the SOI depends on the specifics of the
experimental setup. Our results in this paper can contribute
to such an understanding, particularly when novel NWs with
low-symmetry cross-sections are used.
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TABLE III. Eigenenergies at kz = 0 (subband edges) and quan-
tum numbers for the six (without spin degree of freedom) lowest
eigenstates of the Hamiltonian H0 + V . The examples A, B, C cor-
respond to the three cross-sections in Fig. 2. Details are provided in
Sec. II E and Appendix A.

Example m nρ E⊥ (meV)

A 1 1 61.1
A 2 1 109.7
A 3 1 169.3
A 1 2 204.7
A 4 1 239.5
A 2 2 294.7
B 1 1 47.4
B 2 1 76.0
B 3 1 109.7
B 4 1 148.3
B 1 2 177.4
B 5 1 191.6
C 1 1 165.7
C 2 1 176.0
C 3 1 193.1
C 4 1 216.9
C 5 1 247.4
C 6 1 284.2

APPENDIX A: ENERGY GAPS BETWEEN SUBBANDS

Considering the Hamiltonian H0 + V (see Sec. II) and
three selected NW cross-sections, the probability density
|ψ |2 = |ψ⊥|2 at kz = 0 is shown in Fig. 2 for the ground
and first excited states. In a similar fashion, we studied var-
ious other cross-sections and also energetically higher states.
Given a SAC as sketched in Fig. 1, one finds that the eigen-
states of H0 + V at kz = 0 can be classified via two positive
integers m and nρ . The former was introduced in Sec. II C
and corresponds to the number of extrema of ψ⊥(ρ, φ) along
the angle φ. Likewise, nρ corresponds to the number of ex-
trema in the radial direction. As expected, we always obtained
m = nρ = 1 for the ground state.

In Table III, we list the six lowest eigenenergies E⊥ and the
associated numbers m and nρ for the three cross-sections con-
sidered in Fig. 2. For details about these cross-sections, i.e.,
examples A, B, and C, we refer to Sec. II E. As evident from
Eq. (14), E⊥ is inversely proportional to the effective electron
mass. Here we use again meff = 0.0229m0 of InAs [22].

Table III confirms that m = 2 and nρ = 1 for the first
excited state in each of the three examples, which is a con-
sequence of the large angles φtot of these cross-sections. We
note that in the case of example C, where the inner radius
Ri is nonzero, even the state with, e.g., m = 10 and nρ = 1
(E⊥ = 492.6 meV) is energetically far below the one with
m = 1 and nρ = 2 (E⊥ = 658.4 meV).

For cross-sections with Ri = 0, we varied the central angle
φtot of the circular sector in small steps and analyzed the
properties of the first excited state. A transition occurs at a
central angle of about 60◦. More precisely, the first excited
state corresponds to m = 2 and nρ = 1 if φtot > 63.74◦ and to
m = 1 and nρ = 2 if φtot < 63.74◦.
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Finally, we would like to emphasize that the Hamiltonian
H0 + V is spin-independent. Consequently, each of the states
discussed here in Appendix A is twofold degenerate because
of the spin degree of freedom.

APPENDIX B: DERIVATION OF THE EFFECTIVE
DRESSELHAUS TERM

In this Appendix, we show the derivation of the effec-
tive Dresselhaus term for low-energy electrons in NWs. The
derivation is analogous to the case of 2D-like systems, which
is explained in detail in Ref. [28]. Results will be provided for
four important growth directions. Related calculations can be
found, for instance, in Refs. [34–36,62].

We start from Eq. (15), see Sec. III B, which is the DSOI
for low-energy electrons in a bulk semiconductor with zinc-
blende structure and conduction-band edge at the � point,
provided that the s-like �c

6 is the lowest-lying conduction
band [22]. Neglecting corrections from magnetic fields, one
can assume that the operators kν for the electron momentum
commute, i.e., kνkμ = kμkν , and so Eq. (15) simplifies to

HD = bD
[
σx′kx′

(
k2

y′ − k2
z′
) + c.p.

]
. (B1)

By projection of HD onto the NW subbands of lowest energy,
we obtain the effective DSOI term

HD,eff = 〈HD〉 = 〈ψ⊥,g| HD |ψ⊥,g〉 , (B2)

where ψ⊥,g is the orbital ground-state wave function in the
x-y plane. As discussed in the following, the result for HD,eff

depends strongly on the growth direction of the NW. We
will refer to the unit vectors along the axes x, y, z as ex,
ey, ez, respectively. The z axis is parallel to the NW. The
unit vectors ex′ , ey′ , ez′ for the axes x′, y′, z′ point in the
main crystallographic directions [100], [010], [001]. We con-
sider right-handed systems, so ex × ey = ez and ex′ × ey′ = ez′

(analogously for cyclic permutations).

1. NW axis along [112̄]

When the NW axis coincides with the [112̄] direction, the
unit vectors are related by

ez = 1√
6

(ex′ + ey′ − 2ez′ ). (B3)

Furthermore, we choose x ‖ [1̄10] and y ‖ [111],

ex = 1√
2

(ey′ − ex′ ), (B4)

ey = 1√
3

(ex′ + ey′ + ez′ ). (B5)

This choice leads to the relations

kx′ = − kx√
2

+ ky√
3

+ kz√
6
, (B6)

ky′ = kx√
2

+ ky√
3

+ kz√
6
, (B7)

kz′ = ky√
3

− 2kz√
6

(B8)

between the operators for the momentum, which can be
verified via the identity exkx + eyky + ezkz = ex′kx′ + ey′ky′ +
ez′kz′ . Equations (B6) to (B8) also apply to the Pauli operators
σν for the spin. With the derived relations for kν and σν , the
Hamiltonian HD of Eq. (B1) is rewritten as

HD = bDσx√
3

[
k2

x ky√
2

+ k2
x kz

2
− 2k2

y kz − kyk2
z√
2

+ k3
z

2

]

+ bDσy√
6

[
3kxk2

z − k3
x

]

+ bDσz√
3

[
2kxk2

y −
√

2kxkykz − kxk2
z

2
− k3

x

2

]
. (B9)

