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ABSTRACT: Selective-area epitaxy provides a path toward high
crystal quality, scalable, complex nanowire networks. These high-
quality networks could be used in topological quantum computing
as well as in ultrafast photodetection schemes. Control of the
carrier density and mean free path in these devices is key for all of
these applications. Factors that affect the mean free path include
scattering by surfaces, donors, defects, and impurities. Here, we
demonstrate how to reduce donor scattering in InGaAs nanowire
networks by adopting a remote-doping strategy. Low-temperature
magnetotransport measurements indicate weak anti-localizationa
signature of strong spin−orbit interactionacross a nanowire Y-
junction. This work serves as a blueprint for achieving remotely
doped, ultraclean, and scalable nanowire networks for quantum technologies.
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■ INTRODUCTION

In the last two decades, semiconductor nanowires (NWs)1

have opened multiple new perspectives in a wide variety of
applications including photovoltaics,2−6 photodetectors,7−10

lasers,11−15 single-photon emitters,16,17 photoelectrochemis-
try,18 nanoscale electronics,19 and research into topological
quantum computing.20−24 While most NW fabrication
approaches result in free-standing structures, selective-area
epitaxy (SAE) has recently been revived for the fabrication of
horizontal NW assemblies that can be directly contacted on a
wafer.25,26 SAE has thus been used to obtain lateral III−V
NWs, with high NW crystal quality and with scalability
unmatched by any other bottom-up NW growth method. The
ability of SAE NWs to be grown into NW networks,27 and the
relative ease with which they can be further processed directly
on the original substrate, makes them extremely attractive for
use in experiments exploring topological quantum transport
physics.28−32

It has generally been reported that surface scattering in NWs
reduces carrier mean free paths which, by extension, also
reduces carrier mobility with respect to their bulk counterparts.
This is especially pertinent in InAs NWs, where the surface
Fermi level pinning results in most of the conduction occurring
at the surface.33 Room-temperature electrically measured
mobilities for undoped, vertically grown InAs NWs thus fall
in the range of ∼20−3000 cm2/(V s).34−38 Noncontact
measurement techniques such as THz pump−probe spectros-
copy report slightly higher mobilities of ∼4000−6000 cm2/

(V s) due to the smaller length scale of the assessment and a
possible selection bias (higher mobility sections contributing
more to the signal).38−40 Still, mobilities remain significantly
lower than the reported values for thin films of around 30000
cm2/(V s).41 InGaAs nanowires with In:Ga ratios around 50%,
on the other hand, have been reported with somewhat lower
mobilities ranging from ∼500 to 1500 cm2/(V s).42,43

Over the years, modulation doping has proven to be a staple
technique to many applications employing high-performance
semiconductor heterostructures. This technique allows for the
creation of two-dimensional electron gases (2DEGs) with high
carrier concentration combined with extremely high mobilities.
From groundbreaking scientific discoveries such as the integer
and fractional quantum Hall effects,44−46 and enabling novel
concepts such as topological qubits47−50 to high-power
applications using high electron mobility transistors
(HEMTs),51,52 a wide range of fields have benefited and are
continuing to benefit from remotely doped 2DEG hetero-
structure schemes. With current knowledge and modern
epitaxy techniques, state-of-the-art 2DEG devices can achieve
mobilities regularly exceeding 107 cm2/(V s).53,54 Similarly to
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bulk, direct doping of NWs reduces carrier mobilities due to
ionized dopant scattering. To circumvent this carrier scattering
mechanism, vertically grown free-standing GaAs NWs with a
remote-doping design exhibit both high carrier densities and
high mobility.55−58

In this work, we demonstrate the growth of quasi-1D
InGaAs NW heterostructures hosting coherent transport by
combining remote doping with SAE. The InGaAs NWs are
obtained on a GaAs nanomembrane (NM) buffer in which the
doping is located. The band alignment naturally results in the
localization of electrons in the region with higher indium
content (and lower bandgap). Improved electrical transport is
demonstrated by low-temperature field-effect and magneto-
transport measurements across InGaAs NW Y-branches,
demonstrating high-quality NW junctions. This research thus
lays the groundwork for future exploitation of remote-doping
schemes in scalable NW networks, including materials beyond
InGaAs.

