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Out-of-plane corrugations in graphene based van der Waals heterostructures
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Two-dimensional (2D) materials are usually envisioned as flat, truly 2D layers. However out-of-plane corruga-
tions are inevitably present in these materials. In this paper, we show that graphene flakes encapsulated between
insulating crystals (hexagonal boron nitride, WSe2), although having large mobilities, surprisingly contain
out-of-plane corrugations. The height fluctuations of these corrugations are revealed using weak-localization
measurements in the presence of a static in-plane magnetic field. Due to the random out-of-plane corrugations,
the in-plane magnetic field results in a random out-of-plane component to the local graphene plane, which leads
to a substantial decrease of the phase coherence time. Atomic force microscope measurements also confirm
a long-range height modulation present in these crystals. Our results suggest that phase coherent transport
experiments relying on purely in-plane magnetic fields in van der Waals heterostructures have to be taken with
serious care.
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I. INTRODUCTION

From thermodynamical considerations it was long thought
that two-dimensional (2D) crystals cannot exist at nonzero
temperatures [1–4]. Therefore, it came as a big surprise when
graphene (Gr) [5], a truly single layer of graphite, was first
discovered. In the following years several other crystals fol-
lowed [6], among which the transition metal dichalcogenides
(TMDCs) are maybe the most famous. The existence of these
crystals was attributed to either the presence of the substrate or
the appearance of out-of-plane corrugations in the layer [7,8].
Both arguments effectively lift the two-dimensionality of the
crystals.

Out-of-plane corrugations and ripples have been observed
in graphene by both atomic force microscopy (AFM) and
transmission electron microscopy (TEM) studies [7,9,10].
These can originate for thermodynamic reasons, from strain-
ing during exfoliation, or from the underlying substrate
corrugations. It was found that graphene placed on SiO2

conformally deforms, resulting in out-of-plane corrugations
[11,12]. This has a strong impact on the transport properties.
On the one hand, it can reduce the mobility by introducing
strain-induced scalar and vector potentials which lead to long-
range disorder and hence to additional scattering [13–16]. On
the other hand, a more direct and striking consequence can
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be observed if the system is placed into an in-plane mag-
netic field. Random out-of-plane magnetic field components
originate from the corrugated graphene sheet, as shown in
Fig. 1(a). The corrugations are described by their rms height
Z and correlation length R. The resulting random out-of-plane
magnetic fields can be seen as random vector potentials that
lead to substantial dephasing in weak-localization measure-
ments, as demonstrated by Lundeberg and Folk [17].

With the introduction of hexagonal boron nitride (hBN) as
a substrate for graphene devices [18,19], not only a more silent
dielectric but also an atomically smooth substrate was found.
Recently, TMDCs have emerged as an alternative substrate for
exceptionally clean graphene devices [20–24]. However, the
remaining mobility-limiting disorder has not yet been iden-
tified in these van der Waals (vdW) heterostructures. Strong
evidence for strain fluctuations as the remaining disorder has
been found in single-layer graphene [14,15] as well as in
bilayer graphene devices [25]. Furthermore, in our recent
study we could in situ tune and increase the mobility of hBN-
encapsulated graphene devices by applying a global uniaxial
strain to our heterostructures [16]. In doing so, random strain
fluctuations are reduced, and hence, the mobility is increased.
In principle, strain fluctuations can be of either in-plane or out-
of-plane nature. However, the fact that they are tunable with
global uniaxial strain [16] and the fact that they are reduced
by AFM ironing [15] hints at out-of-plane corrugations as the
dominant source of nanometer strain fluctuations.