The effective DSOI term, Eq. (B2), can now be obtained easily
by making the substitutions

k2
x,ykz → 〈

k2
x,y

〉
kz, (B10)

kxkykz → 〈kxky〉kz, (B11)

kx,yk2
z → 〈

kx,y
〉
k2

z = 0, (B12)

k3
x,y → 〈

k3
x,y

〉 = 0, (B13)

k2
x,yky,x → 〈

k2
x,yky,x

〉 = 0. (B14)

Furthermore, terms proportional to k3
z are negligible in the

regime of small kz considered here, because these terms are
much smaller than those of type 〈k2

x,y〉kz. In conclusion, we
keep only the terms which are linear in kz and find

H [112̄]
D,eff = bDkz

2
√

3

[(〈
k2

x

〉 − 4
〈
k2

y

〉)
σx − 2

√
2〈kxky〉σz

]
. (B15)

We note that it is usually possible to choose the orthogonal
axes x and y for the transverse directions such that 〈kxky〉 = 0.
A simple example is discussed in Appendix C. In particu-
lar, our calculations revealed that 〈kxky〉 = 0 for all systems
studied in the main text, see Fig. 1 for a sketch of the NW
cross-section and the considered orientation of the axes. By
choosing the axes x and y such that 〈kxky〉 = 0, the effective
DSOI term has the compact form

H [112̄]
D,eff = bD

2
√

3

(〈
k2

x

〉 − 4
〈
k2

y

〉)
σxkz. (B16)

This equation is used in the main text [Eq. (17)] and describes
the DSOI in recently fabricated NWs [60,63,64]. Thus, unless
〈k2

x 〉 � 4〈k2
y 〉, the Dresselhaus Hamiltonian leads to a notable

SOI in these NWs.
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By introducing an angle θ , the most general relations between the main crystallographic directions and the axes x, y, z are
given by

ex = cos θ√
2

(ey′ − ex′ ) + sin θ√
3

(ex′ + ey′ + ez′ ), (B17)

ey = sin θ√
2

(ex′ − ey′ ) + cos θ√
3

(ex′ + ey′ + ez′ ), (B18)

ez = 1√
6

(ex′ + ey′ − 2ez′ ) (B19)

when the NW axis z corresponds to the [112̄] direction. With these relations, one obtains the effective DSOI term

H [112̄]
D,eff = bDkz

8
√

3

[(
11

〈
k2

x

〉 + 〈
k2

y

〉)
σy sin θ − (〈

k2
x

〉 + 11
〈
k2

y

〉)
σx cos θ + 10〈kxky〉(σy cos θ − σx sin θ )

]

+ 5bDkz

8
√

3

[(〈
k2

x

〉 − 〈
k2

y

〉)(
σx cos(3θ ) − σy sin(3θ )

) − 2〈kxky〉(σx sin(3θ ) + σy cos(3θ ))
]

+ bDkz√
6

[(〈
k2

y

〉 − 〈
k2

x

〉)
sin(2θ ) − 2〈kxky〉 cos(2θ )

]
σz. (B20)

As expected, the result in Eq. (B15) for the special case of x ‖ [1̄10] (y ‖ [111]) is retrieved by setting θ = 0. For example,
the angle θ = π/2 corresponds here to x ‖ [111] (y ‖ [11̄0]). In the derivation of Eq. (B20), the kz-cubic term bDk3

z (σx cos θ −
σy sin θ )/(2

√
3) was omitted.

2. NW axis along [001]

We now consider a setup with z ‖ [001], so ex = ex′ cos θ +
ey′ sin θ , ey = ey′ cos θ − ex′ sin θ , and ez = ez′ . Consequently,
kx′ = kx cos θ − ky sin θ , ky′ = ky cos θ + kx sin θ , kz′ = kz,
and the identical relations apply to σν . Proceeding
analogously to Appendix B 1 yields the effective DSOI
term

H [001]
D,eff = bD

(〈
k2

x

〉 − 〈
k2

y

〉)
cos(2θ )σzkz

− 2bD〈kxky〉 sin(2θ )σzkz. (B21)

It is worth noting that HD [Eq. (B1)] does not contain any
terms proportional to k3

z if z ‖ [001]. The special case x ‖
[100] (y ‖ [010]), where x, y, z coincide with main crystallo-
graphic directions, is obtained at θ = 0, leading to the simple
expression for H [001]

D,eff shown in Eq. (18).

3. NW axis along [110]

In the main text, we focus on NWs oriented along [112̄] or
[001]. In this Appendix, we consider [110]-oriented NWs for
comparison. The relations between the unit vectors are now of
the form

ex = (ex′ − ey′ )
sin θ√

2
+ ez′ cos θ, (B22)

ey = (ex′ − ey′ )
cos θ√

2
− ez′ sin θ, (B23)

ez = 1√
2

(ex′ + ey′ ) (B24)

and lead to the effective DSOI term

H [110]
D,eff = 3bDkz

8

(〈
k2

x

〉 − 〈
k2

y

〉)
(σx sin(3θ ) + σy cos(3θ ))

+ 3bDkz

4
〈kxky〉(σx cos(3θ ) − σy sin(3θ ))

+ 5bDkz

4
〈kxky〉(σx cos θ + σy sin θ )

− bDkz

8

(〈
k2

x

〉 + 11
〈
k2

y

〉)
σx sin θ

− bDkz

8

(
11

〈
k2

x

〉 + 〈
k2

y

〉)
σy cos θ. (B25)

For example, at θ = 0 the result simplifies to

H [110]
D,eff = bDkz

2

[
4〈kxky〉σx − (

2
〈
k2

x

〉 + 〈
k2

y

〉)
σy

]
, (B26)

which applies to the case where x ‖ [001] and y ‖ [11̄0].
Setting θ = − arccos(1/

√
3) = − arctan(

√
2) leads to a con-

figuration where x ‖ [1̄11] and y ‖ [11̄2]. In the derivation of
Eq. (B25), we omitted the term bDk3

z (σy cos θ + σx sin θ )/2
contained in HD.

