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Machine learning enables completely automatic
tuning of a quantum device faster than human
experts
H. Moon1,8, D. T. Lennon 1,8, J. Kirkpatrick2, N. M. van Esbroeck1,3, L. C. Camenzind4, Liuqi Yu4, F. Vigneau 1,

D. M. Zumbühl 4, G. A. D. Briggs 1, M. A. Osborne5, D. Sejdinovic6, E. A. Laird 7 & N. Ares 1✉

Variability is a problem for the scalability of semiconductor quantum devices. The parameter

space is large, and the operating range is small. Our statistical tuning algorithm searches for

specific electron transport features in gate-defined quantum dot devices with a gate voltage

space of up to eight dimensions. Starting from the full range of each gate voltage, our

machine learning algorithm can tune each device to optimal performance in a median time of

under 70 minutes. This performance surpassed our best human benchmark (although both

human and machine performance can be improved). The algorithm is approximately 180

times faster than an automated random search of the parameter space, and is suitable for

different material systems and device architectures. Our results yield a quantitative mea-

surement of device variability, from one device to another and after thermal cycling. Our

machine learning algorithm can be extended to higher dimensions and other technologies.

https://doi.org/10.1038/s41467-020-17835-9 OPEN

1 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK. 2 DeepMind, London EC4 5TW, UK. 3 Department of Applied Physics,
Eindhoven University of Technology, Eindhoven, MB 5600, The Netherlands. 4 Department of Physics, University of Basel, Basel 4056, Switzerland.
5 Department of Engineering, University of Oxford, Walton Well Road, Oxford OX2 6ED, UK. 6 Department of Statistics, University of Oxford, 24-29 St Giles,
Oxford OX1 3LB, UK. 7 Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. 8These authors contributed equally: H. Moon, D.T. Lennon.
✉email: natalia.ares@materials.ox.ac.uk

NATURE COMMUNICATIONS |         (2020) 11:4161 | https://doi.org/10.1038/s41467-020-17835-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17835-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17835-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17835-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17835-9&domain=pdf
http://orcid.org/0000-0001-8067-4256
http://orcid.org/0000-0001-8067-4256
http://orcid.org/0000-0001-8067-4256
http://orcid.org/0000-0001-8067-4256
http://orcid.org/0000-0001-8067-4256
http://orcid.org/0000-0002-7557-4493
http://orcid.org/0000-0002-7557-4493
http://orcid.org/0000-0002-7557-4493
http://orcid.org/0000-0002-7557-4493
http://orcid.org/0000-0002-7557-4493
http://orcid.org/0000-0001-5831-633X
http://orcid.org/0000-0001-5831-633X
http://orcid.org/0000-0001-5831-633X
http://orcid.org/0000-0001-5831-633X
http://orcid.org/0000-0001-5831-633X
http://orcid.org/0000-0003-1950-2097
http://orcid.org/0000-0003-1950-2097
http://orcid.org/0000-0003-1950-2097
http://orcid.org/0000-0003-1950-2097
http://orcid.org/0000-0003-1950-2097
http://orcid.org/0000-0001-9589-127X
http://orcid.org/0000-0001-9589-127X
http://orcid.org/0000-0001-9589-127X
http://orcid.org/0000-0001-9589-127X
http://orcid.org/0000-0001-9589-127X
http://orcid.org/0000-0003-2588-6322
http://orcid.org/0000-0003-2588-6322
http://orcid.org/0000-0003-2588-6322
http://orcid.org/0000-0003-2588-6322
http://orcid.org/0000-0003-2588-6322
mailto:natalia.ares@materials.ox.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Gate defined quantum dots are promising candidates for
scalable quantum computation and simulation1,2. They
can be completely controlled electrically and are more

compact than superconducting qubit implementations1. These
devices operate as transistors, in which electrons are controlled by
applied gate voltages. If these gate voltages are set correctly,
quantum dots are created, enabling single-electron control. If two
such quantum dots are created in close proximity, the double
quantum dot can be used to define robust spin qubits from the
singlet and triplet states of two electrons3,4. Due to device
variability, caused by charge traps and other device defects, the
combination of gate voltage settings which defines a double
quantum dot varies unpredictably from device to device, and even
in the same device after a thermal cycle. This variability is one of
the key challenges that must be overcome in order to create
scalable quantum circuits for technological applications such as
quantum computing. Typical devices require several gate elec-
trodes, creating a high-dimensional parameter space difficult for
humans to navigate. Tuning is thus a time-consuming activity
and we are reaching the limits of our ability to do this manually in
arrays of quantum devices. To find, in a multidimensional space,
the gate voltages which render the device operational is referred
to in the literature as coarse tuning5,6.