In this work we present phase coherent magnetotransport
studies on several devices encapsulated in hBN or between
WSe2 and hBN. The measured phase coherence time gives
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FIG. 1. (a) Out-of-plane corrugations in a graphene lattice
(exaggerated) with lateral correlation length R and rms height Z . A
uniform in-plane magnetic field B‖ (black) will lead to a random
surface normal (δB⊥, blue) and a parallel (δB‖, red) component. A
homogeneous out-of-plane magnetic field Bz is used to study phase
coherent transport. (b) Optical image of device 1 (hBN/Gr/hBN).
(c) Two-terminal conductivity of device 1 as a function of charge
carrier density. (d) Ensemble-averaged weak-localization correction
at different temperatures at a hole doping of −2.2 × 1012 < n <

−1.8 × 1012 cm−2 and zero in-plane magnetic field.

valuable insight into out-of-plane corrugations. By applying
an in-plane magnetic field the phase coherence time drops
even for devices appearing at first sight to be flat and bubble
free. The measurements are well accounted for by the model
introduced in Refs. [17,26] and are also in accordance with
detailed AFM studies. Our measurements are unambiguous
proof of the presence of out-of-plane corrugations in vdW
heterostructures. These corrugations could be the origin of the
random strain fluctuations limiting the charge carrier mobility
and could limit phase coherent transport experiments in the
presence of an in-plane magnetic field.

II. RESULTS

In the following, experimental data for three different vdW
heterostructures are presented. An overview of the three sam-
ples is given in Table I in Appendix A.

An optical image of device 1 after fabrication is shown in
Fig. 1(b). It is a two-terminal hBN/Gr/hBN heterostructure
with a large aspect ratio (length/width), which makes it ideal
for magnetoconductance measurements. The conductivity as
a function of charge carrier density is shown in Fig. 1(c),
from which we extract a mobility of 35 000 cm2 V−1 s−1 and a
residual doping of 2 × 1010 cm−2. At low temperature, phase
coherent transport leads to weak localization, as shown in
Fig. 1(d). Here, we plot an ensemble-averaged quantum cor-
rection to the magnetoconductivity at different temperatures,
which we obtain by subtracting the classical magneto-
conductivity measured at 40 K from the low-temperature
measurements. The quantum correction to the magnetocon-
ductivity can be fitted by the standard weak localization (WL)

formula for graphene [27]:
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where F (x) = ln (x) + �(1/2 + 1/x), with �(x) being the
digamma function; τ−1

B = 4DeB/h̄, where D is the diffusion
constant; τφ is the phase coherence time; τiv is the intervalley
scattering time; and τ∗ is the intravalley scattering time. We fit
the curves corresponding to the three different temperatures
within the same fitting procedure (global fit), where only τφ

is allowed to change with temperature to extract all relevant
scattering timescales [28]. We generally find phase coherence
times on the order of a few picoseconds at a temperature
of a few kelvins and an intervalley scattering time τiv of
6.9 × 10−12 s and very small intravalley scattering times τ∗ �
1 × 10−13 s. As long as τφ is much longer than τiv and τ∗,
graphene exhibits WL behavior [29], and the curvature of the
magnetoconductivity at zero out-of-plane magnetic field is a
good measure of τφ .

In order to probe the out-of-plane corrugations we study
phase coherent transport as a function of small out-of-plane
magnetic fields in the presence of large, static in-plane mag-
netic fields. It is obvious that a homogeneous in-plane mag-
netic field leads to random out-of-plane components δB⊥
if the graphene sheet has out-of-plane corrugations [see
Fig. 1(a)]. These random out-of-plane magnetic field compo-
nents can be described as random vector potentials that affect
phase coherent transport.

The first experiments were realized on Si inversion layers
[30,31] and two-dimensional electron gases in GaAs hetero-
junctions [30]. A direct correlation between the topographic
morphology and the dephasing rate has been found. Moti-
vated by these findings, Mathur and Baranger calculated the
additional dephasing for a two-dimensional electron gas orig-
inating from Gaussian correlated corrugations in the presence
of an in-plane magnetic field [26]:

τ−1
φ → τ−1

φ + √
π

e2

h̄2 vZ2RB2
‖. (2)

Here, Z is the rms of the corrugation height, R is the lat-
eral correlation length of the corrugations, B‖ is the in-plane
magnetic field, v is the Fermi velocity, and constants e and h̄
are the electronic charge and the reduced Planck’s constant,
respectively.

