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We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth
quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with
their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave
functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is
succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger
equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the
calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also
confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful
technique to probe edge state wave functions.
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Edge states play a key role in materials with a nontrivial
topology establishing a conducting boundary around a
(nominally) insulating bulk in novel topological insulators
as well as quantum (spin) Hall materials [1–8]. Despite clear
theoretical understanding, only a few experiments could
probe and resolve edge states in systems with steep, hard
wall-like confinement potentials [9–17]. In semiconductor
heterostructures with typical gate defined or etched struc-
tures, strong confinement is difficult to produce, opening the
door for Coulomb interactions to dominate and leading, e.g.,
to issues like edge state reconstruction [18,19]. On the other
hand, steep confinement can arise naturally by virtue of the
sample fabrication, for example, in van der Waals hetero-
structures [20] or in GaAs quantum wells cleaved and
overgrown in situ in a molecular beam epitaxy chamber
(cleaved edge overgrowth) [9–17].
The wave function profiles of edge states are very

difficult to access in experiments, and their properties
are often inferred from standard transport measure-
ments [21–23], which may also suffer from remnant bulk
conductivity [24]. Scanning probe techniques can offer
valuable additional insight into localized states [25,26] as
well as edge states both in quantum Hall (QH) [27–30] and
in quantum spin Hall [24,31–33] regimes. However, scan-
ning probe methods also have a number of limitations
including poor resolution and invasive probes. Thus,
establishing methods to directly access the edge state wave
function is a great challenge.
In this Letter, we use tunneling into modes of a

cleaved-edge overgrowth quantum wire as an energy and

FIG. 1. (a) Sample schematic (not to scale) with upper and
lower quantum well (light blue) together with top and side Si
dopants (red). A surface gateG (green) of 2 μmwidth controls the
local electron density. Source and drain ohmic contacts (brown)
are labeled S and D, respectively. (b) Wave function ψðy; zÞ for
the ground state H0 (LW1) in the upper (lower) quantum
well. Dashed lines indicate locations of cuts shown in (c)
and (d). (c) Conduction band profiles along the y direction in the
upper (blue) and lower (green) quantum wells. Horizontal lines
represent the lowest three eigenenergies. (d) Conduction band
profile along the z direction 20 nm (purple) and 590 nm (orange)
away from the cleavage plane [dashed white in (a)].
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momentum selective spectrometer to investigate the wave
functions of QH edge states in an adjacent quantum well,
see sample schematic in Fig. 1(a). We measure the resonant
tunneling conductance, related to the wave function
overlap, as a function of in-plane magnetic field BY ,
which controls the relative momentum, and perpendicular
magnetic field BZ, which predominantly modifies the QH
wave functions. This produces a set of fans of intricately
growing and fading curves, see Fig. 2. We self-consistently
simulate the edge state and quantum wire wave functions,
see Figs. 1(b) and 3, which allows us to calculate the
measured tunneling conductance. We find very good
agreement with experiment, thus, confirming the validity
of the calculated wave functions.
The schematic cross section of the double quantum well

sample used in this study is shown in Fig. 1(a). It contains
upper and lower GaAs quantum wells (blue) separated by a
thin AlGaAs tunnel barrier (gray). A doping layer (red)
above the upper well provides charges for a high-mobility
upper two-dimensional electron gas (2DEG), while elec-
tron density in the lower well is below the conduction
threshold, making it insulating, as if there was no lower
2DEG. Dopants deposited above an in situ cleaved surface

[10] (vertical red) create a quasitriangular confinement
potential forming extended 1D wire modes in both upper
and lower wells. We name these modes LW1;LW2;… in
the lower wire (LW). In the upper system, the 1D wire
modes hybridize with the Landau levels present at finite BZ
and form what we refer to as hybrid states H0; H1;…. In
this double quantum well sample, momentum selective
spectroscopy allows us to use the lower wire modes
LW1;2;… to probe the upper system hybrid states H0;1;….
Source and drain ohmic contacts are attached far away

from the cleavage plane, see Ref. [17] for further sample
details. Electrical conductance between the source (S) and
drain (D) was measured as a function of magnetic field
B ¼ ðBY; BZÞ, orientations are shown in Fig. 1(a). To tune
the double well device into the tunneling regime, a negative
voltage was applied to the surface gate G (green) locally
depleting all the states in the upper quantum well. In this
configuration, electrons propagate from source through the
2DEG into the hybrid states, then tunnel to the lower wire,
propagate along the lower wire under the gate, and finally
tunnel back into the upper well. See [34] for measurement
details.
Because of translational invariance in the tunneling

region away from the gate, electron momentum kx is
conserved during the tunneling between the upper and
lower systems, giving resonant tunneling when states in the
upper and lower system have matching momenta. The in-
plane magnetic field BY changes the electron momenta by
Δkx ¼ edZBY=ℏ, where dZ is the z displacement between
the center of mass of initial and final states. Similarly,
the perpendicular magnetic field BZ provides another

