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Supplementary Text

Training and loss function The purpose of this section is to define the losses used for the

training of the CVAE. The training is performed by minimising user-defined loss terms through

changing the decoder and encoder parameters θ and φ using a gradient decent based method.

The two loss terms that are minimised to train the encoder and decoder networks are the differ-

ence loss and the latent loss.

The difference loss consists of two difference metrics. The first is a sum of the pixel-wise

difference between the reconstruction and the training example. The second is a contextual

difference which is similar in concept to GAN; the contextual loss is taken from another con-

volutional neural network called the discriminator. The discriminator is trained in tandem with

the encoder and decoder and is trained to distinguish between reconstructions and training ex-

amples. The input to the discriminator is a training example Y or reconstruction Ŷ and the

output is a value between 0 and 1, representing the probability the input is a training example or

a reconstruction. As the discriminator is trained to distinguish between training examples and

reconstructions, it learns to decode contextual features that distinguish reconstructions from

training examples. We then calculate the difference between intermediate layer representations

of the training example and intermediate layer representations of its reconstruction. If we ignore
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the contextual loss, the decoder produces only blurry reconstructions.

The latent loss is applied only to the encoder and forces the set of encoded training examples

{z} to be normally distributed with mean of the zero vector and the covariance of a diagonal

matrix. This can be achieved by minimising the Kullback-Leibler (KL) divergence between the

output distribution of the encoder and the target zero-mean distribution.

Network specification The specification of the convolutional neural networks used in this

paper is described in Table S1∼S3. Exponential linear unit is applied after each layer except

the final layer of the encoder, decoder, and the discriminator. Batch normalisation is applied

after all convolution layers except as separately described. The first and second number in

parentheses of the layer names indicate kernel size and stride.

Noisy reconstruction For the estimation r̃m(n), a single reconstruction Ŷm is augmented to

30 noisy reconstructions:

Ŷm,j,SNR(x) = Ŷm(x) + αm,j,SNR × Ej(x) for all x in X,

where Ej = {(x, εjx)|x ∈ X} is a noise profile consisting of pairs of location and noise, X is

a set of all voltage pairs in a 2D domain, and αm,j,SNR is a multiplier that makes the signal-to-

noise ratio SNR, where the signal is Ŷm and the noise is Ej . We measured 10 noise profiles at

non-conducting voltage ranges, but very close to Coulomb diamonds, and j is the index of the

profile. SNR is chosen from {202, 402, 802}, which leads to a high noise, medium noise, and

low noise.

Context-aware decision for stability diagrams By converting reconstructions to some con-

text maps, we can make a decision related with the context map. We have developed a segmen-

tation method, that produces a segmentation map which has a value is 1 if the location is inside
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a diamond or 0 otherwise. This segmentation method is based on another deep neural network

called a U-net [1]. Training data for the segmentation network are pairs of current map and seg-

mentation map, which are generated by the same simulator used for the reconstruction network.

Fig. S7 shows the segmentation result of a trained network for 10 real stability diagrams.

By producing segmentation maps of reconstructions, their segmentation disagreement can

be calculated. This produces large disagreement along the edges of reconstructions resulting

in measurements that focus on diamond edges as show in Fig. S8A. Noise is also added to the

outside of diamond segmented maps. This supplies further disagreement between segmentation

maps which prioritises measurement outside of the diamond after edges are measured.

The success measure e(n) in Fig. S8 C and E is calculated by applying the segmentation

model to the fully measured current map and then applying a Sobel filter to the resulting seg-

mented map; this produces an edge map. The error and optimal performance are then calculated

as the ratio of this remaining quantity in the same way as was done for r(n) except substituting

the edge maps for transconductance maps.

Supplementary Figures
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Figure S1: A, Training procedure. Training examples are converted to latent vectors by the
encoder. Latent vectors and 8×8 sub-sampled training examples are transformed into recon-
structions by the decoder. The difference (red box) between original examples and reconstruc-
tions is used to optimise the encoder/decoder parameters θ and φ. The distribution of training
examples in the latent space is enforced during training by latent loss (orange box). B, Gener-
ation of reconstructions. After 8×8 initial measurements, latent vectors are sampled from the
posterior distribution of z and transformed by the decoder to generate multiple reconstructions
Ŷ1, . . . , ŶM . Posterior probability for reconstructions P (Ŷm|Yn) is calculated with respect to
acquired partial measurements Yn. C, Real and simulated training examples.
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Figure S2: Pixel-wise measurements of Coulomb diamonds performed by the algorithm.
A, Sequential pixel-wise measurement in two different experiments. Each row displays algo-
rithm assisted measurements of the current map as a function of Vbias and VG for different values
of n. The last plot in each row is the full-resolution current map. B, D, Current gradient map
for each example in A. C, E, Measure of the algorithm’s performance r(n), average real-time
estimate of r(n) across reconstructions with 90% credible interval, and optimal r(n) for both
examples in A. The black line is the value of r(n) corresponding to the alternating grid scan
method. The dashed orange line indicates the value of n determined by the stopping criterion.
The corresponding current map in A is highlighted in orange.
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Figure S3: Each row shows intermediate steps of point-wise decision for given voltage ranges.
Magenta box indicates the default stopping criterion, and green box indicates when we have
allocated a measurement budget of 70% for full measurement of all 10 examples.
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Figure S4: Each row shows intermediate steps of batch decision for given voltage ranges.
Magenta box indicates the default stopping criterion, and green box indicates when we have
70% budget for full measurement of all 10 examples.
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Figure S5: Quantitative analysis for experiment number 1∼5.
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Figure S6: Quantitative analysis for experiment number 6∼10
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Current Map Segmentation Current Map Segmentation