■ GROWTH
Remotely doped InGaAs NWs were grown on top of GaAs
NM buffers using a SAE approach, as depicted in Figure 1a. A

GaAs (1 1 1)B substrate was covered by a SiO2 mask to
achieve high growth selectivity. The SiO2 mask was then
patterned with stripes along the three equivalent ⟨1 1 2̅⟩
directions on the substrate using e-beam lithography and
reactive ion etching. The resist was stripped with an O2 plasma,
and the substrate was etched in a dilute buffered HF solution
before being loaded into the molecular beam epitaxy (MBE)
cluster for growth to ensure an ultraclean surface.

Figure 1b corresponds to the general scheme of the
structures in this work. Silicon dopants are introduced at a
distance from the InGaAs channel. We expect carriers to
localize into the lower-bandgap NW region. As a result, the
NWs benefit from an increased carrier concentration thanks to
the extrinsic dopants, while ionized impurity scattering is
limited due to the physical separation between the doped and
transport regions.
Figure 1c shows a representative scanning electron

microscopy (SEM) image of the remotely doped NW
structures. We recognize a high degree of uniformity in both
the buffer NMs and the NWs. Similarly, as shown in Figure 1d,
Y-branched structures result from the merging of NWs
growing in three equivalent directions.27 These branched
structures exhibit a high degree of NW uniformity, which is
further confirmed by X-ray fluorescence (XRF) measurements
performed at the ID16B beamline of the European
Synchrotron Radiation Facility (ESRF) shown in the
Supporting Information.
In−Ga intermixing is commonly observed at the interface

between InAs and GaAs.59 This is also the case for InAs grown
on GaAs buffer NMs. In a previous study, we demonstrated
InGaAs NWs with a relatively low In content.27 Increasing the
In content is key to enhancing spin−orbit interaction (SOI). In
this context, we explored different growth conditions to
increase the In concentration. In particular, we varied
temperature along with In and As4 fluxes. We present four
representative samples with a variation in the In deposition
rate and As4 beam equivalent pressure (BEP). The
composition was analyzed by performing elemental maps by
scanning transmission electron microscopy (STEM) energy
dispersive X-ray spectroscopy (EDS) on prepared cross
sections. The resulting In concentration maps are shown in
Figure 1e−h. Here, the atomic concentration of In is calculated
as CIn/(CIn + CGa + CAs) with the maximum possible
concentration being 50% for pure InAs. In Figure 1e, we see
that an In rate of 0.1 Å/s and V/III ratio of 150 yields a self-
terminating growth and a flat (111) top facet with an In
concentration of ∼10% at the two upper corners of the
structure. Decreasing the V/III ratio to 110, as shown in Figure
1f, results in a more pointed structure that does not self-
terminate. This results in a larger amount of material being
deposited and a maximum In concentration of ∼20%.
Doubling the In deposition rate to 0.2 Å/s (while halving the
growth time to keep the total deposited volume constant) gives
a similarly shaped structure; however, now the peak In
concentration is ∼25%, as shown in Figure 1g. Finally, Figure
1h shows the result of also increasing the V/III ratio to 150
with an In deposition rate of 0.2 Å/s. We observe a structure
very similar to Figure 1f with a pointed shape and maximum In
concentration of 20%.
We, therefore, observe that a higher In flux yields an

increased In concentration in the NW, up to about 25%. On
the other hand, at low In rates, In concentrations of only 10%
or less are observed. The InAs growth temperatures are
relatively low for solid-phase diffusion which is typically only
observed above 750 °C.60−62 The In−Ga intermixing could
instead be mediated by surface adatom diffusion during
growth. This is a thermodynamically driven effect which,
consequently, can be suppressed at higher deposition rates
where the system approaches a kinetic regime.63

Also, the V/III ratio is known to affect the atomic surface
reconstruction which in turn affects facet-dependent growth

