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Efficiently measuring a quantum device using machine learning

D. T. Lennon@®', H. Moon’, L. C. Camenzind?, Liugi Yu?, D. M. Zumbdihl?, G. A .D. Briggs®', M. A. Osborne?, E. A. Laird " and

N. Ares@®'*

Scalable quantum technologies such as quantum computers will require very large numbers of quantum devices to be
characterised and tuned. As the number of devices on chip increases, this task becomes ever more time-consuming, and will be
intractable on a large scale without efficient automation. We present measurements on a quantum dot device performed by a
machine learning algorithm in real time. The algorithm selects the most informative measurements to perform next by combining
information theory with a probabilistic deep-generative model that can generate full-resolution reconstructions from scattered
partial measurements. We demonstrate, for two different current map configurations that the algorithm outperforms standard grid
scan techniques, reducing the number of measurements required by up to 4 times and the measurement time by 3.7 times. Our
contribution goes beyond the use of machine learning for data search and analysis, and instead demonstrates the use of algorithms
to automate measurements. This works lays the foundation for learning-based automated measurement of quantum devices.
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INTRODUCTION

Semiconductor quantum devices hold great promise for scalable
quantum computation. In particular, individual electron spins in
quantum dot devices have already shown long spin coherence
times with respect to typical gate operation times, high fidelities,
all-electrical control, and good prospects for scalability and
integration with classical electronics.'

A crucial challenge of scaling spin qubits in quantum dots is
that electrostatic confinement potentials vary strongly between
devices and even in time, due to randomly fluctuating charge
traps in the host material. Characterising such devices, which
requires measurements of current or conductance at different
applied biases and gate voltages, can be very time consuming. It is
normally carried out following simple scripts such as grid scans,
which are sequential measurements taken from a 2D grid for a
pair of voltages. We call a set of voltages that defines the state of a
qguantum dot a configuration. Measurement of some configura-
tions is more informative for characterising a quantum dot than
the other configurations; measuring uncertain signals is more
informative than measuring predictable signals. However, grid
scans do not prioritise measurement of informative signals,
instead just acquiring measurements according to simple rules
(e.g. following a raster pattern). Current efforts in the field of
automation of quantum dot are focused on tuning,>® a large
portion of these relying on grid scanning techniques for
measurement. An optimised measurement method that can
prioritise and select important configurations is thus key for fast
characterisation and automatic tuning. Our method is thus
complementary to automating tuning of quantum devices and
holds the potential to increase the efficiency of these approaches
when combined.

In this paper, we present an algorithm that performs efficient
real-time data acquisition for a quantum dot device (Fig. 1a). It
starts from a low-resolution uniform grid of measurements,
creates a set of full-resolution reconstructions, calculates the
predicted information gain (i.e. the acquisition map), selects the
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most informative measurements to perform next, and repeats this
process until the information gain from new measurements is
marginal.

In order to select measurements based on information theory,
we require a corresponding uncertainty measure (of random
variables),'®'? and hence a probabilistic model of unobserved
variables. One typical approach is to use a Gaussian process.'>
Here, we use a conditional variational auto-encoder (CVAE),'*
which is capable of generating high-resolution reconstructions
given partial information and is fast enough for real-time
decisions. Deep generative models such as adversarial networks
(GAN),™ the variational auto-encoder (VAE)'® and its extensions,
such as CVAE, have shown great success in multi-modal
distributions and complex non-stationary patterns of data,'”'®
similar to those of observed in quantum device measurements.
These are the main advantages of CVAE over a basic Gaussian
process. Also, CVAE is more computationally efficient at generat-
ing multiple full-resolution reconstructions. Although progress has
been made addressing the limitations of Gaussian processes, deep
generative models are overall a better fit to the requirements for
efficient quantum device measurements. Deep generative models
have been used for: speech synthesis;'® generating images of
digits and human faces;?®?' transferring image style;*** and
inpainting missing regions of images.”* Recently, VAE models have
been used in scientific research to optimise molecular struc-
tures.”> 2% In spite of their suitability, these models have not
previously been applied to efficient data acquisition. An advan-
tage of deep generative models over simple interpolation
techniques, such as nearest-neighbour and bilinear interpolation,
is that deep generative models can learn likely patterns from
training data and incorporate them into its reconstructions. Our
method, as it is data-driven, it is generalizable to different
transport regimes, measurement configurations, and more com-
plex device architectures if an appropriate training set is available.
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Fig. 1 Overview of the algorithm and the quantum dot device. a

