
Quantum measurement induces a many-body transition
Backaction channels beyond the ideal detector paradigm
cause a transition in the state of the observed system.
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The current revolution in quantum technologies relies on the ability to isolate, coherently con-
trol, and measure the state of quantum systems. The act of measurement in quantum mechanics,
however, is naturally invasive as the measurement apparatus becomes entangled with the system
that it observes. Even for ideal detectors, the measurement outcome always leads to a disturbance
in the observed system, a phenomenon called quantum measurement backaction. Here we report
a profound change in the many-body properties of the measured system due to quantum measure-
ments. We observe this backaction-induced transition in a mesoscopic double quantum-dot in the
Coulomb-blockade regime, where we switch the electron population through measurement with a
charge sensor dot. Our finding showcases the important changes in behaviour that can arise due to
quantum detectors, which are ubiquitous in quantum technologies.

Quantum information processing relies on coher-
ently controlling and coupling individual quantum bits
(qubits) [1]. There is a wide variety of competing tech-
nologies that realize qubits, each with its own advantages
and challenges. Examples of qubit hardware include elec-
tron and nuclear spins in quantum dots [2, 3], localised
charge states [4], superconducting devices [5, 6], internal
states of trapped ions [7, 8], and even Majorana modes in
topological materials [9]. Regardless of the specific real-
ization, a key required component in quantum hardware
is a measurement device, i.e., a quantum detector that is
used to determine the outcome of computations [1, 10].

A quantum detector couples to the system it mea-
sures such that their respective quantum states become
correlated during the measurement process. In turn,
reading out the state of the detector collapses the sys-
tem towards the outcome of the measurement, in a pro-
cess known as backaction [10]. An ideal detector op-
erates close to the quantum limit [11, 12], where the
backaction it imparts is equal to the rate of informa-
tion gain about the system’s state [13–19]. The inter-
play between quantum detectors and coherent processes
in quantum systems is an active field of research, which
touches upon the foundations of quantum mechanics.
Its broad set of achievements include weak values [20],
quantum feedback circuits [12, 21], high-precision ampli-
fiers [22], quantum state discrimination [23] and stabiliza-
tion [12], as well as detector-assisted transport [24, 25].
The latter implies that quantum systems, that are cou-
pled to particle-reservoirs, always experience additional
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many-body energy-exchange channels of backaction be-
yond those considered in an ideal detector.

Alternatively, Quantum detectors can be thought of as
out-of-equilibrium environments whose internal dynam-
ics depends on the measured system. Even standard dis-
sipative environments can fundamentally influence quan-
tum many-body systems and their steady-states in of-
ten counter-intuitive ways [26, 27]. Correspondingly, the
environment can even trigger abrupt changes in the sys-
tem’s observable properties, i.e., it can induce phase tran-
sitions (PTs) or sharp crossovers [28]. As a result, new
universality classes [29] and novel topological effects [30]
emerge in driven-dissipative systems.

In this work, we report on a quantum measurement-
induced many-body transition. We observe this tran-
sition in an open many-body quantum system, a dou-
ble quantum dot (DD) where the two dots are coupled
to each other only capacitively, and each dot is tunnel-
coupled to a lead. An adjacent charge sensor dot (CSD)
measures the charge state of the DD [13–19, 31]. The
DD exhibits different phases that are characterized by
the charge configuration on the quantum dots. In the
absence of the detector, these phases are determined by
the ground-state energetics of the DD with the leads sup-
plying the charges. We observe that the detector im-
parts backaction that induces a distinct change in the
observed charge configuration. Specifically, we observe
that the system now preferentially populates an energet-
ically high-lying state, in close analogy to theoretical pre-
dictions for population switching in related systems [32].
We systematically analyse the dependence on measure-
ment strength and temperature of this transition, and
develop a concise theory that reproduces the features of
the measured data. The backaction-induced population
switch highlights the extreme sensitivity of quantum sys-
tems to out-of-equilibrium fluctuations: For a qubit fully
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FIG. 1. Charge stability of a double dot with and without the effects of measurement backaction. a DD
backacktion imbalance as a function of the dot energies εL and εR for the case of negligible backaction. Since measuring at
very low bias is very noisy, we measure at a larger measurement bias VM = 150µeV and turn on the interdot tunnelling to
mimic the canonical DD charge stability diagram as obtained in absence of backaction. Full (mint) and empty (white) circles
illustrate the ground-state in each region of the observed charge stability map. Inset: Scanning electron micrograph of the
device. The population of the DD (mint circles) is monitored by a nearby charge sensor dot (pink circle). b. Same as a,
using a measurement bias VM = 75µV (0.35U/e). The interdot tunnelling is completely suppressed such that the effects of
backaction become apparent in a distortion of the boundary between left and right occupied states. Marked regions (i), (ii),
(iii) are governed by different physical mechanisms (see details in the main text). Both measurements a and b were performed
at an electronic temperature T ≈ 65mK.

in state |0〉, this would correspond to a change into state
|1〉 by the measurement backaction.

Experiment - We perform our experiments on a gate-
defined lateral GaAs device [31], composed of a DD
(mint) adjacent to a CSD (pink), see inset of Fig. 1a.
Each single dot in the DD is tunnel-coupled to a sepa-
rate lead on each side, both with tunnelling rate Γdd ∼
100kHz [33]. Additionally, Coulomb repulsion between
the dots (mutual charging energy) U ≈ 215µeV imposes
an energy penalty on the doubly-occupied states and
thus, acts to diminish the occupancy of the DD. Cru-
cially to this work, interdot tunnelling is negligibly small
in the DD [33]. The plunger gate voltages VL and VR are
used to tune the left-and right-dot energies εL and εR.
These in turn tune the DD populations (NL, NR), i.e.,
the number of electrons of the left and right dots, respec-
tively. We perform our experiment in a parameter region,
where only four distinct charge states of the DD are rele-
vant, i.e., empty (0, 0), left occupied (1, 0), right occupied
(0, 1), or doubly occupied (1, 1). In absence of interdot
tunneling, the metastability in the canonical charge sta-
bility diagram [31] becomes measurable with the CSD
and, simultaneously, all transitions in the DD necessar-
ily involve the reservoirs and are therefore many-body
effects [32]. The corresponding charge stability map dis-
plays sharp crossovers between distinct DD population
configurations, see Fig. 1a.

