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We derive a closed-form expression for the weak localization (WL) corrections to the magneto-
conductivity of a 2D electron system with arbitrary Rashba α and Dresselhaus β (linear) and β3 (cubic)
spin-orbit interaction couplings, in a perpendicular magnetic field geometry. In a system of reference with
an in-plane ẑ axis chosen as the high spin-symmetry direction at α ¼ β, we formulate a new algorithm to
calculate the three independent contributions that lead to WL. The antilocalization is counterbalanced by
the term associated with the spin relaxation along ẑ, dependent only on α − β. The other term is generated
by two identical scattering modes characterized by spin-relaxation rates which are explicit functions of the
orientation of the scattered momentum. Excellent agreement is found with data from GaAs quantum wells,
where, in particular, our theory correctly captures the shift of the minima of the WL curves as a function of
α=β. This suggests that the anisotropy of the effective spin-relaxation rates is fundamental to understanding
the effect of the spin-orbit coupling in transport.
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Introduction.—The sensitivity of transport measure-
ments to the weak localization (WL) phenomenon in
spin-orbit- (SO) coupled systems placed in a perpendicular
magnetic field has stimulated, for over 20 years, a con-
tinuous theoretical effort in providing models that can lead
to the extraction of the SO parameters from transport data.
Of interest are linear Rashba [1] α coupling, which results
from the broken inversion symmetry in III-V semiconduc-
tor quantum wells, and the linear β1 and cubic β3
Dresselhaus [2] couplings, which originate in the broken
inversion symmetry in the crystal structure.
Ideally, for convenience in reliably fitting experimental

data, the theoretical result should be a closed-form expres-
sion. Thus far, since the publication of the Larkin-Hikami-
Nagaoka formula [3] in 1980 for a nonspecific case of a
spin-orbit interaction, obtaining analytical results in semi-
conductor systems has been limited to two situations: when
only one linear coupling, either linear Rashba [4,5] or the
renormalized linear Dresselhaus term β ¼ β1 − β3 [6] is
present, or when α and β are exactly equal [7,8]. In the
transitory regime to the α ¼ β state, a closed-form expres-
sion that includes both the linear terms was obtained only
recently in Ref. [9]. In general, the simultaneous inclusion
in the WL problem of both linear terms, which rotate the
spin in opposite directions, was manageable to date only
numerically [7,10–14].

Computationally, evaluating the WL correction to mag-
netoconductivity requires an integration in the momentum
space of the eigenvalues of the Cooperon, an operator that
describes the renormalization of the impurity scattering
matrix element on account of the interference of the
incident and backscattered spin-1=2 electron states.
Because the spin states are mixed by the SO interaction,
the Cooperon acts in the tensor product quantum space
between a position representation and the four-dimensional
space associated with the total spin angular momentum J ¼
ðJx; Jy; JzÞ of eigenvalues J ¼ 0 and J ¼ 1. Of these, the
singlet contribution, responsible for the antilocalization
correction, is easily separable, while the triplet states
remain entangled.
In this Letter we formulate a general decoupling algo-

rithm for the triplet Cooperon modes that leads to a
representation invariant, closed-form expression for the
magnetoconductivity valid for any values of α, β, and β3.
Essential to this approach is the recognition that the spin-
relaxation rates of the J ¼ 1 channel can depend on the
angular orientation of the scattering momentum. We find
that the separation of the triplet contributions to WL is
realized by considering modes with total angular momen-
tum projection zero on all three orthogonal axes.
The mode associated with the in-plane ẑ direction that

becomes the high spin-symmetry axis when α ¼ β depends
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only on the difference α − β and β3, and in the limit α → β,
β3 → 0 exactly cancels the antilocalization correction. The
β3 ≠ 0 coupling determines the difference between these
terms in the high spin-symmetry state α ¼ β. The other two
modes, superpositions of states projected on x̂ and ŷ, are
characterized by the same effective spin-relaxation rate that
is dependent on the angular orientation of the scattering
momentum. Their logarithmic contributions to the WL are
averaged over the angular distribution in the final expres-
sion. Our theory is able to reproduce remarkably well
quantitatively and qualitatively the experimental features
detected in Ref. [9], especially the trademark of the SO
coupling, the reduction of the magnetic field value at which
the minimum magnetoconductivity is obtained when α=β
increases from zero to one.
Weak localization formalism.—The 2D electron system

with linear Rashba α > 0, linear β > 0, and cubic β3
Dresselhaus SO interactions is described in a system of
reference with the ŷ axis perpendicular on the plane, while
the in-plane x̂-ẑ directions are rotated such that xk½110� and
zk½11̄0� [9,15]. This choice of axes permits a symmetric
description of the SO couplings and highlights the exist-
ence of a privileged in-plane direction, which we choose as
the quantization axis of the z component of the electron
spin when the linear interactions that rotate the spin in
opposite directions match. When α < 0, this system of
coordinates is rotated by π=2, such that when αþ β ¼ 0,
the spin quantization occurs along the new ẑ axis.
The single-particle Hamiltonian of a conduction

electron of effective mass m�, Fermi momentum p ¼
ℏkFðcosφp; 0; sinφpÞ, and spin σ ¼ ðσx; σy; σzÞ can be
written in a symmetrized form in the SO components,
as [9,15]

Hp ¼ p2

2m� þ ℏðΩp × σÞ · ŷ; ð1Þ

where ℏΩp is the effective spin-orbit field with components

ℏΩx
p ¼ kF½ðαþ βÞ cosφp − β3 cos 3φp�;