Schematic of the algorithm’s operation. Low-resolution measure-
ments (i) are used to produce reconstructions (ii), which are used to
infer the predicted information gain acquisition map (iii). Based on
this map, the algorithm chooses the location of the next
measurement (iv). The process is repeated until a stopping criterion
is met. b Schematic of the device. A bias voltage Vy,,s is applied
between ohmic contacts to the two-dimensional electron gas. We
apply gate voltages labelled V; to V, and V. ¢ A measured current
map as a function of Vy;,s and V. The Coulomb diamonds are the
white regions where electron transport is suppressed, and most of
the information necessary to characterise a device is contained just
outside these diamonds. d Sequential decision algorithm in a
illustrated with an example of a specific current map. In panel (iv),
unmeasured pixels are plotted in black; however, initial measure-
ments (i) are represented so as to fill the entire panel (that is, the
sparse grid of measurements is represented as a low-
resolution image)

RESULTS
The device

Our device is a laterally defined quantum dot fabricated by
patterning Ti/Au gates over a GaAs/AlGaAs heterostructure
containing a two-dimensional electron gas (Fig. 1b). In this device,
electrons are subject to the confinement potential created
electrostatically by gate voltages. Gate voltages V; to V4 tune
the tunneling rates while Vg mainly shifts the electrical potential
inside the quantum dot. The current through the device is
determined both by these gate voltages and by the bias voltage
Vpias- Measurements were performed at 30 mK.

The quantum dot is characterised by acquiring maps of the
electrical current as a function of a pair of varied voltages,
which we call a current map configuration. We first focus on
varying Vg and Vy,,s for fixed values of V4 to V4. Fig. 1¢) shows a
typical example. Diamond-shaped regions or ‘Coulomb dia-
monds’ indicate Coulomb blockade, where electron tunnelling
is suppressed.>’> Most current maps have large areas in which
the current is almost constant, and consequently measure-
ments in these regions slow down informative data acquisition.
Our algorithm must, therefore, give measurement priority to
the informative regions of the map. An overview of an
algorithm-assisted measurement of a current map is shown
in Fig. 1d.
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Training the reconstruction model

The role of the reconstruction model is to characterise likely
patterns in a training data set, given by a mixture of measured and
simulated current maps. We can utilise these likely patterns to
predict the unmeasured signals from partial measurements.

Deep generative models represent this pattern characterisation
in a low-dimensional real-valued latent vector z, which can be
decoded to produce a full-resolution reconstruction. The latent
space representation and the decoding are learned during
training. Our CVAE consists of two convolutional neural networks,
an encoder and a decoder. The encoder is trained to map full-
resolution training examples of current maps Y to the latent space
representation z. The encoder also enforces that the distribution
p(z) of training examples in latent space is Gaussian.

The decoder is trained to reconstruct Y, from the representation
z combined with an 8 x 8 subsample of Y. As a result, z attempts to
represent all the information that is missing from the subsampled
data. In a plain VAE, the input of a decoder is only z. If a decoder
takes additional input except z, then it is called CVAE, and we
found that CVAE generates better reconstructions than VAE for the
considered measurements. The chosen loss function, which the
CVAE tries to minimise, is a measure of the difference between the
training data and the corresponding reconstruction. To avoid
blurry reconstructions, we define a contextual loss function that
incorporates both pixel-by-pixel and higher-order differences like
edges, corners, and shapes. Detailed description of these networks
and their training can be found in the Supplementary sections
Training and loss function, and Network specification.