The population states (NL, NR) have probabilities
P(NL,NR) to be observed. The detector allows us to mea-
sure this probability distribution by real-time monitor-
ing of its tunnelling current IM in response to an applied

bias voltage VM across the CSD [31]. This enables direct
observation of the population imbalance ∆ = 2P(1,0) −
2P(0,1) + 3P(1,1) − 3P(0,0) [33], which serves as an order
parameter for our many-body system. Microscopically,
each charge tunnelling event through the detector real-
izes a weak measurement kick onto the system through
the DD–CSD capacitive interactions. Varying VM modi-
fies the current through the detector, thus adjusting the
strength of the population measurement [11, 12, 24, 25].
Applying a small bias voltage, VM � U/e, results in a
conventional charge stability diagram, similar to the one
shown in Fig. 1a, where backaction has no clear effect.

We increase the measurement strength, by increasing
the bias-voltage (to VM = 0.35U/e), and observe a qual-
itative change in the measured charge stability diagram,
see Fig. 1b. The diagonal equilibrium phase boundary
that separates the (1, 0) and (0, 1) states transforms into
an “S”-shape, with maximal deviation δS from the di-
agonal. In the area enclosed between the “S” and the
equilibrium phase boundary [region (iii)], the population
of the DD is switched, i.e. a high energy state is prefer-
entially occupied.

We systematically study the size of the population
switching area as a function of applied measurement volt-
age VM and electronic temperature T , see Fig. 2. At low
temperature, we find that the “S”-shape grows, and fi-
nally saturates with the bias-voltage VM. In contrast,
an increase in temperature washes out the effect. We
conclude that at low temperatures and large bias, back-
action dominates the behaviour of the DD. This is the
main result of this work, and highlights how sensitive the
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FIG. 2. Scaling of δS. Measured maximal deviation δS (circles) as a function of (a) the measurement bias voltage VM at
kBT/U = 0.026 (65mK) and (b) temperature T at eVM/U = 0.35 (75µeV). Error bars include the uncertainty in determi-
nation of the charge-degeneracy curve at ∆ = 0 and the uncertainty in the relationship between the fridge temperature and
electronic temperature. The theoretical model (cf. Fig. 3), with backaction induced Lorentzian broadening, reproduces the
observed temperature and measurement bias dependence of the effect. The horizontal solid line indicates the maximal possible
deviation δS predicted by our model for α = 2.2, while in the infinite α limit the saturation is limited by the mutual repulsion
and a geometric factor δmax

S (α→∞) = U/
√

8 [33]. Vertical dashed lines mark points that characterise the two fit parameters
χ and ξ of our model.

state of a quantum system can be on the measurement
strength. Specifically, the quantum measurement induces
an abrupt switch in the state of the DD and its leads. As
the DD is coupled to large leads that absorb and emit
particles through the transition and there is no interdot
tunnelling, this is necessarily a many-body effect [32].
Furthermore, we extract the width of the transition in
the charge stability diagram [33]. We observe that even
though the amplitude of the “S”-feature is determined
by the backaction strength, the width of this curve, re-
markably, is independent of the sensor bias. Instead it
reflects the thermal broadening of the reservoirs [15, 33].

Theoretical model - We develop a concise theoretical
model, which provides an intuitive picture of the pro-
cesses at stake, and reproduces the key features of the ex-
periment. The open many-body dynamics of the system
are effectively described using a rate equation, ∂tP = ΓP,
where P is a vector of the charge configuration probabili-
ties, and Γ is a matrix of transition rates between charge
configurations [31, 34]. In our case, each transition be-
tween the DD charge states involves a lead to which a dot
is tunnel-coupled. To lowest order, transitions between
charge states of the DD occur through single electrons
that hop between the DD and the leads [31], see Fig. 3a.
We thus neglect direct (1, 0)↔ (0, 1) transitions and co-
tunnelling between the left and right dots [33]. Hence,
left-to-right switching rates involve either the (0, 0) or
(1, 1) and a motion of charges in the DD necessarily in-
volves the leads, i.e. such transitions are many-body ef-
fects. Without detector backaction, the transition rate
Γ±if from an initial (i) to a final (f) charge configuration

is Γ±if = ΓddnF(εf − εi), where + or − mark raising or
lowering the number of electrons in the DD, respectively.
Here, we introduced the Fermi-Dirac distribution nF, and
the energies εi/f of the initial/final state [33]. We note
that the Fermi-Dirac distribution of the electrons in the

DD leads is the only place where the temperature enters
our model.

The motion of charges through the detector capac-
itively modulates the energy levels in the DD. Using
a quantum mechanical analysis of the transport in the
system given such an out-of-equilibrium measurement,
some of us have found that the detector imparts back-
action onto the DD in the form of an effective broad-
ening of its levels [24]. The Lorentzian broadening is
proportional to the measurement strength and thus to
VM, and we write it as γS,L = αχVM for the left dot and
γS,R = χVM/α for the right dot. The dimensionless fit
parameter χ depends on the microscopic details of the
detector-DD interaction [24, 33]. Since the distance be-
tween the detector and each of the two dots is not equal,
the backaction-induced broadening is different for each
dot, see Fig. 3b. We quantify this asymmetry through a
parameter α = 2.2±0.2, which we independently extract
from the measurement data [33]. Note, that the asymme-
try α is necessary to enable the charge sensor dot current
to differentiate between the left and righ occupied states.
Other competing environmental effects, such as charge
noise, induce an equal broadening on each level on the
order of ∼ 1µeV [35]. We include these effects through
a fitting parameter ξ that encodes the width and assume
that the total width of the DD levels to be equal to its
largest contribution, such that γj = max(ξ, γS,j) with
j = L,R.