Figure 1. (a) Illustration of the SAE growth process. (b) Diagram
showing the desired doping profile for remotely doped InGaAs NWs
on GaAs NMs. (c) Tilted SEM image of an array of NWs after MBE
growth. (d) Close-up tilted SEM image of a Y-junction showing
uniform coalescence of InGaAs NWs. (e−h) Elemental maps of In
concentration taken with STEM EDS on NW cross sections showing
the dependence of growth conditions on NW composition.
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rates and the resulting shape.64,65 In Figure 1e, at high V/III
ratios and low growth rates, InGaAs grows to form a flat (111)
B top facet, after which NW growth stops. This suggests that
desorption of In species from this flat top facet is higher than
the incoming flux. However, if the In rate is increased, as in
Figure 1h, then NW growth is re-established which can be
explained by the fact that the increased incoming flux becomes
greater than the desorbing flux, thus continuing NW growth.
Similarly, if the V/III ratio is decreased, as in Figure 1f, a
similar effect is achieved. This, therefore, suggests that, at the
higher V/III ratio, the abundance of As atoms also plays a role
in inhibiting growth on the (111)B top facet. Thus, higher In
rates and lower V/III ratios should be pursued to reduce Ga
intermixing in the NW. This result is at least partially
supported by recent reports on (100) GaAs substrates where
very low V/III ratios are used to grow pure InAs NWs on top
of GaAs(Sb) buffers.28

The highest In concentration was about 25% absolute,
corresponding to In0.5Ga0.5As. This sample was obtained with a
high In flux and lower V/III ratio. These conditions were kept
for the rest of the structures presented in this study.

■ ATOM-PROBE TOMOGRAPHY

As the silicon dopant concentration was well below the
detection limits of STEM EDS, atom probe tomography
(APT) was used as a technique to image the three-dimensional
distribution of the dopants in the structure.
APT was used to analyze the distribution of the dopants in

the nanowire heterostructures, as shown in Figure 2.27,66

Samples were prepared by lift-out and annular milling using a
focused ion beam to isolate the nanowire region for
analysis.67,68 Details of the specimen preparation and APT
analysis conditions can be found in the Experimental Section.
Figure 2a shows the APT reconstruction of the region
indicated by the dashed white line in the schematic. Silicon
dopants were mostly detected on the GaAs top facet, as shown
in Figure S8. The analysis here focuses on the subregion
indicated in the dashed black line. To accurately measure the
Si dopant distribution despite this artifact, a proximity
histogram69 was generated, as shown in Figure 2b on either
side of a 16% In mole fraction isosurface. The Si concentration
peaks below the NM−NW interface, as expected from the
doping scheme. APT analysis of two additional hetero-
structures (see the Supporting Information) found a similar
distribution of Si concentrated at the NM−NW boundary.
Moving 5−10 nm away from the interface, Si was not detected
above the noise level (see Figure S8). The upper bounds on
the Si concentration in the upper and lower regions away from
the interface are 2 × 1018 and 7 × 1018 cm−3, respectively, as
indicated by dashed lines in Figure 2b. These measurements
demonstrate that Si was incorporated at a distance from the
InGaAs transport channel, validating the remote doping from
the compositional mapping point of view.

■ MAGNETOTRANSPORT

NW structures were electrically contacted for four-point
measurements on all three arms of the Y-junctions (see the
Experimental Section). A top gate was fabricated by first
covering the junction with a 40 nm thick HfO2 gate oxide by
atomic layer deposition (ALD) followed by metal evaporation.
An SEM image of an electrical device illustrating the overall
design is displayed in Figure 3a. A false-colored cross-sectional

focused ion beam (FIB) STEM image is displayed in Figure 3b
with the identification of the different layers of the device. It is
important to note that the metallic contact layers are
continuous through the whole high-aspect-ratio structure, as
a result of the dual-angle evaporation.
The samples were then cooled down and electrically

characterized at cryogenic temperature. The conductance as
a function of top gate voltage Vg is shown in Figure 3c in units
of e2/h, giving very similar results over all pairs of arms of the
Y-junctions. From this measurement, the field-effect mobility is
extracted using70
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with L = 600 nm being the length of the channel, ϵ0 = 8.854 ×
1012 F/m, 6.5HfO2