The quantum correction to the magnetoconductivity for
different in-plane magnetic fields is shown in Fig. 2(a). Here,
we show a representative data set for hole doping. Single WL
curves represent an ensemble-averaged measurement over a
density range of −2.2 × 1012 to −1.8 × 1012 cm−2. Similar
effects have been observed for electron doping. Different
colors represent WL curves measured at different in-plane
magnetic fields. As the in-plane field increases, the dip around
zero magnetic field gets less pronounced, and the overall mag-
netoconductance decreases. These changes can be understood
by a reduced phase coherence time τφ .
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FIG. 2. (a) WL of device 1 for different values of in-plane field
B‖ at a temperature of 1.8 K. The fitted dephasing rate τ−1

φ as a
function of B2

‖ is shown in (b).

In order to perform a quantitative analysis, we apply a
global fit (fitting all the curves with different B‖ at the same
time) where only τφ is allowed to vary since neither τiv

nor τ∗ is expected to be affected by B‖. The extracted de-
phasing rate τ−1

φ is shown in Fig. 2(b) as a function of B2
‖.

Clear linear behavior is observed that allows us to extract an
apparent corrugation volume Z2R = 156 ± (28) nm3 using
Eq. (2). The relatively large apparent corrugation volume,
which is much larger than the previously reported value of
1.7 nm3 for graphene on SiO2 [17], can be explained by the
presence of bubbles in the device. Bubbles with contamina-
tions are known to spontaneously form at interfaces of vdW
heterostructures [20,32] and were confirmed by optical and
AFM images of device 1. Therefore, it is not surprising that
additional dephasing is observed when device 1 is placed in an
in-plane magnetic field. Strictly speaking, Eq. (2) holds only
for random corrugations, which is not fulfilled for device 1,
which contains bubbles at the graphene/hBN interfaces. It is
therefore not straightforward to link the apparent corrugation
volume extracted by transport to the true geometrical corruga-
tion of the graphene layer.

However, we also found an additional dephasing in
much cleaner and essentially bubble-free hBN/Gr/hBN het-
erostructures. We have measured the phase coherence time
as a function of in-plane magnetic field B‖ for device 2 as
well. Here, we directly show in Fig. 3(a) the extracted de-
phasing rate as a function of B2

‖ of device 2 at a doping
of 0.3 × 1012 to 1.2 × 1012 cm−2. The dephasing rate was
extracted from the curvature of the magnetoconductivity at
zero out-of-plane magnetic field (see Fig. 8 in Appendix B
for more details). This device, which is free from bubbles
[confirmed by AFM measurements; see Fig. 3(b)], shows a
corrugation volume Z2R = 1.6 ± (7) nm3. This is two orders

FIG. 3. (a) Fitted dephasing rate of device 2 as a function of
B2

‖. A ripple volume of 1.6 nm3 is extracted. (b) AFM image of the
graphene flake on top of the bottom hBN crystal. The graphene flake
outline is marked by the red arrow. The location of the Hall bar is
indicated by the black dashed line, and the area used for the AFM
analysis is highlighted by a red dashed rectangle. (c) Height-height
correlation of device 2 extracted from the AFM measurement in (b).
A correlation length of 210 nm and an average height fluctuation of
94.4 ± 1.2 pm are found.

of magnitude smaller than the extracted volume for device 1,
which contains bubbles, and surprisingly close to the corruga-
tion volume of graphene on SiO2. It is important to note that
the random corrugation of this device [see the AFM image
in Fig. 3(b)] allows a direct comparison of the corrugation
volume extracted by transport measurements with the true
geometrical corrugations.

The additional dephasing in an in-plane magnetic field
gives access only to the total corrugation volume Z2R and
not to the individual contributions of height Z and radius R.
We used high-resolution AFM images to extract the standard
deviation of a Gaussian height distribution that corresponds
to the corrugation height Z and the height-height correlation
length that corresponds to the corrugation radius R. An AFM
image of device 2, with the outline of the Hall bar before
placing the top hBN, is shown in Fig. 3(b) (see Appendix A
for further fabrication details). From the height distribution,
we extracted Z = 94.4 ± 1.2 pm (see Fig. 9 in Appendix C).
In addition, the same data set is used to extract the height-
height correlation length, which is the characteristic length
scale for the corrugations. As shown in Fig. 3(c), the correla-
tion length R corresponds to the crossover between the small
and large length scale behaviors of the correlation function,
as evident in a log-log plot. We find R ∼ 210 nm for this
device. Analysis of further graphene/hBN half stacks pre-
pared in the same manner revealed very similar values for
the height distribution and lateral correlation length. Thus,
we find a corrugation volume by analyzing AFM images
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FIG. 4. (a) WAL of device 3 for different values of in-plane
magnetic field B‖ at a temperature of 1.8 K. (b) The fitted dephasing
rate τ−1

φ as a function of B2
‖.