The level broadening γj modifies the system’s transi-
tions rates to Γ±if = ΓddnL(εf − εi, γj), where nL(ε, γ)

is a broadened Fermi function [33]. Using these modi-
fied rates, we compute the steady-state population im-
balance ∆, and extract the maximal deviation δS as a
function of VM. The theoretical results in Fig. 2, are
obtained with fit parameters χ = 9.4 × 10−3 and ξ =
2.5× 10−3U (0.55µeV).
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FIG. 3. Effective model. a. Illustration of the rate
equation describing the system dynamics (DD coupled to its
leads). Sequential tunnelling rates raise (orange arrows) or
lower (red arrows) the DD’s population by a single electron.
Direct or virtual left-to-right charge tunnelling is negligible
in our system (crossed-out gray arrows) [33]. b. The mea-
surement backaction from the nearby charge sensor dot (pink
circle) effectively imparts a different width γi to each dot,
i = L,R.
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FIG. 4. Population switching due to an asymmet-
ric detector-induced broadening. The thermal transition
rates (solid) into (yellow) both levels are roughly equivalent
as both are well below the chemical potential µ. On the other
hand, the thermal rates (solid) out (orange) of the right dot is
much larger, as it is closer to the chemical potential. This im-
balance, in the absence of level broadening, would lead to the
left level being preferentially occupied. However, the broad
tail of the left level provides an additional rate (dashed) out
of the left level that causes a switch in the population, i.e.
overall the probability flows from the left to right occupied
state (dotted arrow). Such a configuration is found in the
lower left switching region of Fig. 1b.

Physical interpretation - The appearance of the the
“S”-shaped charge stability diagram is a direct result
of the measurement-induced imbalance α between the
broadening of each dot, i.e., due to the stronger cou-
pling between the dot closer to the sensor compared to
the more distant one. To better illustrate the details of
this many-body effect, we divide the transition rates as
Γ = ΓTail + ΓCenter, where ΓCenter are standard thermally-

activated rates arising from the centre of the level’s spec-
tral weight distribution, see Fig. 4. Thermal contribu-
tions to the effective broadening decrease equally for the
left and right dots as they are detuned from the chemical
potential. The backaction, on the other hand, broadens
the tails of the levels by a different amount for the left
and right dots, leading to a more rapid reduction of the
tails in the right dot when compared to the left one. In
the tails (ΓTail) the backaction dominates over thermal
effects, and the DD population can be controlled by the
difference between left and right dot level broadening.
Specifically, when the dot levels are far detuned from
one another, or are close to the leads’ chemical poten-
tials [regions (i) and most of (ii) in Fig. 1b], the thermal
parts dominate the rates and the tails are unimportant.
Conversely, when the dots’ levels are nearly degenerate
and far from the chemical potentials [region (iii) and (ii)
close to the transition in Fig. 1b], the tails dominate the
occupation probability, leading to a switch in the popu-
lation, with a high-energy state preferentially occupied,
see Fig. 4.

Our theoretical treatment is able capture the core of
the measurement backaction effect, and remarkably, it al-
ready quantitatively reproduces the scaling behaviour of
the observed phenomena. We find that the exact shape
of the level broadening, is not crucial to describe the
backaction induced population switching dependence in
Fig 2 [33]. On the other hand, the exact form of the
“S”-shape that our model produces, depends strongly
on the exact nature of the tails of the distribution [33].
Our experimental and theoretical results imply that the
backaction-induced asymmetry in the level width induces
the population switching. Simultaneously, we find that
the type of broadening controls the exact phase bound-
aries and the width of the transitions. Our results sug-
gest a sharper than Lorentzian broadening, which could
be due to, for example, either energy-dependent widths
or higher-order charge correlations in the CSD [33]. Our
results thus leave room and motivate further refinement
through inclusion of more microscopic details of the de-
tector.

Conclusions - Changing the nature of a many-body
state simply by observing it is a major shift in how we
understand and employ the act of measurement in quan-
tum mechanics. The detector backaction broadens the
system’s energy levels, leading to a complete switch in
the system’s electron populations. This is well beyond
the paradigm of ideal detectors and highlights the dif-
ficulty of keeping a system isolated yet still measurable.
Our results are applicable to a wide variety of experimen-
tal systems, ranging from quantum dots to superconduct-
ing systems and to photonic microcavities. We therefore
expect similar effects to manifest themselves in a wide
range of quantum information processing hardware.
Acknowledgments. We acknowledge J. D. Zimmerman
and A. C. Gossard for the growth of the GaAs het-
erostructure.
Data availability. The data supporting this study are



5

available in a Zenodo repository [36].
Funding. Work in Basel was supported by the Swiss
Nanoscience Institute, NCCR QSIT and SPIN, Swiss
NSF Grant No. 179024, ERC Starting Grant (DMZ),
and the EU H2020 European Microkelvin Platform EMP,
Grant No. 824109. C.P.S. further acknowledges support
by the Georg H. Endress Foundation. The authors at

ETH and IBM acknowledge financial support from the
Swiss National Science Fund directly, and through NCCR
QSIT.
Author contributions. LCC, DEFB, CPS and DMZ per-
formed the experimental work. MSF, CM, BB, and OZ
performed the theoretical work. MSF, LCC, CM, and OZ
wrote the manuscript. All authors discussed the results
and the manuscript.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition,
tenth ed. (Cambridge University Press, USA, 2011).

[2] J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L.
Morton, F. A. Zwanenburg, D. N. Jamieson, A. S. Dzu-
rak, and A. Morello, High-fidelity readout and control of
a nuclear spin qubit in silicon, Nature 496, 334 (2013).

[3] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M.
Taylor, G. Burkard, and J. R. Petta, Resonantly driven
CNOT gate for electron spins, Science 359, 439 (2018).