ϵ = ,28 and C the gate capacitance. The
contact resistance Rs, the conductance threshold voltage Vth,
and the mobility μ are the fit parameters. The gate capacitance
was estimated numerically using a finite element simulation in
COMSOL, though similar values were calculated analytically
using coaxial cable or parallel plate capacitor models. The
contribution of the GaAs NM to the electrical transport is
negligible, as already previously demonstrated.27

Figure 2. (a) APT reconstruction of an InGaAs NW on a GaAs NM.
The white dashed line in the schematic indicates the region analyzed
by APT. Ga and In atoms are shown in green and red, respectively. As
atoms are omitted for clarity. The NM−NW boundary is rendered
with an isoconcentration surface of 5% In mole fraction. (b)
Proximity histogram across the NM−NW interface showing the Si
dopant distribution. Gray dashed lines show the upper bounds on Si
concentration in regions away from the interface, where Si counts
were not above the noise level. The isoconcentration surface of 16%
In mole fraction is at 0 nm as a reference.
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We extract a field-effect mobility μ of ∼480 ± 50 cm2/(V s).
At zero gate voltage, this corresponds to a mean free path le of
∼300 ± 30 nm in the 1D limit and ∼20 ± 5 nm in the 3D
limit. The associated Fermi wavelengths λF are smaller than the
effective width of the nanowire, suggesting that a 3D approach
is appropriate. Given a rather high carrier density from the
capacitance models, the conductance of ∼1 e2/h corresponds
to partial transmission of many transverse quantum modes,

corresponding to a multimode conductor. This mean free path
le represents a significant improvement over previous work,27

where le was found to be limited by ionized dopant scattering
on an ∼nm length scale.
Reported electron mobility values in free-standing InGaAs

NWs at room temperature range between 500 and 1500 cm2/
(V s), for similar In content.42,43 We associate this difference,
in part, to the reduced diameter and the presence of strong
surface and boundary scattering at both the top surface and
disordered GaAs/InGaAs interface. In addition, the presence
of alloy scattering due to disorder, as evidenced by the STEM
EDS investigations, is also likely to play a role in limiting
mobility in this ternary system.71 While our result is on the low
end of this spectrum, we stress that our wires, grown by a SAE
approach, enable scalability not achievable via standard growth
techniques.
The magnetoconductance of the devices was then probed.

Figure 3d and e displays the conductance as a function of the
applied perpendicular magnetic field B. Again, the results are
independent of which Y-junction arms are used. The enhanced
conductance at zero field indicates the presence of weak anti-
localization (WAL), a hallmark signature of the SOI. WAL is
the result of the accumulating spin precessions around
momentum-dependent effective magnetic fields arising from
spin−orbit coupling in the Dyakonov−Perel mechanism.72 In
the quasiclassical, clean limit73−76
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for a multimode quasi-1D wire, where the phase coherence
length lϕ is exceeding the wire width W and le ≫ W. Here, e is
the electron charge, h is the Planck constant, lso is the spin−
orbit length, and lB is the magnetic dephasing length, which in
the clean limit le ≫ W is given by

l
C l l

W
C l l

WB
2 1 e m

4

3
2 e

2
m

2

2= +
(3)

where lm = eB/ℏ is the magnetic length and C1,2 are
constants dependent on the type of boundary scattering.73

Here, similar values were obtained in using both specular and
diffusive boundary scattering. The coherence length, lϕ, is a
measure for how far an electron will travel on average before
having its phase randomized due to inelastic scattering events.
The spin−orbit length, lso, is the typical length for the spin to
precess appreciably and is, thus, a key measure for the strength
of the SOI, with a shorter lso corresponding to stronger spin−
orbit coupling. We mention here that our extracted mean free
path falls outside the clear validity of either of the clean (le ≫
W) or diffusive (le ≪ W) limits. Thus, we have done the fits in
both regimes (see the Supporting Information for details),
giving very good agreement with the experiment. We obtain
values of lϕ ∼ 100 nm and lso ∼ 80 nm using both the clean and
diffusive limits. For the clean regime fits, le = 20 nm was held