Z2RAFM ∼ 1.9 nm3. This independent rough estimation of the
corrugation volume matches the corrugation volume extracted
from transport measurements well.

Even though graphene is sandwiched between two lay-
ers of atomically flat hBN crystals, out-of-plane corrugations
are present. The corrugation volume in bubble-free hBN en-
capsulated graphene (1.6 nm3) is similar to the corrugation
volume of SiO2-supported graphene (1.7 nm3). However, in
the case of hBN-encapsulated graphene, the corrugations have
a smaller height but larger lateral extension compared to the
relatively short length scales in graphene on SiO2, which is on
the order of a few nanometers [9,17].

Out-of-plane corrugations are not limited to hBN-
encapsulated graphene but are a generic phenomenon in vdW
heterostructures. Here, we present phase coherent transport
in hBN/Gr/WSe2 heterostructures, where additional dephas-
ing is observed when an in-plane magnetic field is applied.
Figure 4(a) shows the quantum correction of the magneto-
conductivity that exhibits weak antilocalization (WAL) due to
graphene’s proximity to the TMDC WSe2 [23]. In the case of
graphene, the quantum correction to the magnetoconductivity
�σ in the presence of strong spin-orbit coupling is given
by [33]
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where F (x) = ln (x) + �(1/2 + 1/x), with �(x) being the
digamma function; τ−1

B = 4DeB/h̄, where D is the diffusion
constant; τφ is the phase coherence time; and τasy (τsym) is the
spin-orbit scattering time that takes into account only spin-
orbit terms that are asymmetric (symmetric) in the z → −z
direction. Assuming that τasy and τsym are independent of B‖,
we perform a global fit where only τφ is allowed to vary
with B‖. We have also varied the spin-orbit times, which
essentially did not change within the limits of the extrac-
tion method (see also Ref. [23] for further information). The
extracted dephasing rate scales linearly as a function of B2

‖,
as shown in Fig. 4(b). Using Eq. (2), a corrugation volume
Z2R = 32 ± (12)nm3 is extracted. This is roughly an order of
magnitude smaller (larger) than in device 1 (2).

It is known that an additional dephasing due to spin orbit
might occur if an in-plane magnetic field is applied [33]. This
would result in a crossover from WAL to WL behavior with
increasing B‖. This effect could, in principle, qualitatively
explain the increased dephasing in device 3 at first sight.
However, at sufficiently large B‖, WL behavior should be
recovered in this case. We did not observe any WL behavior
in the range of 3 to 9 T in in-plane field [23]. The absence of a
WL dip at large B‖ and the fact that the dephasing rate scales
linearly with B2

‖ point to the fact that out-of-plane corrugations
are most likely the main source of dephasing in the presence
of an in-plane magnetic field.

III. DISCUSSION

Despite the fact that hBN crystals are atomically flat and
of high quality, graphene encapsulated between two such
crystals exhibits out-of-plane corrugations. The corrugation
volume extracted from phase coherent transport measure-
ments varies among different vdW heterostructures depending
on their interface and crystal quality. The large apparent cor-
rugation volume observed in device 1 obviously originates
from bubbles at the Gr/hBN interface and can be avoided
by utilizing heterostructures with a better interface quality or
by designing the active area of the device in a bubble-free
part of the heterostructure. However, in essentially bubble-free
heterostructures, out-of-plane corrugations are still present.
Whereas for device 3 the vdW interface might still be the lim-
iting factor in terms of the origin of out-of-plane corrugations,
this is certainly not the case in device 2, where AFM images
show a smooth, atomically flat surface without any bubbles or
contaminations. Here, a different explanation for the presence
of out-of-plane corrugations has to be invoked. One possibility
is that the crystal quality of hBN might influence the remain-
ing out-of-plane corrugations since defects in the hBN crystal
(also in layers far away from the interface with the graphene)
might lead to long-range height fluctuations [34]. Moreover,
residues trapped at the bottom hBN-SiO2 interface might lead
to long-range height fluctuations at the top of the bottom hBN
as well.