The model is trained using both simulated and measured
current maps. We choose to work with current maps of resolution
128 x 128. The simulation is based on a constant-interaction
model (see Methods). To measure the current maps for training,
we set the bias and gate voltage ranges randomly from a uniform
distribution. The training data set consists of 25,000 simulations
and 25,000 real examples generated by randomly cropping 750
measured current maps. The current maps were subjected to
random offsets, rescaling, and added noise to increase the
variability of the training set.

Generating reconstructions from partial data

After training, only the trained decoder network is used in the
algorithm of Fig. 1a to reconstruct full-resolution current maps
from partial data. At each stage, the known partial current map is
denoted Y,, where n < 1282 = 16,384 is the number of pixels to
be measured. To generate a reconstruction, the decoder takes as
input the initial 8x 8 grid scan Yg4, together with a latent vector z
sampled from the posterior distribution p(z|Y,) (see Methods for
detail equations and Fig. S1 for the decoder diagram). Note that
the posterior density is calculated by the prior density p(z) and a
likelihood function, which is comparing reconstructions and the
partial data. Multiple posterior samples are drawn from p(z|Y,) by
the Metropolis-Hastings (MH) method to approximate p(z|Y,).
From these multiple samples z,, corresponding reconstructions
are then generated, denoted VY. In this paper we set
m =1, ...,100. The continuous posterior p(z|Y,) is then approxi-
mated by a discrete posterior of samples P,(m), which denotes
how probable Y, is. We refer to P,(m) as the posterior distribution
of reconstructions.

Making measurement decisions

With each iteration of the decision algorithm, an acquisition map
is computed from the accumulated partial measurements and the
resulting reconstructions. This acquisition map assigns to each
potential measurement location (i.e. to each pixel location in the
current map) an information value for the posterior distribution of
reconstructions (Fig. 2). The (n + 1)th measurement, whose result
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Fig. 2 Computing the acquisition map. a Partial current map. To
illustrate the first step in the computation of the acquisition map, we
consider a trace (green) through an unmeasured region of the map.
b For the unmeasured trace in a, reconstructions provide 100
different predictions. Blue and yellow traces highlight two of these
predictions. The objective is to determine the most informative
measurement location. At x,, all predictions are similar, so
measuring here will have little impact on the posterior distribution
of reconstructions. At x;, predictions are dissimilar and, therefore, x;
is a more informative measurement location, with a larger effect on
the posterior distribution of reconstructions. ¢ Information gain
computed for the unmeasured trace in (a). d Acquisition map of
information gain computed from the partial measurements in (a),
and plotted over the entire current map range

is ¥,.1, is one pixel taken from the true current map and changes
our posterior distribution from P,(m) to P,.1(m), rendering
different reconstructions more or less probable.

The acquisition map is the expected information gain IG(x) at
each potential measurement location x. Our algorithm calculates it
by a weighted sum over reconstructions:

IG(x) =) _ Pa(m)x IGp(x), M

where 1Gy,(x) is the Kullback-Leibler divergence between the
distributions P, and P4, calculated such thaty, , at location x is
taken from reconstruction Y. The most informative point is
Xy, = argmax,IG(x). This criterion is equivalent both to minimis-
ing the expected information entropy of the posterior distribution
and to Bayesian active learning by disagreement (BALD,' see
Methods). The difference of the proposed method and BALD is
that the proposed method uses random reconstructions of data,
which can be multi-modal, whereas BALD assumes that data is
normally distributed.

We devised two methods to make decisions based on the
acquisition map; a pixel-wise method, and a batch method. The
pixel-wise method selects the single best location in the
acquisition map. In practice, this is often not optimal in terms of
measurement time, because it does not take account of the time
needed to ramp the gate voltage between measurement locations
(which is limited by details of the measurement electronics and
the device settling time). To take account of this limitation, we also
devised a batch method, which selects multiple locations from the
acquisition map, and then acquires measurements by taking a fast
route between them. This reduces the measurement time
compared with the pixel-wise method.
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Experiments