Here, we present a statistical algorithm which is able to explore
the entire multidimensional gate voltage space available for
electrostatically defined double quantum dots, with the aim of
automatically tuning them and studying their variability. Until
this work, coarse tuning required manual input7 or was restricted
to a small gate voltage subspace8. We demonstrate a completely
automated algorithm which is able to tune different devices with
up to eight gate electrodes. This is a challenging endeavour
because the desired transport features are only present in small
regions of gate-voltage space. For most gate voltage settings, the
device is either pinched off (meaning that the charge carriers are
completely depleted so that no current flows) or too open
(meaning that the tunnel barriers are too weakly defined for
single-electron charge transport to occur). Moreover, the trans-
port features that indicate the device is tuned as a double quan-
tum dot are time-consuming to measure and difficult to
parametrise. Machine learning techniques and other automated
approaches have been used for tuning quantum devices5–14.
These techniques are limited to small regions of the device
parameter space or require information about the device char-
acteristics. We believe our work significantly improves the state-
of-the-art: our algorithm models the entire parameter space and
tunes a device completely automatically (without human input),
in approximately 70 min, faster than the typical tuning by a
human expert.

Our algorithm explores the gate-voltage space by measuring
the current flowing through the device, and its design makes only
a few assumptions, allowing it to be readily applied to other
device architectures. Our quantum dot devices are defined in a
two-dimensional electron gas in a GaAs/AlGaAs heterostructure
by Ti/Au gate electrodes. DC voltages applied to these gate
electrodes, V1–V8, create a lateral confinement potential for
electrons. Particularly important are the two plunger gate voltages
V3 and V7, which mainly tune the electron occupation of the left
and right dots. A bias voltage Vbias is applied to ohmic contacts to
drive a current (I) through the device. The device schematic,
designed for precise control of the confinement potential15–17, is
shown in Fig. 1a. Measurements were performed at 50 mK.

We consider the space defined by up to eight gate voltages
between 0 and −2 V. This range was chosen to avoid leakage
currents. In this parameter space, the algorithm has to find the
desirable transport features within tens of mV. Identifying these
features is slow because it is requires measuring a two-

dimensional current map, i.e., a plot of I as a function of the
two plunger gate voltages. Although other techniques for mea-
suring the double quantum dot exist, such as charge sensing and
dispersive readout, they also require other parameters to be
retuned when the gate voltages vary and are therefore not suitable
for automated measurements. Our algorithm is thus designed to
minimize the number of current maps that it requires to find the
transport features in question.

We make two observations. Firstly, that for very negative gate
voltages, no current will flow through the device, i.e., the device is
pinched-off. Conversely, for very positive gate voltages, full cur-
rent will flow and single electron transport will not be achieved.
This means that transport features are expected to be found near
the hypersurface that separates low and high current regions in
parameter space. The second observation is that to achieve single-
electron transport, a confinement potential is needed. The par-
ticular transport features that evidence single-electron transport
are Coulomb peaks, which are peaks in the current flowing
through the device as a function of a single plunger gate voltage.
These observations lead us to only two modelling assumptions: (i)
single and double quantum dot transport features are embedded
near a boundary hypersurface, shown in Fig. 1b, which separates
regions in which a measurable current flows, from regions in
which the current vanishes; (ii) large regions of this hypersurface
do not display transport features.

The algorithm consists of two parts: a sampling stage that
generates candidate locations on the hypersurface, and an
investigation stage in which we collect data in the vicinity of each
candidate location, i.e., close to the candidate location in gate
voltage space (see Section “Investigating nearby voltage space, for
precise definitions of the size of the regions explored around
candidate locations”), to evaluate transport features (Fig. 2). The
results of the investigation stage feed back into the sampler, which
chooses a new candidate location in the light of this information.
The purpose of the sampler is to produce candidate locations in
gate voltage space for which the device operates as a double
quantum dot. A block diagram of the algorithm is displayed in
Fig. 3. Our modelling assumptions are based on the physics of
gate defined devices leading to minimal constraints; we do not
assume a particular shape for the hypersurface, and we instead
allow measurements to define it by fitting the data with a
Gaussian process. Overall, the algorithm minimises tuning times
by identifying candidate locations on a hypersurface model that is
updated with each measurement; by prioritising the most pro-
mising of these locations; and by avoiding the acquisition of two-
dimensional current maps which do not correspond to a double
quantum dot regime.