Our results are in agreement with previous measurements
on graphene on SiO2 substrate [17]. It is clear that devices
with bubbles exhibit a larger corrugation volume than devices
on a clean SiO2 surface. However, it is surprising that not even
the best hBN/Gr/hBN devices show a smaller corrugation
volume than devices on SiO2 substrates. It is important to note

195404-4



OUT-OF-PLANE CORRUGATIONS IN GRAPHENE BASED … PHYSICAL REVIEW B 102, 195404 (2020)

that even though the corrugation volume is similar, the lateral
correlation length is much longer, and the height variation is
considerably smaller for vdW heterostructures (Z ∼ 0.1 nm,
R ∼ 200 nm) compared to a SiO2 substrate (Z ∼ 0.4 nm, R ∼
5 nm [11,12]). Therefore, the deformations of the graphene
lattice and hence the random strain fluctuations are greatly
reduced in graphene in vdW heterostructures compared to
graphene on SiO2 substrates. This might be one of the reasons
why the graphene quality in fully encapsulated graphene can
be exceptionally good.

Finally, we would like to raise the point that the presence
of out-of-plane corrugations (even in the cleanest devices)
might impose severe limitations on phase coherent experi-
ments relying on large in-plane magnetic fields. This, for
example, prevents one from studying the transition from WAL
to WL in graphene with spin-orbit coupling triggered by an
in-plane magnetic field [23,33]. In addition, the magnitude of
the supercurrent in a graphene based Josephson junction in
an in-plane magnetic field could be reduced due to a reduced
phase coherence time.

IV. CONCLUSION

In conclusion, phase coherent transport has shown that
out-of-plane corrugations are present in vdW heterostructures.
The corrugation volume strongly depends on the interface
quality between graphene and other 2D materials (e.g., hBN
and WSe2) but is nonzero even for the best interface and
device quality (μ ∼ 100 000 cm2 V−1 s−1). The presence of
out-of-plane corrugations implies distortions of the graphene
lattice and hence the presence of random strain fluctuations.
While the corrugation volume for the cleanest hBN/Gr/hBN
device is similar to graphene on SiO2, its effect on transport
is greatly reduced because of the long-range nature of the
corrugations in hBN/Gr/hBN (smaller strain fluctuations).
Nonetheless, phase coherent experiments relying on large
in-plane magnetic fields could suffer from the out-of-plane
corrugations due to a reduced phase coherence time.
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APPENDIX A: OVERVIEW OF THE MEASURED DEVICES

Table I shows an overview of the three devices.

1. Fabrication of device 1 and device 3

The vdW heterostructures of device 1 and device 3 were
assembled using a dry pickup method [35] and Cr/Au one-
dimensional edge contacts were used [19]. After shaping the
vdW heterostructure into a Hall-bar geometry by a reac-
tive ion etching plasma employing SF6 as the main reactive
gas, Ti/Au top gates with an MgO dielectric layer were
fabricated on device 3. A heavily doped silicon substrate
with 300 nm SiO2 was used as a global back gate for both
devices.

AFM and optical images of device 1 (device 3) are shown
in Fig. 5 (Fig. 6).

2. Fabrication of device 2

Device 2 was not fabricated using the dry pickup method
but relying on a wet process in which the graphene is trans-
ferred by a poly(methyl methacrylate) (PMMA) membrane
on a hBN flake [18]. After PMMA removal in acetone, the
sample was annealed at 450 ◦C in a hydrogen atmosphere
(1.7 mbar). Clean and wrinkle-free areas were identified by
imaging the heterostructure by noncontact AFM prior to the

TABLE I. Overview of the three devices. D, lmfp, τφ, lφ , and Btr are given for the density range that was used for the evaluation of the
out-of-plane corrugations in the density interval neval. Phase coherence time and length are measured at a fridge temperature of 1.8 K for
devices 1 and 3 and 30 mK for device 2. Na stand for not available.

