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Abstract

A key challenge in quantum computation is the implementation of fast and local

qubit control while simultaneously maintaining coherence [1]. Qubits based on hole

spins offer, through their strong spin-orbit interaction, a way to implement fast quan-

tum gates [2–5]. Strikingly, for hole spins in one-dimensional germanium and silicon

devices, the spin-orbit interaction has been predicted to be exceptionally strong yet

highly tunable with gate voltages. Such electrical control would make it possible

to switch on demand between qubit idling and manipulation modes [6]. Here, we

demonstrate ultrafast and universal quantum control of a hole spin qubit in a germa-

nium/silicon core/shell nanowire [7, 8], with Rabi frequencies of several hundreds of

megahertz, corresponding to spin-flipping times as short as ∼ 1 ns - a new record for

a single-spin qubit. Next, we show a large degree of electrical control over the Rabi

frequency, Zeeman energy, and coherence time - thus implementing a switch toggling

from a rapid qubit manipulation mode to a more coherent idling mode. We identify an

exceptionally strong but gate-tunable spin-orbit interaction as the underlying mech-

anism, with a short associated spin-orbit length that can be tuned over a large range

down to 3 nm for holes of heavy-hole mass. Our work demonstrates a spin-orbit qubit

switch and establishes hole spin qubits defined in one-dimensional germanium/silicon

nanostructures as a fast and highly tunable platform for quantum computation.
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I. INTRODUCTION

Spin qubits defined in silicon (Si) and germanium (Ge) quantum dots are of particular

interest for scaling up quantum circuits due to their small size, speed of operation, and

compatibility with semiconductor industry [9–12]. Both materials feature a low natural

abundance of non-zero nuclear spins, which has led to the demonstration of long qubit

coherence times [9, 13, 14], as well as single- [14–16] and two-qubit [5, 17–19] operations

with high fidelity. Most of this research has been performed using electron spin states

defining the qubit [20]. Hole spin qubits [2, 12] have recently gained attention since they

potentially enable faster quantum operations and a higher level of control over qubit param-

eters [3, 6, 21, 22]. In addition, hole spins in Ge and Si may have improved relaxation and

decoherence times, since they do not exhibit a valley degeneracy and their wave function has

reduced overlap with nuclear spins [23, 24]. Importantly, spin-orbit interaction (SOI) can be

exceptionally strong for hole spins, particularly in Ge- or Si-based nanowires [3, 21]. This

enables very fast spin control through electric-dipole spin resonance (EDSR) [25–28], where

a time-varying electric field periodically displaces the hole wave function, thus creating an

effective periodic magnetic field through the SOI. In this way, EDSR can be used for all-

electrical spin manipulation without requiring micromagnets [29] or co-planar striplines [30],

which add to device complexity.

Rabi frequencies of around 100 MHz have been measured for hole spins [4, 5], but predic-

tions for one-dimensional systems range even up to 5 GHz, made possible by the particularly

strong direct Rashba spin-orbit interaction (DRSOI) [6, 21]. Conversely, this strong SOI may

lead to an undesired enhancement of qubit relaxation and dephasing rates, via coupling to

phonons or charge noise. However, the DRSOI is also predicted to be tunable to a large ex-

tent through local electric fields [3, 21, 22], enabling electrical control over the SOI strength

and Landé g-factor. Such electrical tunability provides a path towards a spin qubit with

switchable interaction strength, using what we term a spin-orbit switch. The spin-orbit

switch can be used to selectively idle a qubit in an isolated configuration of weak SOI and

low decoherence (OFF -state), while for fast manipulation it is tuned to a regime of strong