We demonstrate over several runs, in two different devices and
over multiple thermal cycles, that the algorithm successfully finds
transport features corresponding to double quantum dots. We
perform an ablation study, which identifies the relative con-
tribution of each of the modules that constitute the algorithm,
justifying its design. Finally, we demonstrate that our algorithm is
capable of quantifying device variability, which has only been
theoretically explored so far18. We have done this by comparing
the hypersurfaces found for different devices and for a single
device in different thermal cycles.

Automating experimental science has the impact to sig-
nificantly accelerate the process of discovery. In this work we
show that a combination of simple physical principles and
flexible probabilistic machine learning models can be used to
efficiently characterise and tune a device. We envisage that in
the near future such judicious application of machine learning
will have tremendous impact even in areas where only small
amounts of data are available and no clear fitness functions can be
defined.
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Results
Description of the algorithm. The algorithm starts with an
initialization stage. This stage begins with setting Vbias. The cur-
rent is then measured at the two extremes of the gate voltage
space, Vj= 0 and Vj=−2 V for j= 1, . . . , N, where N is the
number of gate electrodes. For the most negative extreme, the
measured current should be 0, but current offsets might change
this value for different measurement setups. The difference
between the currents at these two extremes is the full-scale cur-
rent which is used to set the threshold that defines the hyper-
surface. The search range was chosen as the typical gate voltage
range used when tuning similar devices from scratch.

The algorithm then begins an iterative process during which it
alternates between the sampling and investigation stages. In each
iteration, the sampling stage identifies a candidate location on the
hypersurface in voltage space, attempting to select locations with
a high probability of desirable transport features. The investiga-
tion stage then explores the nearby region of voltage space,
attempting to identify whether current maps measured in this

region show Coulomb peaks and honeycomb patterns. The
presence of Coulomb peaks is reported back to the sampling stage
as an evaluation result, which it uses in future iterations to inform
its selection of new candidates. The steps that make up each
iteration will now be described in detail.

Searching for the hypersurface. In each iteration, the algorithm
first locates the hypersurface in gate voltage space. To do this, it
selects a search direction, specified by a unit vector u which
during the first 30 iterations of the algorithm is selected randomly
from a hypersphere, restricted to the octant where all gate vol-
tages are negative. The gate voltages are then scanned along a ray
beginning at the origin o and parallel to u (Fig. 4a). During this
scan, the current is monitored; when it falls below a threshold of
20% of full scale, this is taken as defining a location v(u) on the
hypersurface.

While this procedure correctly identifies locations for which
current through the device is pinched off, it does not recognise
whether the device is “tunable” in the sense that every gate voltage
strongly affects the current. We find that for some locations, most
gate voltages have little effect, which suggests that the measured
current is not being determined by the potential in the quantum
dot. With such a combination of gate voltages, a double quantum
dot cannot be usefully formed. To reduce the amount of time
spent exploring such regions of the hypersurface, we implemen-
ted the following heuristic pruning process (Fig. 4b), applied in
each of the first 30 iterations. From the hypersurface intersection
v(u), all voltages are stepped upwards to a location vδ(u)≡
v(u)+ δ, where δ is a step-back vector with each component
chosen to be +100 mV. Each voltage in turn is then swept
downwards towards the bottom of its range or until the
hypersurface is encountered. If the hypersurface is encountered
only along one voltage axis k, then the origin for subsequent
iterations is moved so that its k-component is equal to the k-
component of vδ (Fig. 4b, inset). Over several iterations, this
process prunes away search paths for which the hypersurface is
not intersected within the chosen range.

Investigating nearby voltage space. Having located the hypersur-
face, the algorithm then proceeds to investigate the nearby region
of voltage space to determine whether a double quantum dot is
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Fig. 1 Overview of device, and gate voltage space. a Schematic of a gate-defined double quantum dot device. b Left: Boundary hypersurface measured as
a function of V2, V5, and V8, with fixed values of V1, V3, V4, V6, and V7. The current threshold considered to define this hypersurface is 20% of the maximum
measured current. The gate voltage parameter space, restricted to 3D for illustration, contains small regions in which double and single quantum dot
transport features can be found. These regions typically appear darker in this representation because they produce complex boundaries. Right: For
particular gate voltage locations marked with green crosses, the current as a function of V7 and V3 is displayed. The top and bottom current maps display
double and single quantum dot transport features, respectively.
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Fig. 2 Overview of the algorithm. The sampling phase stage produces
candidate locations in gate voltage space, which are on the boundary
hypersurface (pink surface). The distance between a candidate location
(red cross) and the origin of the gate voltage space is marked with a dashed
line. The investigation stage evaluates the local region by, for example,
measuring current maps which are evaluated by a score function. (The
current map displayed is an example of a measurement performed by the
algorithm. It uses a colour scale running from red, the highest current
measured, to blue, the lowest current). Evaluation results are fed back to
the sampling stage.
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formed. The investigation is carried out in the plane containing v
(u) and defined by varying the two plunger gate voltages V3 and
V7. These gates, selected before running the algorithm, are the
ones that should predominantly shift the electrochemical poten-
tial in the left and right dots. If a double quantum dot is formed,
the current should therefore show a honeycomb pattern in this
plane, similar to Fig. 2.