μ neval D lmfp τφ lφ Btr Z2Rtr Z2RAFM

(cm2 V−1 s−1) (1012cm−2) (m2/s) (nm) (ps) (μm) (mT) (nm3) (nm3)

Device 1 35 000 −2.2 to −1.8 0.32 640 8 1.6 10 125 na
hBN/Gr/hBN

Device 2 120 000 0.3 to 1.2 0.23 460 4.3 0.98 20 1.6 1.9
hBN/Gr/hBN

Device 3 130 000 −0.1 to 0.1 0.075 150 3.8 0.53 180 31 na
WSe2/Gr/hBN
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FIG. 5. (a) Optical image and (b) AFM image of the full vdW
heterostructure of device 1 with the device outline overlaid.

deposition of a top hBN layer to protect the graphene from
further fabrication steps. These AFM images were also used to
extract the data shown in Fig. 3. The deposition of the top hBN
could, in principle, induce additional corrugation. The device
shaping as well as the contact deposition was performed in the
same way as for device 1 and device 3.

3. Measurements and data analysis

Standard low-frequency lock-in techniques were used to
measure two- and four-terminal conductances and resistances.
Weak (anti)localization was measured at a temperature of
1.8 K, whereas a classical background was measured at suf-
ficiently large temperatures of 30 to 50 K for device 1 and
device 3. Device 2 was measured at 30 mK, and no classical
background was subtracted. A vector magnet was used to
independently control the in-plane (B‖) and out-of-plane (Bz)
magnetic field components.

The quantum correction to the magnetoconductivity was
analyzed only in the interval |Bz| � Btr , where Btrans =
	0/lmfp is the so-called transport field that describes the limit
of diffusive transport.

The diffusion constant was calculated in the following way:

D(n) = h̄vF
√

π

2e2

σ (n)√√
n2 + n2∗

, (A1)

where h̄ is the reduced Planck constant, vF = 1 × 106 m/s
is the Fermi velocity of graphene, and e is the fundamental
unit of charge. The conductivity σ was measured, and n was
calculated from a parallel plate capacitor model. The residual

FIG. 6. (a) Optical image and (b) AFM image of the full vdW
heterostructure of device 3 that show that the device area is essen-
tially bubble free. Data presented in the main text were taken from
the Hall bar outlined in (b).

FIG. 7. Two-terminal conductivity as a function of charge carrier
density of device 2. A two-parameter model is fit to extract charge
carrier mobility and series resistance (∼190 
).

doping n∗ was used as a cutoff to calculate D around the
charge neutrality point.

The main source of uncertainty of the extracted dephasing
times originates from the uncertainty in the aspect ratio of the
devices (around 30%). Other sources are estimated to have
a smaller contribution, which includes the error of the fit to
Eqs. (1), (3), and (B1). For device 1, a detailed analysis,
including the influence of the uncertainty in the aspect ratio
on the fit to Eq. (1), was performed. The maximum relative
uncertainty was found to be around 30% (identical to the one
from the aspect ratio). Therefore, we used directly a relative
uncertainty of 30% for devices 2 and 3.

APPENDIX B: MAGNETOCONDUCTIVITY OF DEVICE 2

Figure 7 shows the gate dependence of the two-terminal
conductance of device 2.

Instead of fitting the full WL formula [see eq. (1) for the
magnetoconductivity], the phase coherence time τφ can also
be extracted from the curvature of the magnetoconductance σ

at zero out-of-plane magnetic field B⊥ [36]:

∂2σ

∂B2
⊥

∣∣∣∣
B⊥=0

= 16π

3

e2

h

(
Dτφ

h/e

)2

, (B1)

where D is the diffusion constant, τφ is the phase coherence
time, and the constants e and h are the electron’s charge and
Planck’s constant, respectively. This is especially useful for
very high mobility devices where Btr is very small. Figure 8
shows the magnetoconductivity for electron doping for vari-
ous in-plane magnetic fields. It is clearly observable that the
curvature at zero Bz gets smaller for larger in-plane magnetic
field; hence, the phase coherence time is smaller as well.