[4] D. Kim, D. R. Ward, C. B. Simmons, J. K. Gamble,
R. Blume-Kohout, E. Nielsen, D. E. Savage, M. G. La-
gally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson,
Microwave-driven coherent operation of a semiconductor
quantum dot charge qubit, Nature Nanotechnology 10,
243 (2015).

[5] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Strong coupling of a single photon to a super-
conducting qubit using circuit quantum electrodynamics,
Nature 431, 162 (2004).

[6] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gus-
tavsson, and W. D. Oliver, A Quantum Engineer’s Guide
to Superconducting Qubits, Applied Physics Reviews 6,
021318 (2019), arXiv:1904.06560.

[7] D. Kielpinski, C. Monroe, and D. J. Wineland, Architec-
ture for a large-scale ion-trap quantum computer, Nature
417, 709 (2002).

[8] J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini,
D. Leibfried, and D. J. Wineland, Complete Methods Set
for Scalable Ion Trap Quantum Information Processing,
Science 325, 1227 (2009).

[9] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, and J. Alicea, Milestones Toward
Majorana-Based Quantum Computing, Physical Review
X 6, 031016 (2016).

[10] H. M. Wiseman and G. J. Milburn, Quantum Measure-
ment and Control (Cambridge university press, 2009).

[11] S. A. Gurvitz and Y. S. Prager, Microscopic derivation of
rate equations for quantum transport, Physical Review
B 53, 15932 (1996).

[12] A. N. Korotkov and D. V. Averin, Continuous weak mea-
surement of quantum coherent oscillations, Physical Re-
view B 64, 165310 (2001).

[13] M. Field, C. Smith, M. Pepper, D. Ritchie, J. Frost,
G. Jones, and D. Hasko, Measurements of Coulomb
blockade with a noninvasive voltage probe, Physical Re-
view Letters 70, 1311 (1993).

[14] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H.
Willems van Beveren, S. De Franceschi, L. M. K. Vander-

sypen, S. Tarucha, and L. P. Kouwenhoven, Few-electron
quantum dot circuit with integrated charge read out,
Physical Review B 67, 161308 (2003).

[15] L. DiCarlo, H. J. Lynch, A. C. Johnson, L. I. Childress,
K. Crockett, C. M. Marcus, M. P. Hanson, and A. C.
Gossard, Differential Charge Sensing and Charge Delo-
calization in a Tunable Double Quantum Dot, Physical
Review Letters 92, 226801 (2004).

[16] D. Harbusch, D. Taubert, H. P. Tranitz, W. Wegschei-
der, and S. Ludwig, Phonon-Mediated versus Coulombic
Backaction in Quantum Dot Circuits, Physical Review
Letters 104, 196801 (2010).

[17] S. Gasparinetti, M. J. Mart́ınez-Pérez, S. de Franceschi,
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Supplementary Information

A: Experimental setup

The measurements are performed in a surface-gate
defined double quantum dot device fabricated on top
of a GaAs two-dimensional electron gas (2DEG) with
a nominal density n = 2.6 · 1011cm−2 and a mobility
µ = 4·105cm2/Vs. The device is cooled down to a base
temperature of 25mK in a 3He/4He dilution refrigerator
equipped with home-built microwave filters resulting in
a sample electron temperature T ≈ 65mK [37]. Applying
negative voltages to surface gates allows us to locally de-
plete the underlying 2DEG and form two quantum dots
in the centre of the device, see inset of Fig. 1a. Each
quantum dot is tunnel-coupled to its respective lead with
coupling-rates Γdd on the order of 100kHz, (see Supple-
mentary Fig. 2), while the interdot coupling is reduced to
a few Hz. For such small coupling strengths, direct (left
↔ right) tunneling and cotunneling processes through
the reservoirs are strongly suppressed. We thus discard
cotunnelling and direct tunnelling (crossed out arrows in
Fig. 3a) as these rates are very small. We can enable
direct tunnelling to wash out the asymmetric effect of
backaction. This is how we obtained the reference charge
stability diagram of Fig. 1, where the interdot coupling
washes out the backaction effect, despite a relatively large
measurement-bias VM = 150µV (0.70U/e). Note that, in
comparison to similar experiments, we generally apply a
relatively small sensor-bias VM, and eVM is well below
the orbital energies of the DD and CSD.

The charge state of the double quantum dot (DD) is
continuously monitored by the capacitively-coupled sen-
sor quantum dot operating as a charge sensor dot (CSD)
on the left side of the device, see inset Fig. 1a. The
charge sensor bandwidth of about 15kHz is limited by the
capacitance of the low-pass microwave filters [37] on the
input of the current-to-voltage converter (Basel Precision
Instruments LNHS LSK389A). We tune the double dot
close to the (1,0)-(0,1) charge degeneracy, see Fig. 1a.
Here, due to a low inter-dot tunnel-coupling compared
with the coupling to the leads, a diamond shaped region
bounded by the extension of the lead–dot transitions ap-
pears, where metastable (1,0)↔(0,1) charge state switch-
ing occurs [31]. At each position within the diamond, the
charge state switching is recorded in real-time over a large
number of switching events and digitized [31]. From such
real-time traces, the average state-occupation probabili-
ties (Supplementary Fig. 1), as well as the switching fre-
quency and associated transition rates (Supplementary
Fig. 2) are calculated from the accumulated times spent
in each level [31]. We then use the real-time data to map
the conductance of the CSD to the population imbalance
∆. In turn, this allows us to extract the amplitude of δS
over a large set of parameters T, VM.

The charge stability diagrams are obtained by scan-
ning the voltage on gate VL vs. VR, see Supplementary

Fig. 1a. Upon changing these gate voltages, a linear feed-
back is applied to the sensor plunger gate to compensate
for capacitive crosstalk with the charge sensor. This cor-
rection bears no relevance to the effects discussed in this
work and simply keeps the detector in a sensitive config-
uration.