SOI (ON -state) and is selectively coupled to an EDSR driving field or microwave resonator

by controlling the qubit Zeeman energy [6, 31]. Here, we experimentally realize the key com-

ponents of this approach, through the demonstration of an ultrafast and electrically tunable
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hole spin qubit in a Ge/Si core/shell nanowire. We use SOI-mediated EDSR to perform fast

two-axis qubit control and implement Ramsey and Hahn echo pulsing techniques to compare

the qubit’s coherence times. We then demonstrate a high degree of electrical control over

the Rabi frequency, g-factor, and driven qubit decay time by tuning the voltage on one of

the dot-defining gates, illustrating the basic ingredients of a spin-orbit switch. We extract a

spin-orbit length that is extraordinarily short and electrically tunable. This control allows

us to optimize our qubit for speed of operation, resulting in Rabi frequencies as large as

435 MHz.

II. SETUP AND MEASUREMENT TECHNIQUES

Figure 1a shows a scanning electron micrograph of the device comprising five gates

beneath a Ge/Si core/shell nanowire [8, 32, 33]. A depletion-mode few-hole double quan-

tum dot (DQD) is formed inside the nanowire by positively biasing the five bottom gates.

Throughout this work, we perform measurements of electronic transport through the DQD,

using the source (S) and drain (D) contacts indicated in Figure 1a (for more details about

the device and measurement setup, see Methods). We operate the DQD at a transition ex-

hibiting Pauli spin blockade [34], which we use for spin readout in transport measurements.

In our setup, gates L and LP are connected via bias-tees to high-frequency lines as

indicated in Figure 1a, allowing us to apply square voltage pulses and microwave bursts

to these gates. The measurements are performed with a two-stage pulse scheme (see inset

Fig. 1a). First, the system is initialized at point I (see Fig. 1b) in a spin-blockaded triplet

state. Then, with a square pulse of depth ∆VP, it is pulsed into Coulomb blockade to point

M where a microwave burst of duration tburst is applied. Finally, back at the readout point

R, a current signal is measured if the spins were in a singlet configuration after manipulation.

Figures 1 c and d show typical EDSR measurements, where the microwave frequency

fMW is swept versus the applied magnetic field ~Bext along the x̂- and ŷ-axis, respectively.

On resonance, when , the spin is rotated, lifting spin blockade and leading to an increased

current. From Figures 1 c and d, we extract gx = 1.06 and gy = 1.02. With ~Bext aligned

along the ẑ direction, no EDSR signal could be observed, as will be discussed later.

3



6.0

4.0

2.0

0.0

f M
W

(G
H

z)

0.40.20.0-0.2-0.4
Bx (T)

6420I/Iavg
6.0

4.0

2.0

0.0

f M
W

(G
H

z)

0.40.20.0-0.2-0.4
By (T)

6420I/Iavg

y^

z^
x^

1390

1380

1370

1360

V
LP

(m
V

)

102510151005
VRP (mV)

0

60

VSD = -6 mV
By = -182 mT

|IDC| (pA)

R/I

M

�VP

R/I M�VP

VL

VLP

VM

DS

VRP

VR

a

dc

b

Figure 1. Experimental setup and electric dipole spin resonance. a Scanning electron

micrograph of a cofabricated device, showing source (S) and drain (D) contacts and gates, as

labeled. The scalebar corresponds to 100 nm. The inset at the bottom illustrates the pulse scheme.

The points R, I and M indicate the locations of the readout, initialization, and manipulation stages,

respectively, of the pulsing scheme (see b). The depth of the square pulse is ∆VP. b Measurement

of a set of bias triangles taken with a source-drain voltage VSD = −6 mV showing Pauli spin

blockade which is partially lifted at a finite magnetic field By = −182 mT. c, d Spin blockade

leakage current indicating electric dipole spin resonance as a function of microwave frequency and

magnetic field magnitude in x̂ (c) and ŷ (d) direction. For detailed measurement parameters, see

Methods.