First, a one-dimensional scan is made in this investigation
plane, starting at v(u) and running along the diagonal axis
V̂e � 1ffiffi

2
p ðV̂3 þ V̂7Þ, where V̂ i indicates a unit vector in voltage

space (Fig. 4c). This scan is chosen to have length 128 mV and
resolution 1 mV. A peak detection routine identifies the presence
or absence of Coulomb peaks. If Coulomb peaks are absent,
investigation here ceases and a new iteration begins.

Next, if Coulomb peaks are present in this diagonal scan a two-
dimensional scan is made (Fig. 4d). The scanning region is a
square oriented along V̂e and its orthogonal axis
V̂a � 1ffiffi

2
p ðV̂3 � V̂7Þ. This square is bounded by v(u), and its side

length is chosen to be 3.5 times the average peak spacing
identified in the diagonal scan. (If the diagonal scan shows less
than 3 peaks, the side length is set to be 100mV.) The scan is
made first at low resolution (16 × 16 pixels), and a score is
assigned to the resulting current map. The score function (see
Supplementary Methods, Score function) is a predefined
mathematical expression designed to reward specific transport
features that correspond to the visual features typically looked for
by humans when manually tuning a device. In particular, it is
designed to identify honeycomb patterns similar to Fig. 2
indicating the formation of a double quantum dot. It rewards
current maps containing sharp and curved lines.

If the score function of the low-resolution scan is high, it is
repeated at high resolution (48 × 48 pixels). The score threshold is
dynamically adjusted throughout the experiment so that 15% of
low-resolution scans are repeated. (See Supplementary Methods,
Optimal threshold α0, for a statistical analysis of the optimal
threshold.) The high-resolution maps, scanned in regions of
voltage space identified as showing desirable double-dot beha-
viour, constitute the output of the tuning algorithm.

Searching efficiently by learning about the hypersurface. To more
rapidly locate the hypersurface, and to increase the fraction of
time spent exploring regions of gate space containing Coulomb
peaks, the algorithm improves the search process of Section
Searching for the hypersurface by incorporating information
from its measurements. It applies this information beginning with
the 31st iteration. To do this, it starts each iteration by using the
measured locations of the hypersurface to generate a model
hypersurface spanning the entire voltage space (Fig. 4e). The
model is generated using a Gaussian process19 incorporating the
uncertainty of the measured locations as explained in the Sup-
plementary Methods, Gaussian process models. To each candi-
date search direction u, the model assigns an estimated distance
to the hypersurface m(u) with uncertainty s(u). Furthermore, the
model uses information on whether current peaks were identified
in previous searches to assign to each point on the model
hypersurface a probability ~Ppeak of expecting peaks.

Using this model, the algorithm can now select new search
directions u more efficiently. It is desirable to select search
directions associated with a high probability ~Ppeak, while also
occasionally exploring less promising regions of the hypersurface.
To achieve this trade-off, the algorithm first generates a set of
candidate search locations on the hypersurface (Fig. 4f). To
generate a set that is approximately uniform despite the
convoluted shape of the hypersurface, we adopt a selection
routine based on simulated Brownian motion20; a set of
“particles” is simulated inside the hypersurface, and each
encounter with the hypersurface contributes one candidate
location (Fig. 4f, inset). To each of these locations, the algorithm
then assigns a weight proportional to the corresponding value of
~Ppeak, and selects one location at random (i.e., using Thompson
sampling). This location then defines a new search direction u.
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The model hypersurface is also used to improve the efficiency
of the search. Instead of beginning at the origin (as in Fig. 4a), the
new search scan begins at the location g(u)≡ o+ (m(u)− 2s(u))
u, which should lie just inside the hypersurface (as in Fig. 4f). If
m(u)− 2s(u) < 0, the search scan begins at o.

Occasionally, the measured current at the beginning of the scan
is below threshold, indicating that g(u) is already in the pinched-off
region. In these cases, the algorithm scans in the opposite direction,
along—u. Once the measured current increases above 0.8 of the
value at o, the algorithm reverts to measuring in the u direction to
locate the hypersurface in the usual way. Over many iterations, the
algorithm thus builds up the required set of high-resolution current
maps, measured with constantly improved efficiency.