Using an affine transformation(
εL
εR

)
=

(
lLL lLR

lRL lRR

)(
VL − V 0

L

VR − V 0
R

)
(A1)

the two dimensional maps in the voltages VL and VR are
transformed into the basis of εL and εR, i.e., the energy
of the left and the right quantum dot, respectively, see
Supplementary Fig. 1b. The voltage offsets V 0

L and V 0
R ,

are introduced such that the triple point TP00 associated
with the empty state occurs at εL = εR = 0. The lever
arms, lij have units of charge and quantify the energy
shift in the i = L,R level due to a change in the j = L,R
gate voltage. The relative magnitudes of the lever arms
are found by ensuring that: (i) the (1,0)-(0,1) degener-
acy line lies along εL = εR, (ii) the degeneracy lines that
involve only a transition in the left (right) dot are hori-
zontal (vertical). We calibrated the lever arm by fitting
a Fermi-Dirac function to the lead transitions at elevated
temperatures [19, 31].

The effect of sensor-dot backaction results in a devi-
ation of the (1,0)-(0,1) charge degeneracy line from the
conventional equilibrium phase boundary of a standard
double quantum dot, see Figs. 1a,b. To quantify this
backaction effect, the energy difference between the mea-
sured and the conventionally-expected (1,0)-(0,1) degen-
eracy line is extracted along its full extent, i.e., between
the two triple points where a degeneracy occurs also with
the (0,0) or the (1,1) states, see Supplementary Fig. 1c.
The maximal amplitude of this deviation, δS, is obtained
by fitting a sine model to this extracted data, see Supple-
mentary Information A 1. This amplitude δS is extracted
for different biases over the sensor quantum dot and tem-
peratures, see Fig. 2.

While not discussed in the main article, we notice a dif-
ference in the magnitude between two amplitudes of the
“S”-feature: the deviation of the (0,1) charge state into
conventional (1,0) region generally shows a smaller am-
plitude compared to deviation into the (0,1) region, see
Supplementary Fig. 1c. This asymmetry is further dis-
cussed in Supplementary Information A 2 and B 4. There
we show that the spin degeneracy of the electronic lev-
els can explain this asymmetry. In the main text, δS is
extracted from the amplitude of the sine fit without tak-
ing the asymmetry of the “S”-feature into account. As
a consequence, δS of the main text is the average of the
two amplitudes.

1. Quantifying δS of “S”-shape

We extract the contour curve at which the (1,0) and
(0,1) charge states have equivalent probability (dashed
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Supplementary Figure 1. Extracting the amplitude of the “S”-shape. Measured charge state probabilities around
the (1,0)-(0,1) charge degeneracy. a. A scan as a function of the left plunger gate voltage VL versus the voltage on the
right plunger gate VR. Probabilities inside the dashed diamond were obtained by analysing real-time data traces of sensor
conductance [31]. For the data outside the diamond, the sensor conductance was mapped to charge state configurations.
The resulting occupation imbalance ∆ maps are identical but the real-time measurements give more information such as the
switching rate (see Supplementary Fig. 2). The zero-detuning line εL = εR is emphasized as a dashed line stretching between
the triple-points (TPs). The latter, labelled by TP00 and TP11, mark degeneracy between three possible charge configurations.
b. The same data rotated into the εL-εR basis, i.e., as a function of the energy of the left and right quantum dots, respectively.
As the electron has a negative charge, positive voltages correspond to negative energies. The red dotted line, indicates a cut,
perpendicular to the transition line, used to compute the transition widths in Supplementary Fig. 4. In total for Supplementary
Fig. 4 we use four cuts distributed along the length of the transition line. c. Extracted “S”-shape where its maximal amplitude
δS is obtained by fitting a sine model to this data (red curve). The pronounced amplitude offset is discussed in Supplementary
Information A 2.

curve in Supplementary Fig. 1b). For a system without
any quantum-sensor backaction, this equi-probability line
coincides with the zero-detuning (εL = εR) line. Here,
however, we observe a measurement-induced “S”-shaped
deviation. In Supplementary Fig. 1c, we show a plot of
the extracted difference between the zero-detuning line
to the extracted “S”-shaped contour curve. Such plots
are used to quantify the amplitudes of the “S”-shaped
feature. We then obtain δS, the maximal amplitude of
the “S”-shape feature, by fitting the extracted data with
a sine model. Note that there is an offset present in the
data, due to the asymmetry of the “S”-feature discussed
in Supplementary Information A 2, which we ignore in
the main article. We obtain the error bars in δS in Fig. 2
by estimating the uncertainty when extracting the “S”-
feature in the occupation imbalance map: Therefore, we
compare δs for ∆ = 0 (charge-degeneracy) with δS for
∆ = 0.2 and ∆ = −0.2. This corresponds to a 10%
uncertainty of the ratio P(1,0)/P(0,1).

2. Asymmetry of the “S”-shape

We find an asymmetry of the “S”-shape for larger
sensor-bias voltages VM: the amplitude of the devia-
tion from the zero-detuning line (εL = εR) closer to
(0,0), labelled δS,1 in Supplementary Fig. 3a, is smaller
than the deviation δS,2 located closer to the (1,1) state.
In Supplementary Fig. 3b, the triangles represent δS,2
(filled upwards-triangles) and δS,1 (empty downwards-

triangles) for the individual measurements of the bias
dependence. Individual measurements are presented in
different colours. A clear trend is recognized in the data:
a stronger quantum measurement backaction (larger
sensor-bias voltage) leads to a larger absolute difference
of the two amplitudes. The ratio δS,1/δS,2 ≈ 0.8, how-
ever, plotted as crosses in Supplementary Fig. 3b remains
approximately constant. The outlier at VM = 50µV is at-
tributed to difficulties in obtaining the amplitudes δS,1
and δS,2 in this regime, where almost no deviation from
the zero-detuning line appears. Note, that in Fig. 2, the
average values of the individual measurements of Supple-
mentary Fig. 3b are shown. As discussed in Supplemen-
tary Information B 3, this asymmetry clearly indicates
that the particle-hole symmetry of the system is broken,
likely due to the spin degree of freedom.