III. COHERENT MANIPULATION AND TWO-AXIS CONTROL

To demonstrate coherent control, we now vary the pulse duration tburst and observe Rabi

oscillations, in the form of the typical chevron pattern shown in Figure 2a. Figure 2b

shows the dependence on the microwave power PMW. From line cuts, we extract the Rabi
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Figure 2. Coherent qubit control. a Measurement of the current as a function of microwave

burst duration and magnetic field. We observe a Rabi frequency of 72 MHz. b Power dependence of

Rabi oscillations in the same configuration as in a. c Extracted Rabi frequency as a function of the

microwave amplitude, from fits of the data in b (see Methods for details). The black dashed line

is a linear fit to the extracted Rabi frequencies. d Rabi frequency as a function of the magnitude

of the external magnetic field. The black dashed line is a linear fit to the data over the whole

range with zero offset. e Decay of Ramsey fringes (blue points) and Hahn echo (green points) as

a function of the waiting time τwait between the two π
2 -pulses. Insets show pulse sequences used

for Ramsey (bottom left) and Hahn echo (top right). Black dotted lines are fits of the data to

exponential decay. f Demonstration of two-axis qubit control by applying a Hahn echo sequence

with two orthogonal π pulses. The amplitudes of the fringes of the two datasets differ due to an

offset in the calibration of the π
2 -pulse duration between the two measurements.

frequency fRabi (see Methods), which is shown in Figure 2 c as a function of the microwave

amplitude. The data at low amplitudes is in good agreement with a linear fit (black dashed

line in Fig. 2c), as expected theoretically. The saturation behaviour at higher amplitudes is

likely due to anharmonicity in dot confinement for the particular gate voltage configuration

used here.
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In the presence of SOI, the oscillating electric field on gate VLP due to the microwaves

gives rise to an oscillating effective magnetic field ~Beff(t), with magnitude [25]:

| ~Beff(t)| = 2| ~Bext| ·
ldot

lso
· e|

~EMW(t)|ldot

∆orb

, (1)

with e the elementary charge, ~EMW(t) the ac electric field in the dot generated by the

microwaves, ldot the dot length, ∆orb ∝ l−2
dotm

−1
eff the orbital level splitting, and lso the spin-

orbit length, defined here as the distance a hole has to travel along the nanowire to have

its spin flipped due to SOI. This effective field ~Beff drives the Rabi oscillations, with Rabi

frequency fRabi = g⊥µB| ~Beff(t)|/2h, with g⊥ the g-factor along the direction of ~Beff and thus

perpendicular to ~Bext. From equation (1) we see that | ~Beff| scales linearly with | ~Bext|. We

measure the Rabi frequency for different | ~Bext| and plot the result in Figure 2d. Here, the

error bars reflect the inaccuracy of the frequency-dependent microwave power calibration

(see Section 1 of the Supplementary Information). Nevertheless, the measurement agrees

well with a linear dependence of the Rabi frequency on | ~Bext|, as expected for SOI-mediated

EDSR [25, 26].

Next, in order to characterize the free induction decay, we apply a Ramsey pulse sequence,

as depicted in Figure 2 e. A fit to a Gaussian decay yields the dephasing time T ∗2 = 11(1) ns.

This value is one order of magnitude smaller than in comparable hole spin qubit systems [4,

5, 35]. This may be attributed to low-frequency noise, which could for instance be due to

gate voltage fluctuations, frequency jitter of the microwave source, charge fluctuators, or

residual nuclear spin noise. Nevertheless, we can mitigate this to a large extent using a

Hahn echo sequence, prolonging coherence by a factor of ∼25, thus demonstrating efficient

decoupling of the qubit from low-frequency noise.

Finally, we use a modified Hahn echo pulse sequence to demonstrate two-axis control. We

employ either a πx- or a πy-pulse and vary the phase of the second πφ/2-pulse (see schematics

in Fig. 2 e). This results in two sets of Ramsey fringes as shown in Figure 2 f, which are

phase-shifted by π. These measurements demonstrate universal, two-axis control of the hole

spin qubit.
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Figure 3. Electrical tunability of qubit parameters. a Rabi oscillations for four different gate

voltage values VM. Here, all parameters were kept constant, except when indicated in the plots. b,

c, d Rabi frequency, g-factor, and TRabi
2 as a function of the gate voltage VM, as extracted from fits

to line cuts such as shown in a. Insets in b and d indicate possible idling (OFF ) and manipulation

(ON ) points.