To test the algorithm, it was used to acquire a series of current
maps in real time. First, the device was thermally cycled, to
randomise the charge traps and therefore present the algorithm
with a configuration not represented in its training data. Gate
voltages V;-V, were set to a combination of values, and the
algorithm was tasked to measure the corresponding current map
using both the batch and the pixel-wise methods. This step was
repeated for ten different combinations of bias and gate voltages.
Fig. 3 presents data acquired by the algorithm at selected
acquisition stages, together with selected reconstructions. As
expected, reconstructions become less diverse as more measure-
ments are acquired. The reconstructions do not necessarily
replicate the measured current map for large n. This is because
reconstructions have a limited variability given by the training
data. Decisions are made based on the learned patterns from the
training data, which implies that this training data should contain
at least general patterns which are to be characterised but does
not need to include all possible features in a current map.

As seen, the algorithm gives high priority to regions of the map
where the current is rapidly varying, and avoids regions of nearly
constant current, such as the interiors of Coulomb diamonds. This
strategy is an emergent property of the algorithm and is wise; little
information about the device characteristics can be found in low-
current gradient regions of the current map. This preference
derives from the comparison between reconstructions, which
exhibit the greatest disagreement outside Coulomb diamonds.
This is also seen in Fig. 4a, which shows two representative
measurement sequences using the batch method. The batch
method collects grouped measurements while the pixel-wise
method distributes measurements more uniformly, given that in
this case, the acquisition map is more frequently updated to take
account for recently acquired information. Results for other
current maps, including for the pixel-wise method, are shown in
the Supplementary Figs. 2-6.

We compared the performance of the algorithm with an
alternating grid scan method. This type of grid scan starts with 8
x 8 measurements and alternately increases the vertical and the
horizontal grid size by 2 (i.e. 16x 8, 16 x 16, 32 x 16, etc.), without
performing the same measurement twice. Over the ten different
current maps, the average time for full-resolution data acquisition
with the alternating grid scan method is 554 seconds. This time is
limited by our bias and gate voltage ramp rate and chosen settling
time. The batch method can be implemented with any batch size
however for direct comparison with the alternating grid scan we
selected increasing batches of 32x 2% where b is the batch
number starting from 1.

Two types of computation are required to make a measurement
decision: sampling reconstructions using the MH method, and
constructing the acquisition map. One MH sampling iteration
takes 63 ms. For experiments, multiple sampling iterations are
performed after each batch decision and measurement while
acquisition is suspended. Since sampling can be performed
simultaneously with measurement acquisition, from now on our
measurement times exclude the time for sampling. To compute a
single acquisition map takes approximately 50 ms using a NVIDIA
GTX 1080 Ti graphics card and Tensorflow® implementation. The
acquisition map must be computed for every batch or every pixel
measurement, except for the initial 8x 8 grid scan and the final
acquisition step (which has no choice of which pixel(s) to
measure). To acquire a full resolution current map thus requires
7 computations (350 ms) for the batch method, and 16,319
computations (8165s) for the pixel-wise method. For the batch
method, the computation time is negligible compared to the
measurement time, but for the pixel-wise method it is a limiting
factor in the measurement rate.
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Fig. 3 Updating reconstructions using information from new measurements. In each row, the first column shows the algorithm-assisted
measurements, using the batch method, for a given n. The remaining three columns contain example reconstructions given the
corresponding n measurements. As n increases, the diversity of the reconstructions is reduced and their accuracy increased. As expected, the
uncertainty is almost eliminated in the last row. The residual remaining variance is because slightly different reconstructions are nearly equally

consistent with the data

To quantify the algorithm’s performance, we have devised a
measure based on the observation that the most informative
regions of the current map are those where the current varies
strongly with Vg and Vy,s. We therefore define the local gradient
of the current map at each location x as

vix) = | VY, = \/ (aa’f,)) ; (;’/1)) @

where [(x) is current measurement at x, and the derivatives are
calculated numerically. The error measure r(n) of a partial current
map is the fraction of the total gradient that remains uncaptured,
ie.

r(n)=1- \\//((II:I))

where V(n) = 377 ,v(x;) is the total acquired gradient and x; is
the location of the ith measurement. This error can only be
calculated after all measurements have been performed. However,
we can utilise the mth reconstruction to generate an estimate
rm(n) in real time by replacing || VY(x)||, with ||VYy(x)[,. The