3. Transition width

To better understand the nature of the measurement
backaction transition which we have observed, we investi-
gate the scaling properties of the transition width. First,
we extract δγ , the broadening of the (1,0)-(0,1) tran-
sition, by analysing cuts through the transition in the
charge stability diagram (see Supplementary Fig. 1b).
We present an example of such a cut in Supplementary
Fig. 4a. This data indicates a typical broadening in ∆
of the transition from the charge state (1,0) to (0,1). To
obtain δγ , we fit this data with a scaled Fermi-Dirac func-
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quantum dots Γdd, the exponential region of the switching rate is fitted and extrapolated to the triple points TP0,0 and TP1,1,
respectively (orange dashed curves). From this fit, we estimate Γdd between 10 and 200µV. The saturation of the switching
rate appearing between the exponential region (∼ 200µV to 400µV) is understood in terms of higher-order electron exchange
effects (cotunnelling) via the leads [31] and is neglected in our model as it is very small. The switching rate flattens off for the
highest rates measured due to finite sensor bandwidth. This error-prone regime is ignored for the exponential fit.
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Supplementary Figure 3. Asymmetry in the backaction induced “S” shape. a. Charge stability diagram taken at a
sensor bias VM = 135µV which exhibits a pronounced asymmetry of the two amplitudes of the “S”-features labelled δS,1 and
δS,2. b. Dependence on the sensor bias voltage VM of the two amplitudes δS,1 and δS,2. Each measurement is shown with
an individual colour individual colour with triangles pointing upwards (downwards) for the amplitudes δS,1 (δS,2). The ratio
δS,1/δS,2 is plotted on the right axis of the graph and remains about constant.

tion

F (ε, δγ) = 4[1 + e(ε−λ)/δγ ]−1 − 2, (A2)

where λ is an irrelevant free parameter that shifts the dis-
tributio left or right. We then repeat this procedure for
several cuts across the transition and average the result,
before repeating the procedure for each charge stability
diagram associated with a data-point in Supplementary
Fig. 4.

We find no dependence of δγ on the sensor bias VM

as presented in Supplementary Fig. 4b, which indicates
that the measurement backaction does not dominate the

broadening whereas it dominates the amplitude δS. The
data in Supplementary Fig. 4b was obtained at a base-
temperature of the dilution refrigerator, corresponding
to an electronic temperature T ≈ 65mK (0.026U/kB).
Next, we investigate the temperature dependence of δγ
at a fixed sensor bias voltage VM = 75µV (0.35U/e), see
Supplementary Fig. 4c. When we increase the temper-
ature, we find a linear dependence of the broadening δγ
upon increasing the electron temperature T . Further-
more, we find that the transition width δγ as a function
of temperature T is in good agreement with the thermal
energy δγ ≈ kBT [15].
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As the width shrinks linearly with diminishing temper-
ature, the experiment is in agreement with a phase tran-
sition. A saturation of the width at lower temperatures
δγ(T → 0) > 0 is still possible and would indicate the
presence of an abrupt crossover, with a small but finite
width [32]. The transition width is strongly tied to the
nature of the tails, see Supplementary Information B 3,
motivating further studies to investigate the microscopic
details of the broadening mechanism.

4. Estimation of α

We now describe the estimation of the ratio between
the Coulomb interaction of sensor-to-left dot (ULM ) and
the sensor-to-right dot (URM ): α2 = ULM/URM . Start-
ing from an empty DD charge configuration, (0,0), the
change in sensor conductance g∆ when adding an elec-
tron to the left dot |g(0,0) − g(1,0)| is different from
that observed when adding an electron to the right dot
|g(0,0) − g(0,1)|. Under the assumption that, in the re-
gion of interest, the sensor conductance is linear in sen-
sor quantum dot energy, we obtain an approximation of
α by comparing the magnitudes of g∆ for different charge
transitions, see Supplementary Fig. 5.

Generally, we observe four main values of conductance
g through the charge sensor, corresponding to the four
relevant charge configurations of the DD. This is demon-
strated in Supplementary Fig. 5: here a histogram of the
charge sensor signal for a charge stability diagram around
the (1,0)-(0,1) double dot transition is presented. From
the specific data shown in Supplementary Fig. 5, we ob-
tain α2 = ULM/URM ≈ (g(0,0)−g(1,0))/(g(0,0)−g(0,1)) =
5.4. Repeating the process for several distinct experi-
mental parameters we obtain an estimate α = 2.2 ± 0.2
which we use in the theoretical model.

B: Model

1. Microscopic model

The full microscopic model describing the system–
detector setup can be written using the Hamiltonian

H = Hdd +Hleads +Htun +HM +Hint, (B1)

including the double quantum dot Hdd, its leads Hleads,
tunnel-coupling between the dots and their respective
leads Htun, the detector model HM, and the system–
detector interaction Hint terms. The double dot Hamil-
tonian Hdd = HL + HR + Hcoupl is in turn described by
the Hamiltonians HL and HR of the left and righ dots,
and a coupling Hamiltonian Hcoupl. Assuming at most a
single orbital mode in each of the dots and in the absence
of magnetic field, we write the left dot Hamiltonian as

HL =
∑
σ

εLd
†
LσdLσ + ULd

†
L↑dL↑d

†
L↓dL↓ (B2)

where d†Lσ (dLσ) creates (annihilates) an electron with
spin σ and energy εL in the left dot. The onsite Coulomb
repulsion UL is much larger than all relevant energy scales
in the system such that the doubly occupied state of the
left dot is energetically forbidden. Due to the absence of
magnetic field the two spin states are degenerate, such
that in our analysis the difference between including and
excluding spin is the inclusion of a degeneracy factor, see
Supplementary Information B 4. The right dot Hamilto-
nian is obtained in an analogous way to HL but with the
substitution L → R. In the following we drop the spin
degree of freedom and associated index σ for simplicity.
The left and right dot Hamiltonians then become

Hi = εid
†
idi (B3)

for the left i = L and right i = R dots. The two dots
are only electrostatically coupled, as the tunnelling bar-
rier between them is very large, such that the coupling
Hamiltonian becomes

Hcoupl = Ud†LdLd
†
RdR, (B4)

where the mutual charging energy (experimentally esti-
mated U ≈ 215µeV) penalises the simultaneous occu-
pancy of the left and right dots. The total double dot
Hamiltonian is thus

Hdd = εLd
†
LdL + εRd

†
RdR + Ud†LdLd

†
RdR, (B5)

which has the empty, left-, right- and doubly-occupied
states as eigenstates.