IV. SPIN-ORBIT SWITCH AND ANISOTROPY

The measurements of Figure 2 establish Ge/Si nanowires as a platform for hole spin

qubits. Remarkably, the particular DRSOI [3, 21] provides a unique way to electrically

control the qubit via the SOI strength and qubit Zeeman energy [6, 22]. This tunability

can be exploited for optimizing qubit relaxation and dephasing times, as well as selective

coupling of the qubit to EDSR drive fields or microwave resonators [6, 36, 37]. Here, we

demonstrate this distinct gate-tunability of hole spin qubits in Ge/Si core/shell nanowires,

where we investigate electrical control over the g-factor, Rabi frequency, and coherence time.

The gate voltages not only provide the electrostatic confinement but also constitute a

static electric field on the order of tens of V/µm inside the quantum dots, which has a

significant effect on the strength of SOI [3, 21]. Figure 3a shows example Rabi oscillations

for four different gate voltages VM. Here, fMW and PMW are kept fixed, while | ~Bext| is adjusted

to compensate for changes in the g‖-factor along Bext, keeping the qubit on resonance with

the microwave drive. As shown in Figure 3b, we find that the Rabi frequency depends

strongly on VM, with a gate voltage change of 30 mV resulting in a 7-fold increase of the

Rabi frequency.

For SOI-mediated spin rotations [25], the Rabi frequency is proportional to the effective
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magnetic field given by Eq. (1) and the g-factor g⊥. Therefore, the Rabi frequency depends

on the spin-orbit length lso, the ac electric field | ~EMW(t)| created through the periodic gate

voltage modulation, ~Bext, the quantum dot confinement ∆orb, and the g-factor. Despite an

observed change of g‖ with VM [22, 38] by a factor of 1.5 (see Fig. 3 c), the effect on the

Rabi frequency is small: at constant Zeeman energy, we can write fRabi ∝ fMW · g⊥/g‖.

Hence, if the g-factor anisotropy g⊥/g‖ is only weakly affected by gate voltages, as observed

here (see Supplementary Information Figs. S3d, e), then the Rabi frequency change is

correspondingly small.

We have carefully analyzed each of the contributions to the change of the Rabi frequency

(see Section 2.2 of the Supplementary Information) and find that the large change must

mostly be attributed to a gate-tunability of the spin-orbit length lso. Using equation (1),

we extract upper bounds of lso (see Supplementary Information Section 2.2.1). We find

remarkably short values of lso that are tuned from 28 nm down to 3 nm. Here we assume

a heavy-hole effective mass, as suggested by independent transport measurements at high

magnetic field [39]. Such a strong SOI was predicted for the DRSOI [3, 21]. This range of

lso overlaps with values found in antilocalization [40] and spin blockade experiments [39].

Besides the Rabi frequency, also the coherence is strongly affected by VM, as shown in

Figure 3a. We plot the characteristic driven decay time TRabi
2 in Figure 3d, finding that it

scales roughly inversely with fRabi and g‖: a short decay time coincides with a high Rabi

frequency, and vice versa. Together with the tunability of the Rabi frequency, this control

over the qubit coherence time allows us to define (see insets Figs. 3 b and d) a fast qubit

manipulation point (ON ) and a qubit idling point featuring significantly improved coherence

(OFF ), demonstrating the full functionality of the spin-orbit switch.

Moreover, the variation of g‖ in Figure 3 c effectively adds a third mode of operation to the

spin-orbit switch, where individual qubits can be selectively tuned, for instance in and out of

resonance with a microwave cavity, enabling a switch for qubit-resonator coupling [36, 37].

Finally, we find that the pulse depth ∆VP can also be used to tune of fRabi and g‖ (see

Section 2.1 of the Supplementary Information), indicating that dynamically pulsing these

quantities is feasible.
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Figure 4. Ultrafast coherent control. a Power-dependence of ultrafast Rabi oscillations. b

Line cut of data shown in a at a microwave power of 34 dBm. The data is fitted (blue solid curve)

as in Fig. 2, after subtraction of a linear background. c Rabi frequency as a function of microwave

amplitude, extracted from fits to line cuts in a.