4. NW axis along [111]

The fourth case considered in this Appendix is described
by the relations

ex = cos θ√
6

(ex′ + ey′ − 2ez′ ) + sin θ√
2

(ey′ − ex′ ), (B27)

ey = sin θ√
6

(2ez′ − ex′ − ey′ ) + cos θ√
2

(ey′ − ex′ ), (B28)

ez = 1√
3

(ex′ + ey′ + ez′ ) (B29)
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for a NW with z ‖ [111]. We proceed again analogously to
Appendix B 1 and obtain

H [111]
D,eff = bDkz√

6

(〈
k2

y

〉 − 〈
k2

x

〉)
(σx sin(3θ ) + σy cos(3θ ))

+ 2bDkz√
6

〈kxky〉(σy sin(3θ ) − σx cos(3θ )). (B30)

Like in the case of z ‖ [001] studied in Appendix B 2, it
turns out that there are no kz-cubic terms in HD, Eq. (B1), if
z ‖ [111]. The right-hand side of Eq. (B30) is a relatively short
expression given that the NW axis does not coincide with a
main crystallographic direction. As expected from symmetry
considerations, the result is invariant when the angle θ is
changed by multiples of 2π/3. Setting θ = 0 corresponds
here to x ‖ [112̄] and y ‖ [1̄10].

5. Summary and remarks

The effective DSOI terms for 〈kxky〉 = 0 (see also
Appendix C) and commonly used growth directions are listed
in Table I. If 〈k2

x 〉 = 〈k2
y 〉, which is satisfied for some highly

symmetric NW cross-sections (e.g., circles or squares), the
effective DSOI term HD,eff is nonzero for NWs oriented
along [110] or [112̄] but vanishes for NWs oriented along
[001] or [111], which is consistent with previous calcula-
tions [32,35,36]. We note that recent calculations for electrons
confined close to the surface of a cylindrical NW showed
that DSOI is relevant for [111]-oriented NWs under certain
conditions [62].

An eye-catching item in Table I is the simple result
HD,eff = 0 at x ‖ [110], y ‖ [1̄10], z ‖ [001]. Consequently, a
suppressed DSOI is expected for conduction band electrons
in a [001]-oriented NW of, for instance, rectangular cross-
section if the sides of the rectangle are parallel to [110] and
[1̄10]. Remarkably, holes (unfilled valence band states) in Ge
and Si NWs of such a geometry can feature an exceptionally
strong Rashba-type SOI [79].

Since we are particularly interested in the regime of small
kz, the terms proportional to k3

z (if present) in HD are not
included in the effective DSOI Hamiltonian HD,eff . However,
these kz-cubic terms may be of high relevance to other re-
search projects. In Table IV, we therefore provide the omitted
terms proportional to k3

z for all configurations listed in Table I.

APPENDIX C: CONVENIENT CHOICE OF AXES

In this Appendix, we focus on the terms of type 〈kxky〉kz in
HD,eff and discuss how the expectation value 〈kxky〉 depends
on the choice of the axes x and y. As a simple example, we
consider a NW whose cross-section is rectangular. The sides
of the rectangle have the lengths Lx̃ and Lỹ and are parallel
to the axes x̃ and ỹ, respectively. If hard-wall confinement
is assumed and the origin of the coordinate system is at the
center of the cross-section, the ground-state wave function of
an electron in the NW has the orbital part

ψ⊥,g = 2√
Lx̃Lỹ

sin

[
π

(
x̃

Lx̃
+ 1

2

)]
sin

[
π

(
ỹ

Lỹ
+ 1

2

)]
(C1)

for the transverse directions, provided that |̃x| < Lx̃/2 and
|̃y| < Lỹ/2. This function for the orbital part may now be used

TABLE IV. Terms proportional to k3
z in the Dresselhaus Hamil-

tonian HD [Eq. (B1)] for all configurations considered in Table I. For
details, see Appendix B.

x y z kz-cubic terms in HD

[100] [010] [001] 0
[110] [1̄10] [001] 0

[001] [11̄0] [110] bD
2 σyk3

z

[1̄10] [001] [110] − bD
2 σxk3

z

[1̄11] [11̄2] [110] bD
2
√

3
(σy − √

2σx )k3
z

[112̄] [1̄10] [111] 0
[11̄0] [112̄] [111] 0

[1̄10] [111] [112̄] bD
2
√

3
σxk3

z

[111] [11̄0] [112̄] − bD
2
√

3
σyk3

z

to calculate 〈kxky〉 = 〈ψ⊥,g| kxky |ψ⊥,g〉. Let us first examine
the case where the axes x and y are chosen, for instance,
such that the momentum operators satisfy kx = (k̃x + k̃y)/

√
2

and ky = (k̃y − k̃x )/
√

2, i.e., the axes x and y are rotated with
respect to the axes x̃ and ỹ by an angle of π/4. In this case, one
finds 〈kxky〉 = (〈k2

ỹ 〉 − 〈k2
x̃ 〉)/2 ∝ L−2

ỹ − L−2
x̃ with k̃x = −i∂̃x

and k̃y = −i∂̃y. Thus 〈kxky〉 is nonzero for Lx̃ �= Lỹ. In stark
contrast, 〈kxky〉 = 0 even for Lx̃ �= Lỹ if one chooses x ‖ x̃ and
y ‖ ỹ. As evident from this simple example of a rectangular
cross-section, it is usually possible to choose the axes such
that 〈kxky〉 = 0, which is why terms of type 〈kxky〉kz were
omitted in Table I.

Figure 1 shows a sketch of the sectorial annular cross-
section considered in the main text and illustrates that the y
axis corresponds to a mirror axis. This choice is convenient
for several reasons. In particular, our numerical calculations
of the integrals confirm that 〈kxky〉 = 0 for all NWs analyzed
in the main text. Consequently, Eqs. (B16) and (17) apply.