FIG. 2. Experimental (left and middle) and theoretical (right)
tunneling conductance between various hybrid states and lower
wire modes as a function of out-of-plane (BZ) and in-plane (BY)
magnetic fields. For the middle panel, a smooth background is
subtracted from the experimental data and an oversaturated
color scale is used to emphasize weak features. The tunneling
conductance to the lower wire mode LW2 is strongest for the
hybrid state H1 and depends weakly on the magnetic field BZ. In
contrast, the tunneling conductance to the wire modes LW3;4;5

shows significant strength variations as magnetic field BZ is
increased, see main text for details.

FIG. 3. Evolution of the wave functions of the hybrid state H1

(left column), H2 (right column), and lower wire mode (LW3) as
a function of magnetic field BZ. The cleaved edge is at y ¼ 0. The
squared overlap normalized to its maximal value in Fig. 2 is
indicated in each panel. Red and blue colors represent the signs of
the probability amplitude.
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contribution to the momentum shift Δkx ¼ edYBZ=ℏ for
states displaced by dY in the y direction and, also, sets the
Landau level energies.
The resulting spectroscopy using both magnetic fields

BY and BZ displays several intricate fan structures of rising
and decreasing curves, as shown in Fig. 2. Each fan
arises from tunneling to one of the lower wire modes
LW2;LW3;…. The fans appear at increasingly more
negative BY corresponding to the Fermi momenta of the
lower wire modes. Each curve within a fan corresponds to a
hybrid state (upper system). The labeling of curves is
obtained from a careful analysis from a larger B-field scan
(shown in Ref. [17]). The left panel of Fig. 2 displays the
measured differential conductance with magnetic fields
rotated into the sample coordinate system (details in [34]).
On the middle panel, a smooth background was subtracted
to emphasize the peak structure. The right panel shows the
simulated results.
The horizontal line close to BY ¼ 0 corresponds to

tunneling between the lowest modes in the upper (H0)
and lower (LW1) systems. The top most fan originates from
tunneling into LW2, shows the strongest signal for tunnel-
ing from the state H1 and weaker tunneling for the states
with higher orbital indices (H2; H3…). The second fan
results from the tunneling into LW3, shows substantial
decrease of the tunneling signal forH1 as the magnetic field
BZ increases and opposite behavior for H2. The other
curves of this fan have a maximum at intermediate values of
BZ accompanied by small signal at low and high fields. The
fan originating from tunneling into LW4 is very similar to
the fan LW3 with the difference that the indices of all the
curves of this fan are shifted up by one and the first curve
disappears completely already at small fields. Similar
behavior is observed for the fan with tunneling into
LW5, showing a decreasing signal forH3 and an increasing
signal H4, and again, very strong suppression of the lower
states, here, H0, H1, and H2.
To explain this rich and striking pattern of the tunneling

conductance, we have numerically calculated the wave
functions for the states in the upper and lower systems
using a 2D self-consistent Schrödinger-Poisson solver [38].
The wave function of an electron is written as a product of a
plane wave with momenta kx and the self-consistent
solutions in y-z plane

Ψj
n;kx

ðx; y; zÞ ¼ eikxxψ j
nðy; zÞ: ð1Þ

The index n enumerates different orbital states, j ¼ u
denotes the upper system, and j ¼ l the lower system.
Figure 1(b) shows the ψu

