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Supplementary Material

A. Latent space

A representation of the latent space of the trained VAE with the bias triangles

corresponding to each embedding is shown in figure S1.
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Figure S1: Latent space of the trained VAE. In order to visualise the ten-dimensional latent

embeddings, t-SNE [1] is applied for dimensionality reduction. The new two-dimensional latent

space is described by a vector w. The original training inputs are plotted at the embedding

locations.

B. Optimisation

The optimisation of different pairs of bias triangles is shown in figure S2 (cases S1 to

S8) and figure S3 (cases S9 and S10). The stability diagrams correspond to gate voltage

configurations for which a decrease in score Si is observed. Figure S4 presents the VAE
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score Si as a function of the number of iterations of the optimisation algorithm for the

optimisation cases in figure S2 and figure S3. The total gate voltage changes during

fine-tuning are presented in Table S1.

0

150
I (pA)

S1.

S2.

S7.

S3.

S4.

S5.

S6.

S8.

Initial scan Decreasing score Si

Figure S2: Stability diagrams of bias triangles at different iterations of the optimisation

algorithm. The stability diagrams correspond to iterations for which the gate voltage

configuration led to a decrease in score Si. Only a selection of the bias triangle measurements

at accepted gate voltage configurations are plotted.
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Figure S3: Stability diagrams of bias triangles at different iterations of the optimisation

algorithm. The stability diagrams correspond to iterations for which the gate voltage

configuration led to a decrease in score Si. Only a selection of the bias triangle measurements

at accepted gate voltage configurations are plotted.
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Figure S4: Score Si as a function of the number of iterations of the optimisation algorithm.

The indexed lines correspond to the optimisation cases presented in figure S2. Dashed lines

of the same colour represent different runs of the optimisation algorithm for given cases.
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Table S1: Total gate voltage change (mV) during fine-tuning. Gates voltages V1, V2 and V8

were optimised, whereas gates V3 and V7 were used to center the bias triangles.

Case ∆V1 ∆V2 ∆V3 ∆V7 ∆V8

1 −8.0 0 6.29 5.92 −6.0

2 −6.0 −8.0 6.57 0 6.0

3 −4.0 −8.0 5.26 1.97 0

4 6.0 4.0 −3.94 −7.89 10.0

S1 −10.0 0 5.26 4.60 0

S2 −4.0 −10.0 5.92 1.31 0

S3 0 −8.0 2.63 0 −2.0

S4 −6.0 −2.0 3.94 1.97 2.0

S5 −4.0 −6.0 4.60 0.66 2.0

S6 0 −8.0 3.29 −1.31 2.0

S7 −2.0 −8.0 3.94 0.66 0

S8 14.0 0 −7.23 −9.86 4.0

C. Targets

The target bias triangle pairs used by the fine-tuning algorithm are shown in figure S5.

The targets are selected from the unaugmented training set from a Ge/Si nanowire

device.
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Figure S5: Stability diagrams of the target bias triangle pairs from a Ge/Si nanowire device.

Stability diagrams are plotted as a function of barrier gates V3 and V7. The colour scale runs

from red, the highest current measured, to blue, the lowest current.

D. VAE architecture

The encoder and decoder part of the VAE are embodied in convolutional neural

networks. The discriminator consists of a fully connected neural network. The

architecture of both the VAE and discriminator neural networks is shown in Fig. S6.
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Figure S6: Neural network architectures of the VAE and discriminator.

E. Augmentation

Augmentation is used to expand the size of the training data set by creating modified

versions of measurements in the original data set. The variation of images improves the

robustness of the model and reduces its sensitivity to device specific parameters and

noise.

Mirroring of the stability diagrams was performed around the V3−V7 axis and

applied to the entire data set. This created an extra mirrored copy of all bias triangle

stability diagrams. The orientation of the bias triangles depends on the applied bias

voltage. Reversing the bias voltage leads to mirroring of the bias triangle pair around

the V3−V7 axis. The unaugmented training data set consisted of stability diagrams of

bias triangles measured at positive and negative bias voltage. Therefore, in order to

increase the variability of the data set, a mirrored version of the stability diagrams was

required in the training data set. Thanks to the mirroring augmentation, the algorithm

can be operated in an experimental setting at both positive and negative biases.

Rotation was applied about a random angle within -21 to +21 degrees. An original

copy of each stability diagram was stored in the training data set. The rotation of bias

triangles corresponds to different couplings of the quantum dots to the gate electrodes.

The strength of the Gaussian noise augmentation was 0.25. A random array with

values between 0 and 1 was multiplied with 0.25 and added to the stability diagram array

multiplied with a factor 0.75. The strength of the Gaussian noise might vary between
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devices due to their quality in terms of charge traps and defects in the material.

Lastly, random contrast in the range 0.8 to 1.2 was applied. This implied

multiplying the entire stability diagram array by a random scalar between 0.8 and

1.2. This contrast would depend on device specific parameters such as tunnel barriers.

F. VAE loss functions

The loss function of a VAE is given by a reconstruction error Lrec and regularisation

error Lreg. The mathematical definitions of Lrec and Lreg are:

Lrec = −αEqφ(z|x) [log (pθ (x|z))] (1)

Lreg = βDKL (qφ (z|x) ||p (z)) (2)

where α and β are weight constants for the reconstruction error and the

regularisation term, respectively.

The loss function of the discriminator is given by:

LDisc = log (Dψ (z))− log (1−Dψ (z′)) (3)

where z ∼ qφ (z), z′ ∼
∏

jqφ (zj), and Dψ is the discriminator neural network

parametrised by ψ. The discriminator outputs the probability between 0 and 1 that

its input is a sample from qφ (z) rather than from
∏

jqφ (zj). In order to sample from

qφ (z), a random batch of data x is selected and then sampled from qφ (z|x). Sampling

from
∏

jqφ (zj) is done by randomly permuting the sampled batch from qφ (z) across

the batch for each latent dimension. The discriminator is trained in tandem with the

encoder and decoder.
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