Figure 3. (a) False-colored SEM image of a fabricated electrical
device showing three pairs of contacts to enable four-point
measurements and a global top gate. (b) False-colored cross-sectional
STEM high-angle annular dark-field (HAADF) image showing the
layers in a fabricated electrical device. (c) Differential conductance as
a function of top gate voltage Vg, from which the field-effect mobility
μ = ∼480 ± 50 cm2/(V s), the conduction threshold Vth = −1.9 ± 0.2
V, and the contact resistance Rs = 12.2 ± 0.6 kΩ were extracted. (d)
Differential conductance plot (color scale) as a function of magnetic
field perpendicular to the substrate and top gate voltage with Vg,AC =
200 mV (peak-to-peak) oscillation added. (e) Magnetoconductance
cuts (black) with fits (red) as labeled, exhibiting clear WAL. The
WAL model is valid between the dashed vertical lines, which also
denote the fitting range (solid red). Theory curves are extended to the
full B-range (dashed red). Over the full gate range, average values of lϕ
= 100 ± 20 nm and lso = 80 ± 20 nm, where the mean free path le =
20 nm was held fixed here. (f) Finite element simulation in nextnano
of remotely doped structure obtained from APT measurements
showing an electron distribution in the InGaAs NW which is spatially
separated from the n-type silicon dopants and disordered GaAs/
InGaAs interface. Inset: band structure cut along x = 0 nm with
electron concentration overlaid in red.
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fixed in order to extract lϕ and lso unambiguously. The presence
of WAL indicating strong SOI in the system is also a clear
advance over previous results,27 in addition to the longer mean
free path. Also, the coherence and spin−orbit parameters
extracted here are very similar to other studies.28,29,48

Both Dresselhaus and Rashba SOIs are key resources for
topological quantum computation and spin qubits. Dresselhaus
SOI, on the one hand, is due to a lack of crystal inversion
symmetry. NWs, particularly those with low symmetry and/or
large aspect ratio cross sections, can have a strong Dresselhaus
SOI, as recently predicted.77 Rashba SOI, on the other hand, is
due to a breaking of structural inversion symmetry, often
appearing at an interface or surface. Both types of SOI may be
gate-controlled, i.e., by changing the electric field (Rash-
ba)78−80 or by gate-tuning the wave function asymmetry
(Dresselhaus).28,77 Given the width of the present NWs, the
estimated Dresselhaus contribution is negligible. We have
measured the gate voltage dependence of the magneto-
conductance. The resulting plot is shown in Figure 3d.
Universal conductance fluctuations and charge switchers can
often obscure the results of the magnetoconductance. In order
to mitigate this, we coupled an AC-oscillation to the top gate.81

Using the model from eq 2 over the full gate voltage range, lϕ
and lso are found to be essentially independent of gate voltage
(see Figures S5 and S6). This can be attributed to the wrap-
around geometry of the gate, effectively shielding the NW from
applied electric fields, while still allowing one to gate-tune the
density (see Figure 3b). Thus, the WAL observed here is
presumably due to the Rashba effect arising from built-in
electric fields in the structure, such as gradients in the bandgap,
presence of ionized dopants, or surface effects. In the
Supporting Information, we give more details and a full
analysis of the data with and without the AC oscillation.

■ CONCLUSION

We have demonstrated that remote doping of InGaAs NW
networks grown by SAE is a promising approach to improving
their quantum transport properties. Remote doping has
enabled significant improvement of the key transport
parameters such as the mean free path and SOI strength
over previous bulk-doped NWs.27 Together with increased In
content lowering the band gap, the Y-junctions exhibit WAL,
indicating strong SOI, which is a necessary ingredient for
future applications in topological quantum computation. These
measurements further serve as proof of the quality of the
crystal across NW Y-junctions, and this work opens up new
perspectives into using this approach in networked quantum
computing schemes.