Experimental results. The performance of our algorithm is
assessed by a statistical analysis of the expected success time μt.
This is defined as the time it takes the algorithm to acquire a
high-resolution current map that is confirmed a posteriori by
humans as containing double quantum dot features. Note that
this confirmation is only needed to assess the performance of the
algorithm. Because human labelling is subjective, three different
researchers labelled all current maps, deciding in each case if they
could identify features corresponding to the double quantum dot

regime, with no other information available. See Supplementary
Methods, Bayesian statistics, for details of the multilabeller sta-
tistical analysis.

Device tuning. To benchmark the tuning speed of our algorithm,
we ran it several times on two different devices with identical gate
architecture, Devices 1 and 2, and we compared its performance
with a Pure random algorithm. The Pure random algorithm
searches the whole gate voltage parameter space by producing a
uniform distribution of candidate locations. Unlike our algo-
rithm, which we will call Full decision, it does not include
hypersurface weighting or pruning rules, but uses peak detection
in its investigation stage. All Full decision runs presented in this
section for Device 1 and Device 2 were performed during a single
cool down (cool down 1). The Pure random runs in each device
were performed in a different cool down (cool down 2).

As mentioned in the introduction, we consider a gate voltage
space whose dimension is defined by the number of working gate
electrodes, and we provide a gate voltage range that avoids
leakage currents. While for Device 1 we considered the eight-
dimensional parameter space defined by all its gate electrodes, for
Device 2 we excluded gate electrode 6 by setting V6= 0 mV due
to observed leakage currents associated with this gate.
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We define the average count �C as the number of current maps
labelled by humans as displaying double quantum dot features
divided by the number of labellers. For a run of the Pure random
algorithm in Device 2 and five runs of our algorithm in Devices 1
and 2, we calculated �C as a function of laboratory time (Fig. 5a, b).
We observe that �C is vastly superior for our algorithm compared
with Pure random, illustrating the magnitude of the parameter space.

The labellers considered a total of 2048 current maps produced
in different runs, including those of the ablation study in Section
Ablation study. The labellers had no information of the run in

which each current map was produced, the device or the
algorithm used. For the Pure random approach, the labelled set
was composed of 51 current maps produced by the algorithm and
100 randomly selected from the set of 2048.

The time μt is estimated by the multi-labeller statistics. The
multi-labeller statistics uses an average likelihood of μt over
multiple labellers and produces an aggregated posterior distribu-
tion (see Supplementary Methods, Bayesian statistics). From this
distribution, the median and 80% (equal-tailed) credible interval
of μt is 2.8 h and (1.9, 7.3) h for Device 1 and 1.1 h and (0.9, 1.6) h
for Device 2. Experienced humans require approximately 3 h to
tune a device of similar characteristics into exhibiting double
quantum dot features (F. Kuemmeth, personal communication).
Our algorithm’s performance might therefore be considered
super human. Due to device variability, the hypersurfaces of these
two devices are significantly different, showing our algorithm is
capable of coping with those differences.

In Fig. 5c, d, we compare the probability of measuring
Coulomb peaks in the vicinity of a given v(u), P(peaks), for Pure
random and different runs of our algorithm. We calculate P
(peaks) as the number of sampled locations in the vicinity of
which Coulomb peaks were detected over n. In this way, we
confirm that P(peaks) is significantly increased by our algorithm.
It has a rapid growth followed by saturation. Fig. 5e, f shows the
high resolution current maps produced for Device 2 by Pure
random and one of our algorithm runs. We observe that our
algorithm produces high resolution current maps which are
recognized by all labellers as displaying double quantum dot
features within 1.53 h. The three current maps in Fig. 5f
correspond to double quantum dot regimes found by our
algorithm in different regions of the gate voltage space. The
number of labellers C who identify the current maps produced by
Pure random as corresponding to double quantum dots, C, is 0 or
1. This demonstrates our algorithm finds double quantum dot
regimes, which can be later fine tuned to reach optimal operation
conditions fully automatically21.

To significantly reduce tuning times, we then modified our
algorithm to group gate electrodes that perform similar functions.
The algorithm assigns equal gate voltages to gate electrodes in the
same group. For Device 1, we organized the eight gate electrodes
into four groups: G1= (V1), G2= (V2, V8), G3= (V3, V7), and
G4= (V4–V6). In this case, the median and 80% credible interval
of μt improve to 0.6 h and (0.4, 1.1) h (see Supplementary Fig. 2
for a plot of �C). This approach, by exploiting knowledge of the
device architecture, reduces μt by more than four times.