Figure S7: Full resolution current map and segmented result from the segmentation network.
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Figure S8: Measurements of a current map performed by the context-aware implemen-
tation of the algorithm. A, Sequential pixel-wise measurements. Each row displays the algo-
rithm assisted measurements of a current map as a function of Vbias and VG for different values
of n. The last plot in each row is the full-resolution current map. B, D, Sobel filter applied
to the segmentation map of the full current map for both examples in A. C, E, Measure of the
algorithm’s performance e(n) and optimal e(n) for both current maps in A. The black line is
the value of e(n) corresponding to the alternating grid scan method.
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Supplementary Tables

Layer name output size
Initial 128x128x1
Conv(5,2) 64x64x64
Max pooling(3,2) 32x32x64
Conv(3,1) 32x32x128
Conv(3,2) 16x16x128
Conv(3,1) 16x16x128
Conv(3,2) 8x8x128
Conv(3,1) 8x8x128
Conv(3,2) 4x4x128
Fully connected 200

Table S1: Specification of the encoder.
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Layer name output size
Initial 1x1x(100+64)
Conv’(3,2) 2x2x1,024
Conv(3,1) 2x2x1,024
Conv’(3,2) 4x4x512
Conv(3,1) 4x4x512
Conv’(3,2) 8x8x256
Conv(3,1) 8x8x256
Conv’(3,2) 16x16x128
Conv(3,1) 16x16x128
Conv’(3,2) 32x32x64
Conv(3,1) 32x32x64
Conv’(3,2) 64x64x64
Conv(3,1) 64x64x64
Conv’(3,2) 128x128x32
Conv(3,1) 128x128x32
Conv(1,1,tanh) 128x128x1

Table S2: Specification of the decoder.

Layer name output size remark
Initial 128x128x1
Conv(5,2) 64x64x64 context loss
Conv(3,1) 64x64x128 No BN
Conv(3,2) 32x32x128 context loss
Conv(3,1) 32x32x128 No BN
Conv(3,2) 16x16x128 context loss
Conv(3,1) 16x16x128 No BN
Conv(3,2) 8x8x128 context loss
Conv(3,1) 8x8x128 No BN
Conv(3,2) 4x4x128 context loss
Global average pooling 1x1x128 context loss
Fully connected 2

Table S3: Specification of the discriminator. In remarks, NO BN indicates that batch normali-
sation is not applied to the layer, and context loss indicates that the layer is used to calculate the
context loss.
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case index 64 128 256 512 1,024 2,048 4,096 8,192 16,384
1 10.50 13.13 18.32 28.07 47.27 84.51 156.98 294.91 561.21
2 10.14 12.71 17.46 26.78 44.95 81.32 152.31 289.03 554.98
3 10.49 13.08 17.77 26.66 45.97 82.82 53.86 291.15 557.51
4 9.40 12.16 17.09 27.34 46.69 82.99 152.64 289.00 555.27
5 10.52 13.12 18.10 26.99 45.66 81.28 151.10 287.97 553.07
6 10.14 12.73 17.21 27.07 45.17 80.55 149.18 285.82 550.95
7 15.71 18.34 22.77 31.73 50.61 87.45 159.77 296.92 563.10
8 14.96 17.85 22.53 32.66 52.08 89.56 161.62 300.80 566.80
9 10.14 12.82 17.57 26.89 45.08 80.56 149.62 286.04 551.51
10 15.31 17.88 22.71 31.71 51.10 87.94 159.44 296.00 561.27

Table S4: Measurement time for the batch method

case index 64 128 256 512 1,024 2,048 4,096 8,192 16,384
1 10.51 13.53 18.52 28.27 46.09 81.51 149.73 285.62 552.69
2 10.12 13.13 18.09 27.73 45.50 80.93 149.20 285.43 552.76
3 10.50 13.26 18.19 27.78 45.66 80.98 149.22 282.37 546.65
4 9.38 12.16 17.09 26.75 44.49 80.07 148.31 284.37 551.89
5 10.51 13.28 18.21 27.86 45.69 81.02 149.20 285.02 552.15
6 10.15 12.93 17.87 27.51 45.41 80.80 148.97 285.47 552.62
7 15.70 18.64 24.02 34.52 52.28 87.49 155.75 292.05 559.88
8 14.97 17.89 23.25 33.73 51.51 86.83 155.02 288.72 553.71
9 10.13 12.89 17.87 27.57 45.42 80.97 148.89 285.08 553.30
10 15.34 18.28 23.64 34.15 52.05 87.50 155.68 291.94 559.65

Table S5: Measurement time for grid scanning
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Movies

Movie M1: Animation of selected partial current maps corresponding to a real time measure-

ment of current as a function of bias and gate voltage, with corresponding acquisition map,

using the batch method.

Movie M2: Animation of selected partial current maps, corresponding to a real time measure-

ment of current as a function of two gate voltages, with corresponding acquisition map, using

the batch method.

References

[1] Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical

image segmentation. In Proc. MICCAI, 234–241 (2015).

15