The left and right leads are described by

Hleads =
∑

k,i=L,R

εikc
†
ikcik, (B6)

where k indexes the different momenta of the leads and
c†ik (cik) creates (annihilates) an electron with energy εik
in the left i = L or right i = R leads. Each of these leads
is further associated with a tunable chemical potential
µL,R, which is kept constant and at equilibrium, serving
as the energy reference for the experiment, µL = µR = 0.
This is described by the tunnelling Hamiltonian

Htun =
∑

k,i=L,R

t (d†i cik + h.c.), (B7)

where the tunnelling amplitude t is taken to be momen-
tum independent and equal for both dots, as is the case
in the experiment.

The detector Hamiltonian is built up in a similar fash-
ion but with a single dot

HM = εMd
†
MdM +

∑
k,i=s,d

[
εikc

†
ikcik+tM(d†Mcik+h.c.)

]
. (B8)

Here all quantities are defined analogously to the double
dot and its leads, but with new indices for the detec-
tor dot (M), as well as for the source (s) and the drain
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(d) detector leads. A bias voltage across the detector
VM is directly proportional to difference between source
and drain chemical potential µsd = µs − µd. Finally, the
interaction Hamiltonian describes capacitive coupling be-
tween the measurement dot and both the left and right
dots

Hint = (ULMd
†
LdL + URMd

†
RdR)d†MdM. (B9)

Here, we introduced the two Coulomb interaction

strengths ULM and URM between the left or right dot and
the measurement dot. Crucial to our work, these inter-
action terms are not equal due to the different distance
between the detector and the two dots. We define their

ratio as

α2 = ULM/URM. (B10)

As shown in Supplementary Information A 4, this value
is experimentally determined to be α = 2.2± 0.2.

2. Rate equation with backaction

We analyse transport through the DD using a rate
equation. To this end, we assume a sufficiently small tun-
nel coupling between the dots and their leads ρi |t|2 � U
with ρi the density of states of lead i. We, then, pertur-
batively derive the corresponding sequential tunnelling
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rates using Fermi’s golden rule [34]. In the absence of
the detector, Fermi’s golden rule for the symmetrically-
coupled DD reads [31]

Γif = Γdd

∫
dε δ(ε− εi + εf )nF(ε) = ΓddnF(εf − εi),

(B11)

where i, f denote initial and final states (described by dif-
ferent charge configurations (NL, NR) of the DD), Γdd =

2πρ |t|2 /~ is the bare tunnelling rate with ρi = ρ, and we
introduced the Fermi-Dirac distribution

nF(ε) =
1

1 + exp(ε/kBT )
. (B12)

One of the central results of Ref. [24] is that, when
calculating such transport rates through the system, a
continuous charge measurement of a quantum dot enters
as an effective width for the dot’s energy level. Using
this result, we effectively trace out the detector and in-
corporate its impact directly in the a slightly modified
expression for the rates

Γif = Γdd

∫
dε

1

π

γf−i
ε2 + γ2

f−i
nF(εf − εi + ε), (B13)

where the width γf−i depends on the relevant dot level
associated to the specific rate. For example, if f = (1, 1)
and i = (1, 0) then γf−i = γR because only the right
dot is involved in the tunnelling process. Performing the
integral we obtain

Γif = ΓddnL(εf − εi, γf−i), (B14)

where we have introduced the modified Fermi-Dirac dis-
tribution

nL(ε, γ) =
1

2
+ Imψ

(
1

2
+
γ − iε
2πkBT

)
, (B15)

and ψ is the digamma function. These rates have alge-
braic tails which decay as ∼ γ/ε for large ε [34]. We use
this phenomenological approach motivated by previous
works [24, 25], and leave more detailed calculations for
future work.

We substitute the rates (B14) into a rate equation, de-
scribing the time evolution of the occupation probability
of each charge state i

∂tPi =
∑
j

PjΓij − Pi
∑
j

Γij , (B16)

leading to a Markovian chain as illustrated in Fig. 3a.
Solving for the steady-state ∂tPi = 0, we obtain the
mean/observable charge states of the DD and thus the
imbalance ∆, see Supplementary Fig. 6. We can then
extract δS from these charge stability diagrams and use
the result to fit χ and ξ, see Fig. 2.

b
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Supplementary Figure 6. Theoretically calculated im-
balance ∆ using the rate equation, while including
the effect of measurement backaction. We use the same
parameters as in the experimental plot Fig. 1b. The mea-
surement bias is VM = 0.35U , temperature is T = 0.026U/kB

and the asymmetry in the coupling is α = 2.2. a. Using the
Lorentzian broadening (B14) of the DD due to backaction,
with the fit parameters χ = 9.4× 10−3, and ξ = 2.5× 10−3U .
b. Using a Gaussian broadening (B17) of the DD due to back-
action, with the fit parameters χG = 0.099, and ξG = 0.084U .
We notice that the shape of the anomaly is more similar to
the experiment in the Lorentzian case, while the width of the
transition is better captured by the Gaussian approach.