3)
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estimates from multiple reconstructions yield a credibility interval
for r(n). For an optimal algorithm, the error would be

F(n) =1.0— '\/;((,\'I’)), where V*(n) is the sum of the largest n values
of v(x). This would be achieved if each measurement location
were chosen knowing the full-resolution current map, and thus
the location of the the highest unmeasured current gradient. No
decision method can exceed this bound. For the real time
estimates of r(n), we have increased the number of reconstruc-
tions to 3,000 by adding different noise patterns that are present
in typical measured current maps (see Supplementary section
Noisy reconstruction). This increase in the variability of the
reconstructions is needed to avoid an overconfident estimation
of r(n).

Performances for two experiments are shown in Fig. 4c, e. Grid
scans reduce r(n) linearly with increasing n. The decision
algorithm outperforms a simple grid scan and is nearly optimal.
When most of the current gradient is localised, the grid scan is far
from optimal and even the decision algorithm has room for
improvement. In this case, the performance of the algorithm is
determined by how representative the training data is.
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Fig.4 Measurements of Coulomb diamonds performed by the algorithm. a Sequential batch measurement in two different experiments. Each
row displays algorithm assisted measurements of the current map as a function of Vi, and Vg for different values of n. The last plot in each
row is the full-resolution current map. b, d Current gradient map (defined by Eq. (2)) for each example in (a). ¢, e Measure of the algorithm’s
performance r(n), real-time estimate of r(n) across reconstructions (with 90% credible interval shaded), and optimal r(n) for both examples in
(a). The black line is the value of r(n) corresponding to the alternating grid scan method. The vertical orange line indicates the value of n
determined by the stopping criterion. The corresponding current map in a is highlighted in orange

Quantitative analysis of all 10 experiments is in Supplementary
Figs. 5 and 6.

We propose a simple stopping criterion that uses the estimated
reduction of the error r(n) to determine when to stop measuring a
given current map, in a scenario where more experiments are
waiting to be conducted. For a given current map containing n
measured pixels, the error after the next measurement batch is
estimated for reconstruction m to be 7,(n + A), where A is the
size of the batch. Thus the estimated rate at which the error
decreases is B, = |[Fm(n + A) — Fm(n)|/A. In the worst case among
the candidate reconstructions, this rate is 8 = ming, 3, However,
if the algorithm begins to measure a new map, for which no
reconstructions yet exist, the error of that map will decrease at a
rate of at least a = 1/N; this is the slope achieved by a grid scan
and the worst case of the decision algorithm (black lines in Fig. 4c,
e). Hence when B<aq, it is beneficial to halt measurement and
move onto a new current map that is awaiting measurement.
Since a and B are the worst-case estimates for each case, the
criterion is conservative. The stopping points by this criterion are
shown in Fig. 4¢, e, with orange dashed lines. The total average
time (measurement time plus decision time) to reach the stopping
criterion was 237 s, compared with 554 s to measure the complete
current map by grid scan, reducing the time needed by a factor
between 1.84 and 3.70 across all 10 test cases. A more
sophisticated stopping criterion utilising the number of remaining
unmeasured current maps and a total measurement budget is
presented in Methods.

Generalising the algorithm

The algorithm described here does not require assumptions about
the physics of the acquired data, such as requiring that it show
Coulomb diamonds. Provided that training data are available, it
should also work for other kinds of measurements. To test this, we

Published in partnership with The University of New South Wales

applied it to a different current map configuration also
encountered in quantum dot tuning. In this case the current
flowing through the device is measured as a function of two gate
voltages (V; and V), while keeping other voltages fixed (Vg, Vpias,
V3 and V,). In these current maps, Coulomb blockade leads to
large areas where the current scarcely changes, with diagonal
features of allowed current. For the training set, we measured 382
current maps with a resolution of 251x 251 which we randomly
cropped to a resolution of 128x 128 and subjected to simple
image augmentation techniques (as for the previous training set).