0ðy; zÞ and ψ l
1ðy; zÞ components of

the wave functions H0 and LW1. The conduction band
along the y and z directions are shown in Figs. 1(c)
and 1(d), respectively. A decrease of the conduction band
energy close to the cleavage plane at y ¼ 0 is caused by the
electric field of the overgrown ionized dopants nearby at

y < 0. The resulting triangular confinement potential
in Fig. 1(c) leads to the presence of several lower wire
modes. The energy of the state H0 is above the conduction
band in the bulk of the sample, see Fig. 1(c), while having
significant weight only close to the cleavage plane,
Fig. 1(b). The small energy and Fermi momentum
difference between the states H1 and H2 (and higher states
Hi) are consistent with the appearance of the corresponding
resonances at almost the same BY field at BZ ¼ 0, see
Fig. 2.
The Landau gauge A ¼ ðzBY − yBZ; 0; 0Þ was used to

describe the system at finite magnetic field B, as it captures
the translational invariance along the x direction. In this
gauge, momentum kx is a good quantum number, so the
total wave function Ψj

n;kx
ðx; y; z; BÞ can be written ana-

logously to Eq. (1). Here, ψ j
n was calculated under the

assumption that, at a finite magnetic field, the Fermi level
and electrostatic confinement potential are the same as at
B ¼ 0. This assumption is justified as small magnetic fields
do not modify the electron density much.
Using Fermi’s golden rule, the tunneling conductance

between state Hn in the upper and state LWm in the lower
systems can be written as

Gn→m ¼ 2πe
ℏ

t2ρuρlλ2n→m; ð2Þ

where e is electron charge, ℏ is the Plank constant, t is the
tunneling coupling strength, ρj is the density of states, and
λn→m is the wave function overlap between the ψu

n and ψ l
m

states. An additional series resistance due to the lower wire
under the gate was included. The calculated tunneling
conductance into lower wire modes LW1 − LW5 is dis-
played in the right panel of Fig. 2, giving excellent
agreement to the experiment. The observed conductance
evolution can be explained by a simple selection rule. If the
number of wave-function lobes in the tunneling region is
the same for the initial and final states, then the conduct-
ance is strong. Otherwise, it is weak due to near orthogon-
ality. The tunneling region is defined as the region in space
where the wave functions in the upper and lower systems
have a significant overlap (see Supplemental Material [34]).
As an example, we will focus on the H2 − LW3

resonance. The simulated wave functions of states H2

and LW3 at BZ ¼ 0 are shown in the top right panel of
Fig. 3. The tunneling region, shown as a dashed box, is
limited by the smaller wave function, in this case LW3. For
these two states, the number of lobes in the tunneling box at
zero field differs by one, resulting in small overlap and
correspondingly low tunneling conductance. This is
consistent with the measured small conductance of the
H2 − LW3 resonance at small BZ field in Fig. 2. As the
magnetic field is increased (Fig. 3 lower right panels)
the already electrostatically more confined wire state LW3

is hardly affected while the more spread out hybrid stateH2
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is compressed, and thus, the third lobe starts to enter the
tunneling region. Thus, the overlap between the wave
functions grows with field, consistent with the observed
increase in tunneling conductance for this resonance in
both simulation and experiment in Fig. 2. An exception
from this rule occurs when the overlap is dominated by the
contribution from the outermost lobes of the wave func-
tions, the case for the resonance H1 − LW3 at BZ ¼ 0,
shown in the top left panel of Fig. 3, see [34] for details.
The amount of top and side dopants in the structure

strongly affects the BY position of the resonances, and here,
we adjusted both doping levels to match the positions of
the simulated Hn − LW2 and Hn − LW3 resonances
with experiment. Only the resonances Hn − LW4 and
Hn − LW5 were slightly shifted down by hand in Fig. 2
to agree with experiment. We note that the doping levels do
not qualitatively affect the tunneling strength and the BZ
dependence. The excellent agreement between the
single particle theory and experiment covering numerous
distinct and complicated features, see Fig. 2, is a very
strong indication of the validity of the calculated wave
functions.
The triangular potential from the ionized overgrowth

donors combined with the parabolic magnetic field confine-
ment leads to a kx-momentum dependent hybridization of
the wire and quantum Hall states in the upper systems,
shown in Figs. 4(a) and 4(b). We note that kx is linked
to the guiding center position y0 of the parabolic magnetic
confinement via y0 ¼ kxl2B, with magnetic length
lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=eBZ

p

. Going through the kx axis, three distinct
regimes separated by two anticrossings can be distin-
guished for each hybrid state (except for H0, which
undergoes only one anticrossing). Here, we pick the hybrid
state H1 as an example, with dispersion shown in Fig. 4(a)
and wave functions in Fig. 4(b), both in dashed orange.
This hybrid state behaves as a wire mode between the two
anticrossings and as a Landau level everywhere else,

including states close to the Fermi level that are involved
in the tunneling.
First, far away from the edge, corresponding to large kx

momentum (square markers), this state has essentially the
wave function of the second Landau level in the bulk. As kx
is lowered, the state anticrosses with the hybrid state H2