3. Nature of the tails

In Ref [24], backaction was predicted to cause a
Lorentzian broadening of the delta function in Fermi’s
golden rule (B11), leading to the broadened rates (B14).
Here, we point out that the shape of the tails has a strong
influence on the exact form of the population switching
region, or “S”-shape, and the width of the transition.
We use a Gaussian widening of the level as a counter-
weight to the Lorentzian ones. While there are no works
suggesting such a broadening, it is useful as an extreme
example, which is completely opposed to the Lorentzian.
These distributions have very different properties, which
manifest in the shape and contrast of the charge sta-
bility diagrams, see Supplementary Fig. 6. However,
the qualitative behaviour of the population switching
and the scalings with temperature and bias, remain the
same, see Supplementary Fig. 7. This motivates future
work, which will investigate the nature of the population
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Supplementary Figure 7. Fitting the imbalance with Gaussian broadenings. Measured maximal deviation δS (circles)
as a function of the measurement bias voltage VM (a) and temperature T (b) as in Fig. 2. A Gaussian broadening of the levels,
leads to a qualitatively similar scaling (dotted line) of the maximal deviation δS as both the experiment and the Lorentzian
broadening, cf. Fig. 2. Unlike the Lorentzian broadening, there is no clear saturation for a given α in the case of Gaussian
broadening.

switching transition at low temperatures, to determine
among other things whether this is a phase transition or
abrupt crossover. A likely contribution to the specific
shapes is also that the Lorentzian widths γ may in gen-
eral depend on the parameters εL, εR, T of the system.

To include a Gaussian width we replace the delta func-
tion δ in the rate calculation (B11) through

δ(ε− εi + εf )→ 1√
πγf−i

exp

[
−(ε− εi + εf )2

γ2
f−i

]
,

(B17)

and then evaluate the integral numerically. Recall that
γf−i is either γG

L or γG
R depending on which level is in-

volved in the transition i → f (We use G to indicate
parameters that belong to the Gaussian model). We can
then use the rate equation (B16), to compute the steady-
state by imposing ∂tP = 0, both for the Lorentzian and
Gaussian broadenings, see Supplementary Fig. 6. From
there, we extract a width δS for a given set of fitting
parameters χ, ξ and the experimental parameters VM, T
and α. In the main text, for the Lorentzian we used
only the largest of the background or bias induced widths
γj = max(ξ, γS,j), which is functionally similar to root

square addition γj =
√
ξ2 + γ2

S,j of the widths, which is

typical of Lorentzian line broadening. However such an
approach to the Gaussian widths cannot be expected to
capture the experimentally observed signatures. Specif-
ically, the growth of one of the widths while the other
remains constant causes the rapid formation of a very
large δS, due to the rapid decay in the tails of the Gaus-
sian. Instead of simply using the larger of the two rates,
we therefore add the two contributions linearly for the
Gaussian, such that

γG

j = ξG + γG

S,j , (B18)

where γG
S,L = αχGVM, and γG

S,L = χGVM/α. Of course
a microscopic investigation of the exact nature of the

tails must also provide a prescriptive way of adding the
widths. Here however, we aim to qualitatively under-
stand the physical processes at stake and thus leave
these details to future works. We calculate the imbal-
ance ∆ as a function of T and VM to fit χG = 0.099
and ξG = 0.084U , see Supplementary Fig. 7. Note, that
the resulting value for ξ is nearly an order of magnitude
larger than the expected value ∼ 1µeV [35].

In a typical experimentally relevant situation, cf.
Fig 1b and 6, we notice that shape of the “S” feature
is better captured by the Lorentizian broadening, while
the width is better described by the Gaussian. We con-
clude that the precise form of the broadening can be in-
vestigated using the complete charge stability diagrams.
While our brief description here suggests an intermedi-
ate between a Lorentzian and a Gaussian, this can be
achieved in a multitude of ways, e.g. parameter (ε) de-
pendent broadenings (γ) or different power law decays.
Furthermore, as (part of) the CSD level lies in the mea-
surement bias window we expect resonant effects, which
must be resummed to be accounted for properly. A de-
tailed future study of the sub-splitting of region (ii) in
Fig. 3c will have to take such effects into account.

4. Asymmetry in the “S” -shape

As discussed in Supplementary Information A 2, the
experimental data shows an asymmetry in the “S”-shape,
which breaks the particle-hole symmetry of the εL =
−U/2, εR = −U/2 configuration. If both left and right
levels are allowed to be spin degenerate (as expected in
the zero magnetic field experiment) this leads to over-
all degeneracies of 1, 2, 2, 4 for the empty, left-, right-
and doubly-occupied states respectively. The fact that
the empty and doubly-occupied states have different de-
generacies manifestly breaks particle-hole symmetry. We
conclude that spin degeneracy is a candidate for the
asymmetry seen in the experiment. To further investi-
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Supplementary Figure 8. Effect of spin. A theoretical
prediction for the “S”-shape for a model with spin degenerate
levels, for both Lorentzian (a) and Gaussian (b) broadenings.
In the Lorentzian case we notice a significant particle-hole
symmetry breaking, while in the Gaussian case it is barely
visible (distance between the “S”-shape and the black cross)
Parameters as in Fig. 6, except for the inclusion of spin, see
Eq. (B19).

gate this property, we include the degeneracies in our
rate equation, which leads to a transformation

Γ+ → 2Γ+, Γ− → Γ−. (B19)

in the rates which add or remove electrons from the DD.

The result of performing this substitution is very dif-
ferent in the case of Lorentzian broadening when com-
pared to Gaussian broadening, see Supplementary Fig. 8a
and b respectively. In the latter case, the decay of the
rates as a function of εL, and εR is exponential. Thus as
the widths are relatively small the factor of two in the
rates causes only a small shift in the intersection between
the diagonal and the “S”-shape. On the other hand, the
tails of the Lorentzian are algebraic and do, therefore,
not have a characteristic scale on which they decay. The
intersection between the diagonal and the “S”-shape can
thus shift significantly even for small broadenings.

We conclude that spin is a likely candidate for the ex-
perimentally observed particle-hole asymmetry, see Sup-
plementary Information A 2. Furthermore, the very large
(small) asymmetry in the Lorentzian (Gaussian) case
compared to the experimental evidence in Supplementary
Fig. 3 again indicates that the broadening is sharper than
Lorentzian. This strong dependence of the asymmetry on
the type of tails, see Supplementary Fig. 8, shows that
it can be used as a signature to investigate the precise
nature of the tails.
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