We tested the performance of the algorithm in this new
scenario by taking two different combinations of Vg, Vpas, V3 and
V4 and measuring the corresponding current maps in real time
(Fig. 5). The device was thermally cycled after the training set was
acquired and also between the acquisition of the two current
maps in Fig. 5. The algorithm focuses on measuring regions of
high current gradient, the corner edges and, in particular, the
Coulomb peaks close to these.

In the top row of Fig. 5a, n = 4096 was chosen by the stopping
criterion. In the bottom row, the corners edges extended further in
the current map and the stopping criterion chose n = 8192. This
reduced the time needed to measure the current maps by 3.36
and 1.50, respectively, for the two test cases when compared with
the alternating grid scans.

DISCUSSION

The proposed measurement algorithm makes real-time informed
decisions on which measurements to perform next on a single
quantum dot device. Decisions are based on the disagreement of
competing reconstructions built from sparse measurements. The
algorithm outperforms grid scan in all cases, and in the majority of
cases shows nearly optimum performance. The algorithm reduced

npj Quantum Information (2019) 79
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Fig. 5 Measuring a different current map. a Sequential batch measurement. Each row displays the algorithm-assisted measurements of a
current map as a function of V; and V, for different values of n. The last plot in each row is the full-resolution current map. b, d Current
gradient map for both examples in (a). ¢, e Measure of the algorithm’s performance r(n), average real-time estimate of r(n) with 90% credible
interval, and optimal r(n) for both current maps in (a). The black line is the value of r(n) corresponding to the alternating grid scan method.
The dashed orange line indicates the value of n determined by the stopping criterion. The corresponding current map in a is highlighted in
orange. The alternating grid scan took 2267 s and 2333 s to acquire all measurements in the two cases. The batch method took 673 s and

1552 s to reach the stopping criterion

the time required to observe the regions of finite current gradient
by factors ranging from 1.5 to 3.7 times. Optimisation of batch
sizes or a variable scan resolution might reduce this time further,
however, the performance gain is limited by the spread of the
information gain over the scan range. This is evidenced in both
Fig. 4c, e and Fig. 5¢, e, where we show that even an optimal
algorithm does not significantly outperform the algorithm.

Our algorithm with no modifications can be re-trained to
measure different current maps. It simply requires a diverse data
set of training examples from which to learn. The decision
algorithm performed well even when trained on a small data set
of only 382 current maps (at a resolution of 251x 251), implying
that it is robust to limited training data sets. Our algorithm focused
on observing all informative regions present in the current map,
making it generalisable to different types of measurements and
devices. The acquisition function can still be specifically designed
to focus on specific transport features such as Coulomb peaks or
Coulomb diamond edges. In additional experiments, we demon-
strate how this can be achieved by applying additional
transformations to the reconstructions (see Supplementary Sec-
tion Context-aware decision for stability diagrams).

We believe that our algorithm represents a significant first step
in automating what to measure next in quantum devices. For a
single quantum dot it provides a means of accelerating what can
currently be achieved by human experimenters and other
automation methods. When provided with an appropriate training
data set our algorithm can be applied to a large variety of
experiments. In particular, in any conventional qubit tuning
method for which time-consuming grid scans are performed,
our algorithm would allow for an improvement in measurement
efficiency. It will not be long before this kind of approach enables
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experiments to be performed, and technology to be developed,
that would not be feasible otherwise.

METHODS

Distribution of reconstructions and sampling

Since it is known that deep generative models work well when the data
range is from —1 to 1, all measurements are rescaled so that the maximum
value of the absolute value of the initial measurement is 1. Let Y be a
random vector containing all pixel values. Observation Y,, where n > 1, is
the set of pairs of location x; and measurement y;:
Yn={0y)li =1,...,n}. Also, a subset of measurements is defined:
Yow = {(x,y;)li =n, ... ,n"}. The likelihood of observations given Y is
defined by

p<Yn|Y) X exp(_)‘z(x.y)&Yn ‘y - Y(X)D @

where Y(x) is the pixel value of Y at x, and A is a free parameter that
determines the sensitivity to the distance metric and is set to 1.0 for all
experiments in this paper. The posterior probability distribution is defined
by Bayes' rule:

p(Y[Yn) oc p(YnlY) p(Y). ®)