APPENDIX D: ARTIFACTS DUE TO HARD-
WALL CONFINEMENT

Since the electrons are trapped inside the NWs, the expec-
tation values 〈kx〉, 〈ky〉, 〈k3

x 〉, 〈k3
y 〉, 〈kxk2

y 〉, and 〈k2
x ky〉 must be

zero. By calculating these expectation values numerically, we
find that 〈kx〉, 〈ky〉, 〈k3

x 〉, and 〈kxk2
y 〉 indeed vanish for the NW

geometries in the main text (Fig. 1). However, the evaluation
of 〈k3

y 〉 and 〈k2
x ky〉 yields imaginary values. These unphysical

results are artifacts of the hard-wall boundary conditions, as
explained below.

For the sake of simplicity, let us consider a test function
h(y) that fulfills the boundary conditions h(y � y1) = 0 and
h(y � y2) = 0 imposed by hard-wall confinement. We note
that y1, y2, and h(y) may also depend on the coordinate
x, which we omit in the notation for brevity. The function
h(y) is continuous over the entire range of y. In the range
y1 < y < y2, the derivatives ∂yh(y), ∂2

y h(y), and ∂3
y h(y) exist

and are continuous. In agreement with the properties of our
functions ψ⊥, see Sec. II C of the main text for details, we
also assume that h(y) is real-valued. Given this test function
h(y) and the position-space representation ky = −i∂y, we first
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study integrals that are relevant for the calculation of 〈ky〉.
Integration by parts yields∫ y2

y1

dy h(y)∂yh(y) = [h(y2)]2 − [h(y1)]2

−
∫ y2

y1

dy [∂yh(y)]h(y)

= −
∫ y2

y1

dy h(y)∂yh(y) = 0, (D1)

from which one can conclude that 〈ky〉 must vanish, in agree-
ment with our numerical calculations. Next, we focus on
integrals that are relevant for 〈k3

y 〉 and find∫ y2

y1

dy h(y)∂3
y h(y) = S −

∫ y2

y1

dy
[
∂3

y h(y)
]
h(y), (D2)

where

S = lim
ε→0+

([∂yh(y)]2|y=y1+ε − [∂yh(y)]2|y=y2−ε ). (D3)

The right-hand side of Eq. (D2) is obtained from the left-
hand side by performing three partial integrations and using
again h(y1) = h(y2) = 0. The limit in the expression for S, see
Eq. (D3), is needed since ∂yh(y) is not necessarily continuous
at y1 and y2. Such discontinuities of the derivative do not
occur in realistic wave functions and are a special feature
caused by the hard-wall confinement. We note that Eq. (D2) is
equivalent to ∫ y2

y1

dy h(y)∂3
y h(y) = S

2
. (D4)

The quantity S is real-valued. Moreover, S is nonzero unless
|∂yh(y)| with y1 < y < y2 converges to the same value for y →
y1 and y → y2. Consequently, the combination of Eq. (D4)
and k3

y = i∂3
y implies that the hard-wall boundary conditions

in our model allow for unphysical, imaginary results when
〈k3

y 〉 is calculated, which is consistent with our numerical
evaluation of 〈k3

y 〉. In a similar way, one can explain that
our imaginary results for 〈k2

x ky〉, which would suggest that
k2

x ky is not Hermitian, are artifacts caused by the considered
hard-wall potential. Even in the case of hard-wall boundary
conditions, however, the wave functions are always contin-
uous (in contrast to their derivatives). Therefore it turns out
that the artifacts discussed in this Appendix cannot occur in
our calculations of 〈kx〉, 〈ky〉, 〈kxky〉, 〈k2

x 〉, and 〈k2
y 〉.

We verified Eq. (D4) via extensive numerical tests. As
an example, we now present results for a NW whose cross-
section is a half-disk (Ri = 0, φtot = 180◦). In this case, y1 =
0 and y2 = √

R2
o − x2 with |x| � Ro. We use h(y) = ψ⊥,g(y)

for a fixed value of x and recall that ψ⊥,g is the orbital
ground-state wave function in the x-y plane. In a first step,
we compare the left-hand side (obtained via numerical inte-
gration) and the right-hand side [using Eq. (D3)] of Eq. (D4)
for various values of x. At Ro = 20 nm, for instance, and x =
0, 5, 10, and 15 nm, both sides of Eq. (D4) yield 3.16 × 10−5,
1.99 × 10−5, 2.28 × 10−7, and −4.73 × 10−6 nm−4, respec-
tively. In a second step, we use the results from Eq. (D4)

and integrate over x. With this approach, we successfully
reproduce 〈k3

y 〉/i which we already obtained, e.g., through a
2D numerical integration using cylindrical coordinates. With
and without Eq. (D4), our calculations yield 〈k3

y 〉 = 2.49i/R3
o

when the cross-section corresponds to a half-disk. We per-
formed similar tests for various other cross-sections and all
results were consistent with Eqs. (D3) and (D4). In addition
to 〈k3

y 〉, we calculated 〈k2
x ky〉 and found that 〈k2

x ky〉 ≈ −〈k3
y 〉 is

usually well satisfied.
The wave function ψ⊥,g in our model is exactly zero out-

side the NW and, hence, not necessarily differentiable at the
boundary of the NW cross-section. As discussed above, this
leads to unphysical imaginary results for the expectation val-
ues 〈k3

y 〉 and 〈k2
x ky〉, suggesting that the operators k3

y and k2
x ky

are non-Hermitian. By changing from our hard-wall potential
to a more realistic (smoothened) potential [85], such that the
third derivatives of the wave function are well-defined and
continuous throughout the x-y plane, we obtain 〈k3

y 〉 = 0 =
〈k2

x ky〉 as expected. For 〈k3
y 〉, this can be explained with a

simple extension of Eqs. (D3) and (D4). If a function h̃(y)
is three times differentiable and ∂3

y h̃(y) continuous for all y,
one finds ∫ ∞

−∞
dy h̃(y)∂3

y h̃(y) = S̃

2
, (D5)

where

S̃ = lim
y→−∞[∂yh̃(y)]2 − lim

y→∞[∂yh̃(y)]2. (D6)

Given that h̃(y) converges to zero for y → ±∞, which applies
to any realistic wave function of a confined electron, one
obtains

lim
y→±∞ ∂yh̃(y) = 0 (D7)

and, thus, S̃ = 0. Analogously, our result 〈k2
x ky〉 = 0 for the

smoothened potential can be explained by taking into account
that the wave functions converge to zero for

√
x2 + y2 → ∞.