Ablation study. Our algorithm combines a sampling stage, which
integrates the hypersurface sampling with weighting and pruning,
and an investigation stage that includes peak detection and score
function decisions. Each of these modules, illustrated in Fig. 3,
contributes to the algorithm’s performance. An ablation study
identifies the relative contributions of each module, justifying the
algorithm’s architecture. For this ablation study we chose to
compare our algorithm, Full decision, with three reduced versions
that combine different modules; Pure random, uniform surface,
and peak weighting (see Table 1).

Pure random, defined in the previous section, produces a
uniform distribution of candidate locations over the whole gate
voltage space. It excludes the sampling and pruning rules.
Uniform surface makes use of the hypersurface sampling, but no
weighting or pruning rules are considered. Peak weighting
combines the hypersurface sampling with weighting and pruning
rules. These three algorithms use peak detection in their
investigation stage, but none of them use the score function
decision. For the ablation study, we define low (high) resolution
as 20 × 20 (60 × 60) pixels.
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Fig. 5 Algorithm’s performance. a–d Average number of current maps
displaying double quantum dot features, �C, and P(peaks) as a function of
laboratory time. Current maps are labelled by humans a posteriori, i.e., after
the algorithm is stopped. a, c, b, d correspond to one run of Pure random
and five runs of our algorithm, respectively. All algorithm runs displayed in
main panels were performed in Device 2, while insets show runs of our
algorithm in Device 1. e, f High resolution current maps measured in Device
2 by Pure random and one of our algorithm runs, respectively. We indicate
the time the algorithm had been running for before they were acquired and
the number of labellers, C, that identified them as displaying double
quantum dot features. Current maps are ordered from left to right in
decreasing order of C, and maps that have the same values of C are
displayed in the order at which they were sampled. Each panel uses an
independent colour scale running from red (highest current measured) to
blue (lowest current).
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To analyse the algorithm’s performance, we estimate P(peaks)
and the probability of success, i.e., the probability to acquire a
high-resolution current map labelled as containing double
quantum dot features, given Coulomb peak measurements P
(success∣peaks). To take measurement times into consideration,
we define t500 as the time to sample and investigate 500 locations
in gate voltage space. The ablation study was performed in Device
1 keeping investigation stage parameters fixed. The cool down
cycle was the same as in Section “Device tuning” (cool down 1),
except for Pure random, which was performed in a new thermal
cycle (cool down 2). Results are displayed in Fig. 6.

Figure 6a shows that the introduction of the hypersurface
sampling, and weighting and pruning, increases t500. This is
because P(peaks) increases with these modules (Fig. 6b), and thus
the number of low and high resolution current maps required by
the investigation stage is larger. Within uncertainty, P(succes-
s∣peaks) remains mostly constant for the different algorithms
considered. The result is a decreasing μt from Pure random to
Peak weighting within experimental uncertainty. See “Methods”,
“Mathematical analysis of ablation study results, for a mathema-
tical analysis of these results”.

The reason behind the use of peak detection in all the
algorithms considered for this ablation study is the vast amount
of measurement time that would have been required otherwise.
Without peak detection, the posterior median estimate of μt for
Pure random is 680 h.

To complete the ablation study, we compare the considered
algorithms with the grouped gates approach described in the
previous section, keeping parameters such as the current map

resolutions are equal. We found μt= 80.5 min (see Supplemen-
tary Fig. 3 for a plot comparing these algorithms).

In summary, comparing Pure random and Uniform surface, we
show the importance of hypersurface sampling. The difference
between Uniform surface and Peak weighting highlights the
importance of weighting and pruning. The improved perfor-
mance of Full decision with respect to Peak weighting evidences
the tuning speedup achieved by the introduction of the score
function. These results demonstrate Full decision exhibits the
shortest μt and imply an improvement over Pure random without
peak detection of approximately 180 times.

Device variability. The variability of electrostatically defined
quantum devices has not been quantitatively studied so far. We
have been able to exploit our algorithms for this purpose. Using
the uniform surface algorithm only (no investigation stage), we
obtain a set of locations on the hypersurface va. Changes occur-
ring to this hypersurface are detected by running the algorithm
again and comparing the new set of locations, vb, with va. This
comparison can be done by a point set registration method,
which allows us to find a transformation between point sets, i.e.,
between the hypersurface locations.