Likewise, we can find the posterior distribution of z given measurements
instead of Y. Let 2’ denote another input of the decoder, which is set to Y,
in the experiments. Then the posterior distribution of z can be expressed
with ' when n > 64:

p(alYn,Z) o p(al2) p(Yolp(a.2)
x p(@) [,pYalY) p(VIp(z,2) dY
o p(z) p(YnlY = yZ):

where Y, is the reconstruction produced by the decoder given z and z'.
Since all inputs of the decoder are given, p(Y|z,2) is the Dirac delta
function centered at Y,. Also, p(z|z') = p(z) as z and Z' are assumed
independent. Proposal distribution for MH is set to a multivariate normal
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distribution having centered mean and a covariance matrix equal to one
quarter of the identity matrix. For the experiments in this paper, 400
iterations of MCMC steps are conducted when n = 32x 2°, where b is any
integer larger than or equal to 1. We found that 400 iterations result in
good posterior samples. If (xn11,Y,.,) is newly observed, then the
posterior can be updated incrementally:

P(Xn:1.Yy4112.2)

p(z|Yn1,2) = p(an]yny:\y,, 7) p(z|Yn.Z')
P11 Yy 111V2)

= W aaoz) PEYnZ),

because each term in (4) can be separated.

Decision algorithm
In this section, we derive a computationally simple form of the information
gain and the fact that maximising the information gain is equal to
minimising the entropy. Let p,(-) =p(:|Yn,Z'), and any probabilistic
quantity of y, , has the condition x,, but omitted for brevity.

The continuous version of the information gain equation is

Ey,... [KL(Pn(2lyni1) || Pn(2))]
= f;/ " pn(Yn+1)KL(pn (zlyn+1) H pn(z))dyn+1

= Jyp Poni1) JoPa(@lYpr)log =22 dzdy, ©)

n(ZYni1)

]y . J2Pn(2.¥n11)log P (z )pn(yw)dZdyn+1
- I(Z|Yn ’ yn+1 ‘Y")7

where KL is Kullback-Leibler divergence, I(-;-) is mutual information.
Since 1(z|Yn; ¥,i11Yn) = H(2|Yn) — H(Z|Yn,y,.1), maximising the expected
KL divergence is equivalent to minimising H(z|Y,,y,.,), which is the
entropy of z after observing y, ;.

Since this integral is hard to compute, we approximate probability
density functions (PDFs) with samples and substitute them into (6). Let n;
denote the number of measurements that are used for sampling
reconstructions i, ... ,zy (the samples are converted to Yi, ..., Yp).
Then p, (2) =~ 4 >°,,0, (2), or with the sample index m, P, (m) = 1/M. For
any n > n;, the probability is updated with the new measurements after n;:

P(Yns+1:n|Ym

z (pYan‘n‘Y )
For brevity, the sampling distribution information n; is omitted for the
remaining section. Likewise, p,(¥,,1) = [,Pn(Vni1|2) Pn(2) = 3, Pn(m)
Pn(Vps1lZm). Lastly, we use the value of Y at xp.q for a sample of
Pn(Yniql2Zm) for simple and efficient computation. As a result, the
information gain is approximated, up to a constant ¢, by:

Ey, ., [KL(p,(2ly,1) || Pa(2)] = %:P,,(m) KL(Ppi1 || Pn)+c

Py(m;ng) = which can be derived from importance sampling.

Simulator for training data

To aid the training of the model simulated training data was used to
prevent over-fitting. Simulated data produced via a simple implementation
of the constant interaction model*® was used along with basic data
augmentation techniques. These techniques were not intended to be
physically accurate but instead to produce quickly a diverse set of
examples that contain features that mimic real data.