Finally, we would like to point out that our findings about the
observed artifacts and the strategies to remove these artifacts
are consistent with Ref. [85] (see, e.g., Appendix B therein),
where holes in quantum wells are studied theoretically.

APPENDIX E: SIZE DEPENDENCE

The main purpose of the present Appendix is to provide a
detailed answer to the question how quantities in our calcula-
tions scale with the size of the NW cross-section. We therefore
introduce the dimensionless parameters

ξ = k⊥Ro, (E1)

r = Ri

Ro
. (E2)

The latter is simply the ratio of inner to outer radius. With
these definitions, the determinant equation of Eq. (13) in the
main text reads

Jα (rξ )Yα (ξ ) − Jα (ξ )Yα (rξ ) = 0. (E3)
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We recall that α = mπ/φtot depends on the angle φtot = φE −
φS and the considered value of m ∈ {1, 2, 3, . . .}. Given α and
r, one can use Eq. (E3) to find suitable numbers ξ > 0 and C
for which

ψ⊥ = N⊥[Jα (ξμ) + CYα (ξμ)] sin[α(φ − φS )] (E4)

is normalizable and fulfills all boundary conditions. The di-
mensionless coordinate

μ = ρ

Ro
(E5)

was introduced in Eq. (E4) for convenience and will prove
very useful for rewriting our integrals.

It is important to note that the numbers ξ and C for which
ψ⊥ vanishes at both ρ = Ri and ρ = Ro (i.e., μ = r and μ =
1) depend solely on α and r. As a consequence, ξ and C do
not change when Ri and Ro are varied such that their ratio
r remains constant. The eigenenergies E⊥ [Eq. (14)], which
correspond to the subband edges of the NW, read

E⊥ = h̄2k2
⊥

2meff
= h̄2ξ 2

2meffR2
o

. (E6)

That is, for any given shape of the cross-section (both r and
φtot fixed) the eigenenergies E⊥ are inversely proportional to
the effective electron mass and the area R2

o(1 − r2)φtot/2 of
the SAC.

Next, we consider the normalization condition. By treating
ψ⊥/N⊥ as real-valued (see Sec. II C for the justification) and
by using ∫ φE

φS

dφ sin2[α(φ − φS )] = φtot

2
, (E7)

Eq. (12) can be rewritten as

1 = |N⊥|2R2
oφtot

2

×
∫ 1

r
dμμ

[
J2
α (ξμ)+ 2CJα (ξμ)Yα (ξμ)+ C2Y 2

α (ξμ)
]
.

(E8)

Since suitable numbers for ξ and C depend solely on α and r,
it is evident from Eq. (E8) that the corresponding normaliza-
tion factors satisfy |N⊥| ∝ R−1

o if r, φtot, and m are fixed.
The expectation values 〈k2

x 〉 and 〈k2
y 〉, which are needed for

the effective DSOI terms (see Table I and Appendix B), can
be calculated via

〈
k2

x,y

〉 = −
∫ Ro

Ri

dρ ρ

∫ φE

φS

dφ ψ∗
⊥,g∂

2
x,yψ⊥,g, (E9)

where the asterisk indicates the complex conjugation and ψ⊥,g

(the subscript g stands for the ground state) is the function ψ⊥
whose associated eigenenergy E⊥ is minimal. Here we use
the position-space representation kx,y = −i∂x,y, thus omitting
orbital corrections from magnetic fields, if present. In order to
analyze how 〈k2

x 〉 and 〈k2
y 〉 scale with the size of the SAC,

we recall some useful relations between the Cartesian and
cylindrical coordinates considered in our work. The Cartesian
coordinates x and y are related to the cylindrical coordinates
ρ and φ through x = ρ cos φ and y = ρ sin φ. Consequently,

the operators for the partial derivatives with respect to x and y
can be written as

∂x = cos φ ∂ρ − sin φ

ρ
∂φ, (E10)

∂y = sin φ ∂ρ + cos φ

ρ
∂φ. (E11)

By making use of the trigonometric identity 2 sin φ cos φ =
sin(2φ), one finds

∂2
x = cos2 φ ∂2

ρ + sin2 φ

ρ
∂ρ + sin2 φ

ρ2
∂2
φ

+ sin(2φ)

ρ2
∂φ − sin(2φ)

ρ
∂ρ∂φ (E12)

and

∂2
y = sin2 φ ∂2

ρ + cos2 φ

ρ
∂ρ + cos2 φ

ρ2
∂2
φ

− sin(2φ)

ρ2
∂φ + sin(2φ)

ρ
∂ρ∂φ (E13)

for the second derivatives. It can easily be verified that the
well-known relation

∂2
x + ∂2

y = ∂2
ρ + 1

ρ
∂ρ + 1

ρ2
∂2
φ (E14)

is consistent with Eqs. (E12) and (E13). Finally, by inserting
Eqs. (E4) and (E12) into Eq. (E9) and using other relations
discussed in this Appendix, we find that 〈k2

x 〉 can be expressed
in the form〈

k2
x

〉 = −|N⊥|2
∫ 1

r
dμμ

∫ φE

φS

dφ wα (ξμ) sin δ

×
[
ξ 2w′′

α (ξμ) cos2 φ sin δ

+ ξ

μ
w′

α (ξμ)
(
sin2 φ sin δ − α sin(2φ) cos δ

)

+ 1

μ2
wα (ξμ)(α sin(2φ) cos δ − α2 sin2 φ sin δ)