(stars), where the wave function hybridizes and delocalizes
over the two minima in the potential (blue). The state H2

in this anticrossing is the antibonding state with anti-
symmetric combination, shown in solid orange, featuring
one additional node.
Second, for a small range of momenta kx, the wave

function of the state H1 resembles that of the lowest wire
mode (triangles), though still with one node and a very
small negative amplitude in the parabolic minimum (shown
amplified, here, for clarity). For even smaller momenta, the
state undergoes a second hybridization (cross), now with
hybrid stateH0 (red). In a similar way, the upper wire mode
hybridizes with all Landau levels, weaving through
numerous anticrossings, which, together, are forming the
parabolic wire dispersion at positive momenta, as seen in
Fig. 4(a). At each anticrossing, the wave function acquires
one additional node when moving up one state in energy.
Third, and finally, for negative kx (circle), the wave

function is pushed more against the wall and more strongly
confined by the magnetic field, thus, increasing the
energies of the states [Fig. 4(a)], still exhibiting one
node, similar to the second wire mode but with magnetic
field.
The density at the cleaved edge is higher than in bulk due

to the wire mode, see [34]. Signatures of the hybridization,
as discussed above, are present in the tunneling conduct-
ance, see Fig. 5, shown over a wider range of magnetic field
BZ compared to Fig. 2. Insets qualitatively depict the
dispersion relations of the hybrid states (red) and LW1

FIG. 4. (a) Dispersion of hybrid states (H0; H1;…, colors) in
the upper system. Empty states above the Fermi level are shown
in gray. (b) The wave function of the hybrid state H0 (red),
H1 (dashed orange), H2 (solid orange), and the total electrostatic
confinement potential (blue) at z ¼ 31 nm in the upper system
for a range of values of the guiding center position y0. The
corresponding momenta kx are indicated with markers in (a).

FIG. 5. Tunneling conductance between hybrid states in the
upper system and the lower wire mode LW1. Insets qualitatively
depict the dispersion relation of the hybrid states (red) and
LW1 (black) for BY and BZ which satisfy the resonant tunneling
condition. Measurements extended for BZ < 0 are shown in
Fig. S10 in the Supplemental Material [34].
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mode (black) for the resonances indicated by the arrows.
The resonance at negative BY originates from the tunneling
into the states close to the left Fermi point of the lower wire

LWðLÞ
1 (blue circle, lower inset). This resonance remains

mostly unchanged in BY as the magnetic field BZ is
increased, giving a nearly horizontal feature as long as
the wire confinement is dominant (for the full BZ range of
Fig. 5). In contrast, the resonance originating from the right

Fermi point LWðRÞ
1 , tracks the anticrossings of the hybrid

states (blue circle, upper inset), leading to strong motion in
BY . As the magnetic field BZ is increased, the topmost
hybrid state is moving through the Fermi level, going
through the regimes described in Fig. 4(b). This
results even in some discontinuities when an avoided
crossing is passing the Fermi level and the momentum is
jumping to large kx to the next lower hybrid, as seen
in Fig. 5.
In summary, we measured the tunneling conductance

between the QH edge states and the lower wire mode as a
function of both in-plane and out-of-plane magnetic
fields. We show that the tunneling conductance calculated
using numerically simulated wave functions reproduces
the intricate fan structures with numerous striking fea-
tures observed in experiment, giving a strong indication
of the validity of the simulated wave functions. We
formulate a simple selection rule to estimate the reso-
nance strength based on wave function overlap or
orthogonality in the tunneling region. The simulation
also provides the dispersions exhibiting hybridization
between the wire mode and the Landau levels with
numerous anticrossings. Indeed, upon inspection of
the corresponding magnetic field range, we observe the
predicted jumps of the resonances due to the anti-
crossings, thus, providing further confirmation of the
simulation.
The method used in this study could also be applied to

probe spin split edge states or fractional QH edge states,
e.g., with filling factors ν ¼ 4=3 or 5=3, which are, in fact,
observed in this device. Additionally, samples with a side
gate could be used to directly study influence of the
confinement potential on the wave function of the QH
edge and wire states. Finally, similar tunneling spectro-
scopy from a 1D conductor such as a nanowire or nanotube
could also be used to probe edge states of topological
insulators or other edge state materials of interest.
The data that support the findings of this study are

available in a Zenodo repository [39].
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