As stated in the main text, the curvature of the magnetocon-
ductivity around zero magnetic field is a good measure of the
phase coherence time if τφ 	 τiv, τ∗ [29]. In this case Eq. (B1)
can be applied. We would like to note that the condition
τφ 	 τ∗ is generally fulfilled for hBN-encapsulated graphene
(see device 1 and Ref. [14]). Furthermore, a ratio of τφ/τiv

of 1/2, which might be the case for large in-plane magnetic
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FIG. 8. Magnetoconductivity for various in-plane magnetic
fields for electron doping of device 2. The black curves are fits with
a parabola to extract the phase coherence time using Eq. (B1).

fields, leads to an uncertainty of only ∼25% in the extraction
of τφ with Eq. (B1).

APPENDIX C: ADDITIONAL INFORMATION
ON THE AFM ANALYSIS

The AFM analysis presented in the main text and below
was performed on device 2 before placing the top hBN. The
area marked by the red dashed rectangle in Fig. 3(b), which
corresponds to the area where the Hall bar was defined, was
used to extract Z and R. Therefore, the AFM analysis and
the transport measurements probe the same area. A tilted
plane was subtracted from the height data prior to the detailed
analysis described in the following.

The rms height Z of the corrugations can directly be ex-
tracted from AFM measurements by either calculating it from
the raw data (point by point) or fitting the height distribution
with a Gaussian model. The point-by-point calculation of Z is
given as

Z =
√√√√ 1

N

N∑
n=1

(zn − z̄)2, (C1)

where zn is the height value of point n and z̄ is the average
height value of all N points of the AFM image. Additionally,
the height distribution, as shown in Fig. 9, can be used to
extract Z . We find Z = 94.4 ± 1.2 pm from the width of the
height distribution, which is in good agreement with literature
values for graphene on hBN [18].

The height-height correlation function in one dimension
g(x) = 〈[z(x0 + x) − z(x0)]2〉 [9] is defined as follows for a
discrete data set:

g(x) = 1

N (M − m)

N∑
l=1

M−m∑
n=1

(zn+m,l − zn,l )
2, (C2)

where m = x/�x and �x is the spacing between two points.
Equation (C2) represents the one-dimensional height-height
correlation function averaged over N lines of the second lat-
eral dimension, as commonly used in the analysis of AFM
images, where g(x) is calculated for the fast scanning direc-
tions and averaged over the slow scanning direction. Equation

FIG. 9. The height distribution (red crosses) evaluated in the area
marked by the red dashed rectangle in Fig. 3(b). A Gaussian fit (black
solid line) yields Z = 94.4 ± 1.2 pm.

(C2) was used to calculate g(x), which is shown in Fig. 3(c)
in the main text. The correlation length R is identified as the
crossover from the polynomial short-range behavior to the
constant long-range behavior.

For a Gaussian correlated surface, as assumed by Mathur
and Barangar [26] for their calculation, the height-height cor-
relation function takes the form

g(x) = 2Z2
(
1 − e−x2/R2)

, (C3)

where Z is the rms deviation from the mean height and R is
the correlation length. This is a direct result of the assumption
of a Gaussian correlated surface that is defined by a height
distribution z(x) with zero mean and a variance given by

〈z(x)z(x′)〉 = Z2e−(x−x′)2/R2
, (C4)

where x and x′ are positions along the x direction, Z is the rms
height fluctuation, and R is the correlation length.

The crossover between the short-range behavior and the
long-range behavior takes place at R ∼ 210 nm, as indicated
by the crossing of the black solid lines in Fig. 3(c) in the
main text. In addition, the value for the long-range behavior
[2Z2, as given by Eq. (C3) for large, uncorrelated distances]
agrees well with Z extracted from the height distribution.
Fitting the data with Eq. (C3) results in Z = 106 ± 1 pm and
R = 187 ± 20 nm, which give reasonable agreement with the
general calculation.

We would like to note that the corrugation volume
extracted from transport measurements can directly be com-
pared to the corrugation volume extracted from AFM
measurements; see Refs. [26,31,37] for further information. In
order for Eq. (2) to be valid, it is assumed that the correlation
length R is of short range compared to the mean free path lmfp

[26]. This condition is fulfilled for device 2, where the correla-
tion length has been determined by AFM measurements. It is
a question whether this condition is valid for devices 1 and 3.
However, the experimental finding (τ−1

φ ∝ B2
‖) suggests also a

homogeneous broadening described by Eq. (2).
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