V. ULTRAFAST RABI OSCILLATIONS

In a next step, we now use the electrical tunability to optimize the gate voltages for a high

Rabi frequency and furthermore increase the applied microwave power. In Figure 4, we show

a measurement of ultrafast Rabi oscillations, with the maximum Rabi frequency reaching a

value of 435(5) MHz (see Fig. 4b), allowing for spin-flip times of the qubit as short as 1.15 ns.

As can be seen in Figure 4 c, the Rabi frequency scales linearly with applied microwave

amplitude in this regime of ultrafast qubit operation and shows no signs of saturation for

the gate configuration used here, in contrast to Figure 2b. This indicates that even higher

Rabi frequencies may be possible through the application of a higher microwave power. Note

that pulse imperfections play a larger role for shorter pulse duration and higher amplitudes,

which likely partially explains the decrease in TRabi
2 with increased microwave amplitude.

Remarkably, the observed Rabi frequencies of over 400 MHz are roughly 1
8

of the Larmor

precession frequency of 3.4 GHz. The system is thus approaching the strong driving regime

where the rotating wave approximation is not applicable anymore, opening the possibility
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for ultrafast, non-sinusoidal spin-flipping [41, 42] that has not been realized before with

conventional spin qubits. We note that in our experiment, effects of strong driving [42]

could contribute to the reduced visibility of Rabi oscillations at the high Rabi frequencies

shown in the measurements of Figure 4.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have demonstrated ultrafast two-axis control via EDSR of a hole spin

qubit in a Ge/Si core/shell nanowire. Our measurements firmly demonstrate the feasibility

of single-spin qubit operations on nanosecond timescales. Ideally, such fast operations would

be combined with long qubit coherence times. Although we observe a relatively short inho-

mogeneous dephasing time, we measure a much larger spin echo decay time, which indicates

the presence of low-frequency noise affecting our qubit. The use of a charge sensor will

allow to decouple the quantum dots from the neighboring Fermi reservoirs, likely leading to

a significant further enhancement of the coherence time.

We have demonstrated a remarkable 7-fold increase of the Rabi frequency for a relatively

small change in gate voltage. Similarly, we find that the driven decay time of our qubit can

be tuned by the same gate voltage, demonstrating the basic workings of the spin-orbit switch.

Our measurements indicate the presence of an exceptionally strong spin-orbit interaction

in Ge/Si core/shell nanowires, in qualitative agreement with predictions of DRSOI [3, 21].

A more quantitative comparison to theory, as well as improved gate switching, requires

precise engineering of the electric field and single-hole dot occupation, both of which can be

achieved through optimization of the gate design.

The high tunability of the qubit demonstrates the suitability of the platform for the

implementation of a qubit with switchable interaction strengths. The effect of the gate

voltages and the pulse depth on the qubit resonance frequency and the Rabi frequency

have the potential to dynamically pulse the characteristic qubit parameters and interaction

strengths from a qubit manipulation to an idling point. Furthermore, the spin-orbit switch

could allow tuning to ‘sweet spots’ of operation, where the SOI strength is to first order

insensitive to charge noise, leading to enhancement of qubit coherence [3]. Finally, the
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strong spin-orbit interaction holds great potential for realizing fast entangling operations

between distant spin qubits, mediated by a microwave resonator [6, 31, 36, 37, 43].

VII. METHODS

A. Device Fabrication

The device features a set of five gates with a width of 20 nm and a pitch of 50 nm

defined by electron beam lithography (EBL) on a p++-doped Si chip covered with 290 nm

of thermal oxide. The gates are covered by a 20 nm thick layer of Al2O3 grown by atomic

layer deposition in order to electrically insulate them from the nanowire. A single Ge/Si

core/shell nanowire with a core radius of about 10 nm and a shell thickness of 2.5 nm [8]

is placed deterministically across the set of gates using a micromanipulator. The nanowire

is roughly aligned with the coordinate system in Figure 1b but the exact angle in the x̂ẑ

plane is unknown. Finally, ohmic contacts are fabricated by EBL and metallized with Ti/Pd

following a short dip in hydrofluic acid to remove the native oxide. The scanning electron

micrograph shown in Fig. 1a is from a similarly fabricated device as used here.