The constant interaction model makes the assumptions that all
interactions felt by a confined electrons within the dot can be captured
by a simple constant capacitance Cs which is given by Cs = Cs + Cp + Cg
where Cs, Cp, and Cg are capacitances to the source, drain and gate
respectively. Making this assumption the total energy of the dot U(N)
where N is the number gf electrons occupying the dot, is U(N) =
(CIel(N—No) £ Cs¥s + CoVo £ CeVe)” | §N £ where No compensates for the
background charge and E, is a term that represents occupied single
electron energy levels that is characterised by the confinement potential.

Using this we derive the electrochemical potential u(N)=
U(N) = U(N—1) = & (N = No — ) — & (VsCs + VoCp + VCo) + En.

To produce a training example random values are generated for Cs, Cp,
and Cg. The energy levels within a randomly generated gate voltage
window and source drain bias window are then counted. To aid
generalisation to real data we randomly generated energy level transitions
(which are also counted) as well as slightly linearly scaled Cs, Cs, Cp, and
Cg with N. This linear scaling was also randomly generated and results in
produced diamonds that vary in size with respect to V. Examples of the
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training data produced by this simulator can be seen in Supplementary
Fig. 1.

Stopping criterion
Utility, denoted by u, is the ratio of total measured gradient to the total
gradient of a stability diagram: u(n) = 1.0 — r(n). Here, we assume that we
have K more stability diagrams to be measured. The location of each
diagram is defined by a different voltage range, and k =0, ... ,K is the
index of the diagrams, where k = 0 is the index of the diagram that we are
currently measuring.

Let T denote the total measurement budget for the current and
remaining stability diagram. In this paper we assume that a unit budget for
measuring one pixel is 1.0. The total utility is

K
Utot = Z uk(tk) = UO(tO) + Unxt(T - t0)7
k=0

where uy(-) is the utility from measuring kth diagram, tk is the planned
budget for kth diagram satisfying Zk otk =T, and
Unat(T = to) = Zk 1Uk (t)-

Let t denote the already spent budget on the current diagram, t < to. If
we stop the measurement then ty =t, or to =t -+ A if we decide to
continue the measurement, where A is a predefined batch size. For the
decision, the utilities of two cases are compared: when ty = t,

Utot = Uo(t) + Unxte(T — 7). %)
Otherwise, to = t + A and

Utot = Uo(t + A) + unge(T — (t + 4)). (8)

If (8) < (7), it is better to stop and move to the next voltage range.
Rearranging the inequality leads to

Uo(t 4+ A) — Uo(t) < Unwt(T — t) — Unxe(T — (t + A))x. 9)

The left-hand-side (lhs) of (9) means the difference of utility if we invest A
budget more on the current diagram, and the right-hand-side the
difference when A more budget is used for remaining diagrams. As we
discussed in Results section, we can calculate multiple slope estimates 3,
for spending A to the current diagram: uo(t + A) — ug(t) =~ B,,A.

The right-hand-side (rhs) of (9) can be approximated by aA if K = oo,
where a = 1/16,384 is the slope of grid scan measuring a new stability
diagram. Note that a can be considered as the empirical worst case
performance of the decision algorithm measuring a new diagram as it
holds for all the experiments we have conducted. If A =N, this
approximation is the exact quantity for any algorithms as all algorithms
satisfy r(0) = 1.0 and r(N) = 0.0. Since a can be interpreted as the worst
case estimate, we also approximate lhs of (9) with the worst case estimate
B = ming, B,

If K < oo, and the remaining budget T — t is more than the budget to
measure all of remaining diagrams, there is no utility after all measure-

ments are finished. Hence, the approximation is capped:
Unxt (T — t) = amin(T — t,N xK), (10)

where K is the number of remaining diagrams to be measured.
As a result, the stopping criterion when K = oo is

B<a. ()
The stopping criterion when K < oo is

a(min(T — t,N xK) —min(T — (t + A),N x K))

B< A

The rhs of (12) is always less than or equal to a, and more total budget T
makes it low, which leads to late stopping or no stopping.

(12)

CODE AVAILABILITY

A documented implementation of the algorithm in a github repository is available at
https://doi.org/10.5281/zenodo.2537934.

DATA AVAILABILITY

The data sets used for the training of the model are available from the corresponding
author upon reasonable request.
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