]
,

(E15)

where

δ = α(φ − φS ) (E16)

and

wα (ξμ) = Jα (ξμ) + CYα (ξμ) (E17)

for brevity. The prime and double prime in w′
α (ξμ) and

w′′
α (ξμ), respectively, indicate the first and second derivative

of the function wα (ξμ) with respect to its argument ξμ =
k⊥ρ. Since we focus on the ground state when calculating
〈k2

x 〉, it turns out that the integral in Eq. (E15), excluding
the prefactor |N⊥|2, depends solely on r, φS , and φE . Conse-
quently, one finds 〈k2

x 〉 ∝ R−2
o (as expected) if r, φS , and φE are

fixed. The same conclusion applies to 〈k2
y 〉 and may be verified

by inserting Eqs. (E4) and (E13) into Eq. (E9) and rewriting
the expression similarly to Eq. (E15). For the results presented
in the main text, we always set φE = π − φS . Hence the SAC
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is mirror-symmetric with respect to the y axis and 〈kxky〉 =
0. Considering φE = π − φS = (π + φtot )/2, we thus con-
clude that the EDPs defined in Eqs. (17) and (18) are of
the form βeff = bD f (φtot, r)R−2

o and β̄eff = bD f̄ (φtot, r)R−2
o ,

respectively, where f (φtot, r) and f̄ (φtot, r) are functions that
depend only on φtot and r. Section III C contains a discus-
sion of these properties. The bar in β̄eff and f̄ serves here
as a convenient short-hand notation for the coincident con-
figuration, meaning that the axes x, y, and z coincide with
the main crystallographic directions. Without the bar, βeff

and f are associated with the noncoincident configuration
(Sec. III A), corresponding to the recently grown NWs of
Ref. [60].

As a last remark, we would like to mention that some
expressions in this Appendix can be simplified by setting C =
r = 0 in the special case of Ri = 0. For related information,
we refer to Sec. II D.

APPENDIX F: CONVERSION FACTORS
FOR OTHER SEMICONDUCTORS

Results for a material X can immediately be adapted to a
material Y via the relations

βY
eff = βX

eff
bY

D

bX
D

= βX
effκ

X→Y
β , (F1)

λY
SO = λX

SO
mX

eff b
X
D

mY
eff b

Y
D

= λX
SOκX→Y

λ , (F2)

EY
SO = EX

SO

mY
eff

(
bY

D

)2

mX
eff

(
bX

D

)2 = EX
SOκX→Y

E , (F3)

where the superscript added to βeff , λSO, ESO, bD, and
meff indicates the material. The three dimensionless factors
κX→Y

β,λ,E are conversion factors for the EDP, the spin-orbit
length, and the spin-orbit energy, respectively. We note
that the equations β̄Y

eff = β̄X
effκ

X→Y
β , λ̄Y

SO = λ̄X
SOκX→Y

λ , and
ĒY

SO = ĒX
SOκX→Y

E for the coincident configuration are iden-
tical to Eqs. (F1), (F2), and (F3) for the noncoincident
configuration.

As evident from Eqs. (F1) to (F3), the introduced con-
version factors depend on the effective masses and the
Dresselhaus coefficients of the materials. The effective mass
meff of a semiconductor is usually well known. In contrast,
reported values for the Dresselhaus coefficient bD [83] often
vary quite strongly. Throughout this paper, we use the material
parameters listed in Ref. [22]. We note, however, that our
results can easily be recalculated with other values, if de-
sired. For example, several methods have been developed with
which bD can be extracted from experimental data [26,87–97].

With the parameters [22,83] bInSb
D = 760.1nm3meV,

bInAs
D = 27.18 nm3meV, mInSb

eff = 0.0139m0, and
mInAs

eff = 0.0229m0, one obtains the conversion
factors

κ InAs→InSb
β = 27.97, (F4)

κ InAs→InSb
λ = 0.0589, (F5)

κ InAs→InSb
E = 474.7. (F6)

By replacing InAs with InSb, we thus find that the EDPs
βeff and β̄eff in Table II increase by a factor of about thirty,
that the spin-orbit lengths λSO and λ̄SO shorten by a factor
of about twenty, and that the spin-orbit energies ESO and ĒSO

increase by two to three orders of magnitude. In stark contrast,
using [22,83] bGaAs

D = 27.58 nm3meV and mGaAs
eff = 0.0665m0

yields

κ InAs→GaAs
β = 1.015, (F7)

κ InAs→GaAs
λ = 0.339, (F8)

κ InAs→GaAs
E = 2.99, (F9)

so replacing InAs with GaAs would have rather small ef-
fects on the results in Table II. As a consequence, according
to the material parameters in Ref. [22], only minor quan-
titative differences are expected between identically shaped
InAs, GaAs, and InGaAs NWs regarding the DSOI. Large
differences between these NWs, on the other hand, are ex-
pected regarding the RSOI (see Sec. V). Finally, we would
like to mention that by changing from InAs to InSb or
GaAs, the energies given in Fig. 2 and Table III are rescaled
by a factor of mInAs

eff /mInSb
eff = 1.65 or mInAs

eff /mGaAs
eff = 0.344,

respectively.

APPENDIX G: EFFECTIVE SPIN-ORBIT COUPLING
FROM A 4 × 4 MODEL

An important property of Eq. (33), which was discussed
in Sec. V and applies to the noncoincident configuration,
is the possibility to switch the effective SOI on and off
electrically. Below we extend our model to four instead
of two subbands. It turns out that the perturbatively cal-
culated corrections still allow for an electrically switchable
SOI.