■ EXPERIMENTAL SECTION

Growth. MBE growth was performed in a DCA P600 solid-
source MBE chamber. Twenty-five nm of SiO2 was deposited
on GaAs (111)B substrates by plasma-enhanced chemical
vapor deposition (PEVCD). These were patterned by e-beam
lithography using 35 nm of ZEP resist and etching in an SPTS
APS dielectric etching tool employing SF6 and CHF3
chemistry. After resist stripping in an O2 plasma, the samples
were etched for 10 s in a highly dilute buffered HF solution to
remove ∼5 nm of SiO2 everywhere and smoothen the mask.
Samples were then loaded and annealed at 400 °C for 2 h in a
degassing chamber followed by 630 °C for 30 min in the
growth chamber immediately before growth. The GaAs buffer

NMs were grown at a temperature of 630 °C at an equivalent
2D GaAs growth rate of 1 Å/s with an arsenic BEP of 4 × 10−6

Torr. They were grown to an equivalent 2D thickness of 100
nm, resulting in structures with a height of ∼300 nm. Toward
the end of the buffer growth, Si dopants were introduced for a
short duration via a Si sublimation cell at a rate of 1013 cm−2

s−1 to achieve the desired doping profile, nominally 2 nm
below the surface of the NM. After GaAs growth, the substrate
temperature was decreased to 540 °C, while the As BEP was
increased to 8 × 10−6 Torr for InAs deposition. The In flux
corresponded to an InAs equivalent growth rate of 0.1 Å/s.
The In flux was closed after the 2D equivalent grown thickness
of 60 nm of InAs, and the sample was then cooled down under
As flux.

STEM. Cross sections of the samples were prepared first in a
FEI Nova 600 Nanolab dual-beam SEM/FIB tool before being
loaded into a FEI Tecnai Osiris microscope operating at 200
keV in STEM mode. Elemental contrast was obtained by EDS
thanks to four cryo-cooled Super-X silicon drift detectors
(SDDs).

APT. To protect the sample from damage during FIB
milling, the sample was coated with 120 nm of Ni using ion-
beam sputtering at 9 kV and 7 mA. Then, a further protective
Pt capping layer was deposited by ion beam induced
deposition prior to lift-out using a FEI Helios dual-beam
focused ion beam. Wedge-shaped lift-outs were welded onto Si
microposts, and annular milling was used to isolate the region
of interest within a needle-shaped tip with a diameter of 20−
60 nm. APT analysis was performed using a local-electrode
atom-probe (LEAP) 5000 XS (CAMECA, Madison, WI) with
a 355 nm wavelength laser under the following conditions: 250
kHz pulse rate, 30 K background temperature, 2.5 × 10−11

Torr background pressure, and 0.4% target detection rate. An
initial pulse energy of 3 pJ was used to evaporate through the
surface oxides; pulses of 0.65−0.74 pJ were used in the region
analyzed. APT data were reconstructed using IVAS 3.8.5
software. The tip profile method was applied, in which SEM
images of the nanotips before analysis were used to determine
the reconstructed radius as a function of analyzed depth.

Contacts and Electrical Measurements. The devices
were cleaned with standard solvents, and the contacts were
patterned with e-beam lithography, followed by an O2 plasma
cleaning. Before metallization, the samples were then exposed
to an ammonium polysulfide (NH4Sx) solution for 150 s to
remove the native oxide.82 Contacts were deposited by dual-
angle evaporation of 14/50 nm of Cr/Au to achieve suitable
sidewall coverage. Next, 40 nm of HfO2 was deposited by ALD
followed by another round of e-beam lithography and
metallization to pattern the top gates. Finally, the sample
was bonded into a chip carrier and measured using standard
lock-in techniques in a variable temperature insert cryostat.
Similar results were reproduced on another sample from the
same wafer.
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Characterization and analysis of InA s/p -Si heterojunction nano-
wire-based solar cell. J. Phys. D: Appl. Phys. 2014, 47, 394017.
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(36) Blömers, C.; Grap, T.; Lepsa, M. I.; Moers, J.; Trellenkamp, S.;
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