Affine transformations have proven adequate to find useful
combinations of gate voltages for device tuning9,10. To find a
measure of device variability, understood as changes occurring to
a device’s hypersurface, we thus use an affine transformation vt=
Bvb, with B a matrix which is a function of the transformation’s
parameters. We are looking for a transformation of coordinates
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Fig. 6 Ablation study. a, b Bar charts and corresponding data points comparing μt (light green), t500 (dark green), P(peaks) (dark blue) and P(success∣peaks)
(light blue) for the different algorithms considered. Error bars represent 80% (equal-tailed) credible intervals. Due to a measurement problem, 459 sampling
iterations instead of 500 were considered for the Full decision algorithm. c–f High resolution current maps sampled by pure random, uniform surface, peak
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randomly selected. Each panel uses an independent colour scale running from red (highest current measured) to blue (lowest current).

Table 1 Comparison of algorithms used in the ablation study.

Algorithm SS: Hypersurface sampling SS: Weighting and pruning IS: Peak detection IS: Score function decision

Pure random × × ✓ ×
Uniform surface ✓ × ✓ ×
Peak weighting ✓ ✓ ✓ ×
Full decision ✓ ✓ ✓ ✓

Modules in the sampling stage (SS) and the investigation stage (IS) are indicated with a tick if included and with a cross if excluded.
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that converts vb into a set of locations vt which is as similar to va
as possible.

The particular point set registration method we used is
coherent point drift registration22. This method works with an
affine transformation which includes a translation vector. We
have modified the method to set this translation vector to zero, as
the transformation between hypersurfaces can be fully character-
ized by the matrix B (see Supplementary Methods, Point set
registration).

We have used this approach to quantify the variability between
Devices 1 and 2, and the effect of a thermal cycle in the
hypersurface of Device 2. Figure 7 displays the matrix Bc= B− I
for each case, quantifying how much B, the transformation that
converts a set of locations from one hypersurface onto the other,
differs from the identity matrix (I). Nonzero elements of Bc thus
indicate device variability. Diagonal elements of Bc are responsible
for scale transformations and can be interpreted as a capacitance
change for a given gate electrode. Off-diagonal elements are
responsible for shear transformations and can be interpreted as a
change in cross-capacitance between a pair of gate electrodes.

Figure 7a shows Bc corresponding to the changes in the
hypersurface of Device 2 after a thermal cycle (cool down 1 vs.
cool down 3). This transformation shows that device variability in
a thermal cycle is dominated by a uniform change in capacitance
for all gate electrodes. We have also measured Bc for a thermal
cycle of Device 1 (see Supplementary Fig. 4). Figure 7b displays Bc
comparing the hypersurface of Device 1 (cool down 1) with the
hypersurface of Device 2 (cool down 3). We observe that the
variability between these devices, which share a similar gate
architecture, is given by nonuniform changes in gate electrode
capacitance, as well as by changes in cross-capacitance. This
variability is attributed to charge traps and other device defects,
such as a small differences in the patterning of gate electrodes.

Discussion
We demonstrated an algorithm capable of tuning a quantum
device with multiple gate electrodes in approximately 70 min.
This was achieved by efficiently navigating a multidimensional
parameter space without manual input or previous knowledge
about the device architecture. This tuning time was reproduced in
different runs of the algorithm, and in a different device with a
similar gate architecture. Our tuning algorithm is able to tune
devices with different number of gate electrodes with no mod-
ifications. We showed that gate electrodes with similar functions
can be grouped to reduce the dimensionality of the gate voltage
space and reduce tuning times to 36 min. Tuning times might be
further improved with efficient measurement techniques23, as

measurement and gate voltage ramping times were found to be
the limiting factor. The use of charge sensors and RF readout
could also be implemented to improve tuning times, although
these techniques would require to be automatically tuned to their
optimum operating configuration, and would be restricted to
small regions of the gate voltage space. We analysed our algo-
rithm design through an ablation study, which allowed us to
justify and highlight the importance of each of its modules. The
improvement over the pure random search without peak detec-
tion is estimated to be 179 times.

We showed that device variability can be quantified using point
set registration by uniform sampling of the hypersurface separ-
ating regions of high and low current in gate voltage space. We
found that variability between devices with similar gate archi-
tectures is given by nonuniform changes in gate capacitances and
cross-capacitances. Variability across thermal cycles is only given
by a uniform change in gate capacitances.

Other device architectures might use the sampling stage of our
algorithm as a first tuning step, and the investigation stage can be
adapted to tune quantum devices into more diverse configura-
tions. To achieve full automated tuning of a singlet–triplet qubit,
it will be necessary to go beyond this work by tuning the quantum
dot tunnel barriers, identifying spin-selective transitions, and
configuring the device for single-shot readout.