We consider the four basis states |g ↑〉 = |ψ⊥,g〉 ⊗
|↑〉, |g ↓〉 = |ψ⊥,g〉 ⊗ |↓〉, |e ↑〉 = |ψ⊥,e〉 ⊗ |↑〉, and |e ↓〉 =
|ψ⊥,e〉 ⊗ |↓〉, where the spin states |↑〉 and |↓〉 satisfy
σz |↑〉 = |↑〉 and σz |↓〉 = − |↓〉, respectively. As explained
in Sec. III B, the subscript “g” indicates the ground state.
Analogously, the subscript “e” stands for the first excited state.
We introduce

�0 = E⊥,e − E⊥,g (G1)

as the energy gap at kz = 0 between the subbands. Most rele-
vant for us are NW cross-sections where the angle φtot is rather
large (above 63.74◦, see Appendix A), such that the function
ψ⊥,e for the first excited state has only one extremum in the
radial direction and two extrema (i.e., m = 2, see Sec. II)
along the angle φ, as illustrated in the bottom panels of
Fig. 2. Consequently, we assume in this Appendix that ψ⊥,e

is antisymmetric under x → −x, while ψ⊥,g is symmetric.
Furthermore, we consider the noncoincident configuration,
and so the DSOI HD is given by Eq. (B9). By making use
of these properties and projecting the Hamiltonian H0 + V +
HD + HR onto the basis states |g ↑〉, |g ↓〉, |e ↑〉, |e ↓〉, one
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obtains the 4 × 4 Hamiltonian

H4×4 =

⎛
⎜⎜⎜⎝

0 c1kz c2 − c3kz c4

c1kz 0 −c4 c3kz − c2

c∗
2 − c∗

3kz −c∗
4 �0 c5kz

c∗
4 c∗

3kz − c∗
2 c5kz �0

⎞
⎟⎟⎟⎠

+ aR

⎛
⎜⎜⎜⎝

0 (−Ey − iEx )kz c6Ey ic6Ez

(−Ey + iEx )kz 0 −ic6Ez −c6Ey

c∗
6Ey ic∗

6Ez 0 (−Ey − iEx )kz

−ic∗
6Ez −c∗

6Ey (−Ey + iEx )kz 0

⎞
⎟⎟⎟⎠. (G2)

We focus here on the regime of small kz and, therefore, keep
only terms that are independent of or linear in kz. A global
energy offset on the diagonal was omitted since it has no
observable effect. The quantities introduced in Eq. (G2) are
given by

c1 = bD

2
√

3
〈ψ⊥,g|

(
k2

x − 4k2
y

) |ψ⊥,g〉 = βeff , (G3)

c2 = bD

2
√

3
〈ψ⊥,g|

(
4kxk2

y − k3
x

) |ψ⊥,e〉 , (G4)

c3 =
√

2bD√
3

〈ψ⊥,g| kxky |ψ⊥,e〉 (G5)

and

c4 = i
bD√

6
〈ψ⊥,g| k3

x |ψ⊥,e〉 , (G6)

c5 = bD

2
√

3
〈ψ⊥,e|

(
k2

x − 4k2
y

) |ψ⊥,e〉 , (G7)

c6 = 〈ψ⊥,g| kx |ψ⊥,e〉 . (G8)

If the energy gap �0 exceeds the offdiagonal matrix ele-
ments, a second-order Schrieffer-Wolff transformation (quasi-
degenerate perturbation theory [22]) of H4×4 yields the
effective 2 × 2 Hamiltonian

H2×2 = (Mxσ̃x + Myσ̃y)kz (G9)

for the subbands of lowest energy, where σ̃x and σ̃y correspond
to Pauli matrices. As before, global energy shifts for H2×2

were omitted. The coefficients read

Mx = c1 − aREy + i(c3c∗
6 − c∗

3c6)aREz − c3c∗
4 − c∗

3c4

�0
(G10)

and My = aREx. The obtained results provide corrections to
Eq. (33). Despite these corrections, it remains possible to
switch off the effective SOI with an electric field along the
y axis, which is useful for applications.

An electric field E also leads to a spin-independent term
e(Exx + Eyy + Ezz) in the Hamiltonian. For simplicity, this
term was not included in Eq. (G2). The operator eEzz would
remain unaffected in the considered model, because the func-
tions ψ⊥,g and ψ⊥,e are independent of the z coordinate.
Furthermore, the symmetry and antisymmetry of ψ⊥,g and
ψ⊥,e, respectively, under x → −x imply 〈ψ⊥,g| y |ψ⊥,e〉 = 0.
Consequently, the operator eEyy would simply change the
energy gap �0 in Eqs. (G2) and (G10) by the difference

〈ψ⊥,e| eEyy |ψ⊥,e〉 − 〈ψ⊥,g| eEyy |ψ⊥,g〉. In conclusion, the re-
sult that the effective SOI can be turned off at Ex = 0 via Ey

holds true even if the spin-independent operators due to E are
included in our model. In the future, it could be interesting
to study a similar model with many additional subbands (i.e.,
not only the nearest neighbors) in order to take the various
induced couplings fully into account. Such an analysis is
beyond the scope of the present work.

Finally, we would like to point out that the above-
mentioned Schrieffer-Wolff transformation of H4×4 leads to
additional terms in H2×2 such as (c2c∗

3 + c∗
2c3)kz/�0 or

(c2c∗
4 + c∗

2c4)σ̃x/�0. In fact, these surprising terms are un-
physical and vanish. This can be verified, for instance, by
using kx,y = −i∂x,y and considering the functions ψ⊥,g and
ψ⊥,e as real (see also Sec. II C), in which case the coefficients
c2 and c6 are imaginary while c1, c3, c4, c5 are real. Conse-
quently, c2c∗

3 + c∗
2c3 = 0, c2c∗

4 + c∗
2c4 = 0, c2c∗

6 − c∗
2c6 = 0,

and so on.

APPENDIX H: DRESSELHAUS COUPLING
BETWEEN NEIGHBORING SUBBANDS

The effective Dresselhaus terms discussed in the main text
and Appendix B were derived by projection of HD onto the
NW subbands of lowest energy. Couplings to energetically
higher subbands, whose states feature excited orbital parts,
are thereby omitted. This approach is well applicable as long
as the couplings to omitted subbands are smaller than the
subband spacing.

Given a NW parallel to the z axis, the aforementioned
projection also results in the omission of k3

x , k2
x ky, kxk2

y , and k3
y

in the Hamiltonian. For the SAC sketched in Fig. 1, keeping
the angles and the ratio Ri/Ro fixed, the couplings caused
by such operators are proportional to R−3

o while the subband
spacing is proportional to R−2

o (see, e.g., Appendix E). Thus,
the operators k3

x , k2
x ky, kxk2

y , and k3
y are particularly important

for thin NWs. The projection of HD onto the lowest subbands
eventually becomes unreliable when the radius is continu-
ously decreased.