B. Experimental Setup

The sample is wire-bonded to a printed-circuit board (PCB) providing dc wiring and RF

lines, coupled via bias tees. The PCB is mounted in a Bluefors dilution refrigerator with a

base temperature around Tbase = 10 mK, at which tempreature all measurements are taken.

Each high-frequency line includes attenuators with combined values of ∼30 dB. A Basel

Precision Instruments LNHR DAC is used to supply the dc voltages, and a Basel Precision

Instruments LNHS I/V converter is used for readout of the qubit in transport.

A Tektronix 7122C or AWG5208 arbitrary waveform generator (AWG) is used to generate

the square voltage pulses applied to gate VLP. To drive the qubit, either an analog Keysight

E8257D signal generator or a E8267D vector signal generator supplies the microwave tone.

For measurements at high microwave power a RF-Lambda model RFQ132070 amplifier was

used. Two different configurations of the setup are used for microwave burst generation.

For the measurements in Figures 1 c-d, 2d, 3, and 4, the amplitude of the microwaves is

modulated by means of an RF-switch (ZASWA-2-50DRA+ from MiniCircuits), triggered
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by the AWG. The RF-switch has a minimum pulse width of 10 ns. For the measurements

in Figures 1b, 2a-c, e, f, the microwave bursts are generated by IQ modulation of the

vector signal generator’s microwave tone. Here, the minimum pulse width is 6 ns. In either

configuration, a lock-in amplifier is used to chop the bursted microwaves at a frequency of

89.75 Hz and the I/V converter output is demodulated at his frequency. This allows us to

separate the current signal due to the applied microwaves from the background.

C. Data Analysis

Rabi frequencies are extracted from fits to I (tburst) = I0 + C · sin (2πfRabitburst + φ) ·

exp
(
−tburst/T

Rabi
2

)
. Here, I0 is an offset, C the amplitude, φ a phase shift, and TRabi

2 the

characteristic decay time. Furthermore, we post-processed raw data sets in the following

ways. The data in Fig. 1 c (1d) was offset by 10 mT (20 mT) to compensate for trapped

magnetic flux. Furthermore, the average value has been subtracted from each column and

row of the raw data. Then each row has been divided by the average row value. Similarly,

for the plots of Fig.2b and 4a, the average value has been subtracted from each column

and row of the raw data. In Fig. 4a, data for microwave burst times below the minimum

pulse width achievable by our electronics is omitted.

D. Measurement Details

In the following we list the relevant parameters that were used for the various mea-

surements. For the measurements of Figs. 1 c-d, a fixed pulse amplitude ∆VP = 0.55 V

and a burst duration tburst = 15 ns was used. In Figs. 2a-c, ~Bext was oriented along the

−ŷ-axis. For Fig. 2d, fMW = 3.4 GHz was used and ~Bext was oriented in the x̂ŷ-plane,

making an angle of 40◦ with the ŷ-axis. In Fig. 2 e, the duration of the π-pulse tπ = 13 ns,

PMW = 3 dBm, fMW = 2.6 GHz, and | ~Bext| = 181 mT along the −x̂-axis. For Fig. 2 f, we

used PMW = 14 dBm, fMW = 3.4 GHz and | ~Bext| = 292 mT, along the same direction as

used for Fig. 2d. Finally, for the measurements of Fig. 3, we used PMW = 25 dBm and the

orientation of | ~Bext| was the same as in Fig. 2d.

For completeness, we also mention the other gate voltages used for the measurements of

Fig. 3: VL = 3710 mV and VR = 1495 mV, VLP and VRP depend on VM, but are similar to

12



the values used for Fig. 1b.
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