Methods
The score function as a classifier. One of key strength of the proposed algorithm
is that it does not require an ideal score function. It is important to highlight that
we are using the score function just as a classifier, instead of aiming at finding the
gate voltage configuration that maximises the score. The reason for this is threefold;
(i) the score function is not always a smooth function; (ii) it does not always
capture the quality of the transport features; (iii) it is just designed for a particular
transport regime, in this case, honeycomb patterns. Therefore, the score threshold
acts as a parameter that just controls the characteristics of the classifier. If the
threshold is low, many high resolution scans not leading to double quantum dot
transport features are produced. If the threshold is too high, then promising gate
voltage windows are missed. The optimal threshold can be estimated by mini-
mising the time required to produce a high-resolution current map that is labelled
by humans as containing double quantum dot features.

Mathematical analysis of ablation study results. The results in the ablation
study can be verified under a few assumptions by a mathematical derivation of μt
(see Supplementary Methods, Mathematical derivation of μt). From this derivation,
we can compare the expected times μablt for Pure random, Uniform surface, and
Peak weighting:

μablt ¼ μabli

PðsuccessÞ ; ð1Þ

where μabli is the expected time per each iteration of the algorithm, and P(success)=
P(peaks)P(success∣peaks) is the probability that double quantum dot transport
features are observed in a high resolution scan at a given iteration of the algorithm.
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Fig. 7 Learning about device variability. Bc matrices obtained using point set registration. Indices are the gate voltage locations vb and vt. V6= 0mV was
fixed in Device 2 to prevent leakage currents. a Transformation between the hypersurface of Device 2 before and after a thermal cycle. b Transformation
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For each iteration, time is required for a low resolution scan t2D−L, a high resolution
scan t2D−H, and for the rest of the investigation and sampling tothers, including
ramping gate voltages, peak detection, and computation time. The simulation of the
Brownian particles is conducted in parallel with the investigation stage of the
location proposed by the sampler in a previous run, and it does not increase tothers.
As a result, the expected time for each iteration is

μabli ¼ tothers þ P peaksð Þt2D; ð2Þ
where t2D= t2D−L+ t2D−H. Note that 2D scans are acquired with probability
P peaksð Þ. If the score function decision is not included, high resolution current
maps are always acquired when Coulomb peaks are detected. In this case, low
resolution current maps are not useful, but we have still included t2D−L in t2D to
keep the comparison between algorithms consistent.

For all methods in Table 1 except Pure random, the time for 2D scans is the same,
t2D−L ≈ 33 s and t2D−H ≈ 273 s, and tothers ≈ 35 s. Therefore, the difference on μablt
across methods is given by P peaksð Þ and P successjpeaksð Þ. In Fig. 6b, we can see that
P successjpeaksð Þ is similar across the different algorithms, but P peaksð Þ is different.
In conclusion, P peaksð Þ in Eqs. ((1)) and ((2)) determines t500 and μt in Fig. 6a.

Rearranging μablt yields

μablt ¼ tothers
PðpeaksÞ þ t2D

� �
1

PðsuccessjpeaksÞ ;

and this implies that t2D has a significant weight when P(peaks) is large, motivating
the introduction of the score function.

The expected time for Full decision algorithm is

μfulli ¼ tothers þ P peaksð Þt2D�L þ P highresð Þt2D�H

μfullt ¼ μfulli
PðsuccessÞ ;

where P(highres) is the probability of acquiring a high resolution current map
given a score. The score function decision always makes μfulli smaller than μabli ,
because μabli � μfulli ¼ PðpeaksÞð1� PðhighresjpeaksÞÞt2D�H and P(highres∣peaks)
< 1. This is experimentally verified in Fig. 6 from the fact that t500 of Full decision is
smaller than that of Peak weighting.

Comparisons between μablt and μfullt can be affected by the dependence of P
(success∣peaks) on the score function threshold. In Fig. 6b, however, we observe
that P(success∣peaks) is similar for Peak weighting and Full decision. This implies
that the introduction of a score function threshold does not reduce the probability
of success.

In this case,

μablt � μfullt ¼ 1� PðhighresjpeaksÞ
PðsuccessjpeaksÞ t2D�H:

This equation confirms that that the score function reduces μt in the case that the
score function threshold does not degrade P(success∣peaks). Further analysis on the
optimal threshold, i.e, the threshold that minimizes μfullt , can be found in
Supplementary Methods, Optimal threshold α0 .

Data availability
The data acquired by the algorithm during experiments is available from the
corresponding author upon reasonable request.

Code availability
The original implementation of the algorithm and a refactored version (with examples
and documentation) that is easier to deploy are available. Original version: https://doi.
org/10.5281/zenodo.3966350. Refactored version: https://doi.org/10.5281/
zenodo.3966318.
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