For a quantitative analysis, we choose Ri = 0 and φtot =
270◦, which are simple parameter values to model the NWs
introduced by Friedl et al. [60]. In the noncoincident config-
uration, HD is given by Eq. (B9). Of particular interest are
the couplings induced between the two lowest and their two
neighboring subbands. Therefore we refer to the definitions
of Appendix G and study the relative strengths of c2 and c4
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FIG. 8. Dependence of |c2/�0| and |c4/�0| on the radius Ro

of an InAs NW with Ri = 0 and φtot = 270◦ in the noncoincident
configuration. For details, see Appendices G and H.

with respect to the subband spacing �0. Setting again meff =
0.0229m0 and bD = 27.18 nm3meV [22,83] for InAs, the
dependence of |c2/�0| and |c4/�0| on the radius Ro is shown
in Fig. 8. As expected, |c2/�0| and |c4/�0| are proportional
to R−1

o . Figure 8 illustrates that |c2| > �0 for Ro < 11 nm and
|c4| > �0 for Ro < 7 nm.

In the coincident configuration, HD contains the kz-
independent terms bDσxkxk2

y and bDσyk2
x ky. As before, we

choose Ri = 0 and φtot = 270◦ and analyze the subband cou-
plings. Symmetry considerations lead to 〈ψ⊥,g| k2

x ky |ψ⊥,e〉 =
0, which we confirmed numerically. For the abovementioned
InAs parameters, we find that | 〈ψ⊥,g| bDkxk2

y |ψ⊥,e〉 | > �0

for Ro < 14 nm.
We would therefore like to point out that the projection of

the Dresselhaus Hamiltonian HD onto the lowest two NW sub-
bands, as discussed in Appendix B and the main text, should
be considered as a simple approximation (see also Sec. VI).
For thin NWs, contributions from higher subbands may play
an important role and may lead to significant corrections.
These corrections could be of particularly high relevance for
materials such as GaAs and InSb, where the product bDmeff is
greater than for InAs. For recently reported InAs or InGaAs
NWs [60,63,64], which are several tens of nanometers in
diameter, our calculations suggest that the lowest subbands
are well decoupled from other subbands.

APPENDIX I: VALENCE BAND

In this work, we focus on the lowest conduction band and,
for simplicity, omit corrections that can arise from other bands
of the semiconductor [22,82]. Contributions from the valence
band may become particularly important in the presence of
a strong electric field [36]. If E is perpendicular to the NW,
an upper bound of the induced energy shift can be obtained
through 2Roe|E|. This shift should be much smaller than the
band gap of the semiconductor.

Based on Sec. V and the examples of Table II with Ri =
0, we make a rough estimate by setting aR|E| = |βeff | and

choosing

|βeff | ≈
(

5 nm

Ro

)2

× 10−11 eVm (I1)

for InAs, which leads to

2Roe|E| ≈ 5 nm

12Ro
eV. (I2)

With Ro � 5 nm considered in this work, the electric-field-
induced shift approximated by Eq. (I2) is well below the InAs
band gap of about 0.42 eV [22].

Similar estimates can be made for other semiconductors.
Due to the small Rashba coefficient of GaAs (Sec. V) and the
large Dresselhaus coefficient of InSb (Appendix F), achieving
aR|E| = |βeff | with GaAs or InSb NWs requires stronger elec-
tric fields than in the case of InAs (see also Sec. V). For very
thin GaAs and InSb NWs, our estimates suggest that these
electric fields can induce energy shifts that are comparable
to the band gaps of about 1.5 and 0.24 eV, respectively [22].
This might lead to a crossing of conduction and valence band
states [36], in which case an extended model [82] could pro-
vide insight into contributions from the valence band.

APPENDIX J: CHARGE CARRIER DENSITY

The numerical results in Table II and Figs. 5–7 were
obtained by considering electrons in the lowest two NW sub-
bands (two because of the spin degree of freedom). Hence, a
comparison between theory and experiment requires that the
charge carrier density n in the NW is low. If the electrons
are assumed to be equally distributed along the NW and if
electron-electron interactions are omitted for simplicity, the
inequality

n <

√
8meff�0

h̄π
(J1)

should be satisfied, where �0 is the subband spacing given
in Eq. (G1). This criterion can be derived by using hard-wall
or periodic boundary conditions and is material-independent
since �0 ∝ m−1

eff in our model.
For the three NW cross-sections shown in Fig. 2 and de-

scribed in Sec. II E, Eq. (J1) yields n < 108.8/μm (example
A), n < 83.5/μm (example B), and n < 50.1/μm (example
C), respectively. Consequently, it is likely that more than just
the two lowest subbands were occupied in the NWs studied
by Friedl et al. in the presence of bulk doping [60] or remote
doping [63]. In future experiments, the electron densities in
such NWs may be reduced via electric gates, for instance,
in which case our numerical results for the lowest subbands
(Sec. IV) should become more applicable.

Finally, we projected the DSOI term HD onto the first
excited subbands and compared the results (e.g., EDPs,
spin-orbit lengths, spin-orbit energies) with those for the en-
ergetically lowest subbands presented in the main text. While
we found quantitative differences, as expected from the dif-
ferent wave functions, the qualitative results resembled each
other and the orders of magnitude were similar. This finding
might initially give the impression that the dependence of
the effective SOI on the charge carrier density should be
weak. However, we would like to give three reasons why
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experimental results may vary drastically when changing from
the low-carrier-density regime, which our calculations are fo-
cused on, to a high-carrier-density regime. First, the electron
wave functions associated with subbands of ascending en-
ergy tend to become increasingly different (e.g., more nodes)
from the ground-state wave function. Second, as evident from
Table III, the energy gaps between neighboring subbands are

usually subband-dependent. For electrons in subbands with
additional degeneracies or quasidegeneracies (i.e., other sub-
bands very close in energy), the SOI-induced intersubband
couplings can give rise to particularly strong and interesting
effects [62,77]. Third, changing the charge carrier density
can also have important consequences through the electron-
electron interactions in the NW [82,103–105].
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