ℏΩz
p ¼ kF½ðα − βÞ sinφp − β3 sin 3φp�: ð2Þ

In the following considerations, we assume that scatter-
ing of impurities is elastic, spin independent, and involves
only states at the Fermi surface, whose density per unit
area, for a single spin, is ν0 ¼ m�=2πℏ2. The scattering
matrix element of two electrons of momenta p and p0,
jVp;p0 j2, depends only on the angle between the incident
and scattered directions.
The quantum corrections to the conductivity are calcu-

lated from the general expression [16]

Δσ ¼ −
2e2D
ℏ

X
q;i

1

Ei
ðqÞ; ð3Þ

where D ¼ v2τ1=2 is the diffusion coefficient in two
dimensions expressed as a function of the transport time
τ1. This is the first (n ¼ 1) in a series of transport times
that result from the anisotropy of the scattering matrix
element [10],

ℏ
τn

¼ ν0

Z
jVp;p0 j2ð1 − cos nφÞdφ; ð4Þ

EiðqÞ (i ¼ 0;…; 3) are the eigenvalues of the Cooperon
operator which renormalizes the scattering matrix element
upon impurity averaging for an electron state p that is
almost perfectly backscattered into p0 ≈ −p. The deviation
from this situation is represented by q ¼ pþ p0, with
q ≪ p.
Following the weak localization formalism, the

Cooperon operator is found to be [9,15,17]

H ¼ Dq2 þ 1

τϕ
þDf½Q2

S þQ2
3�J2z þ ½Q2

A þQ2
3�J2x

þ 2QAqzJx − 2QSqxJzg; ð5Þ

where the SO couplings are encapsulated in the equivalent
momenta:

QS ¼
2m�ðαþ βÞ

ℏ2
; QA ¼ 2m�ðα − βÞ

ℏ2
;

Q3 ¼
2m�β3
ℏ2

ffiffiffiffi
τ3
τ1

r
: ð6Þ

τϕ is the dephasing time, a measure of the inelasticity of the
scattering process.
Cooperon equation.—We diagonalize the Cooperon H

in a basis formed by the following eigenstates of the
angular momentum J2: fj0; 0iz; j1; 0iz; j10ix; j1; 0iyg,
where j10ix ¼ ðj11iz − j1 − 1izÞ=

ffiffiffi
2

p
and j10iy ¼ ðj11izþ

j1 − 1izÞ=
ffiffiffi
2

p
(the subindex indicates the corresponding

projection of the total angular momentum). The singlet
contribution j0; 0iz is separable on account of the ortho-
gonality of the J2 eigenstates and has an eigenvalue

E0 ¼ Dq2 þ 1

τϕ
: ð7Þ

Its contribution to WL is negative, the antilocalization,
because of the antisymmetric character of the spin state
under the spin permutation.
Independently, the triplet modes satisfy a characteristic

equation,

ðE1 − EÞðE2 − EÞðE3 − EÞ − 4D2Q2
Aq

2
zðE3 − EÞ

− 4D2Q2
Sq

2
xðE2 − EÞ ¼ 0; ð8Þ
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with

E1 ¼ Dq2 þ 1

τϕ
þDðQ2

S þQ2
A þ 2Q2

3Þ;

E2 ¼ Dq2 þ 1

τϕ
þDðQ2

A þQ2
3Þ;

E3 ¼ Dq2 þ 1

τϕ
þDðQ2

S þQ2
3Þ: ð9Þ

In a first order approximation that neglects any off-
diagonal contributions, the Cooperon eigenvalues are
Ei ¼ Ei, a result, which upon integration over q, leads
to the generalization of the α ¼ 0 case in Ref. [6] for B ¼ 0.
An improvement on this approximation is obtained by

calculating directly the sum of the inverse eigenvalues from
the coefficients of Eq. (8). Adding the singlet contribution,
an exact solution for the conductivity correction is obtained
in terms of quadratures from Eq. (3), as

Δσð0Þ ¼ −
De2

2π2ℏ

Z
qmax

qmin

qdq
Z

2π

0

dφ

�
−

1

E0

þ E1E2 þ E2E3 þ E3E1 − 4D2q2ðQ2
Asin

2φþQ2
Scos

2φÞ
E1E2E3 − 4D2ðE3Q2

Asin
2φþ E2Q2

Scos
2φÞ

�
; ð10Þ

where the limits of integration are qmin ¼ 0 and
qmax ¼ 1=

ffiffiffiffiffiffiffiffi
Dτ1

p
. Characteristic to this expression is the

coupling between the triplet modes that is realized by the
SO off-diagonal terms.
The calculation of the magnetoconductivity follows a

similar path, since it is based on applying a unitary
transformation generated by the magnetic vector potential
A ¼ ðAx ¼ Bz; Ay ¼ 0; Az ¼ 0Þ on Eq. (5) [9,17,18]. In
this algorithm, the structure of the Cooperon equation in
spin space is preserved, while the orbital motion is
quantized in Landau levels of index n with q2 being
replaced by ð4eB=ℏÞðnþ 1

2
Þ [18].

If in Eq. (8) we assume that solutions E depend
only on q2, upon angular averaging, hq2xi ¼ hq2zi ¼
q2=2 ¼ ð2eB=ℏÞðnþ 1=2Þ, and the magnetoconductivity
can be calculated from Eq. (10), modified into a sum over
all Landau levels. The ensuing result is a representation-
invariant generalization of the magnetoconductivity
obtained in Ref. [6] for α ¼ 0, which contains off-diagonal
elements of an otherwise infinite matrix and thus has
different numerical values when a different system of axes
is selected.
As a function of the magnetic field, however, the

magnetoconductivity calculated in this way reaches a
minimum at the same B for all α=β values, thus unable
to reproduce the displacement of Bmin seen experimentally
[14,19]. This discrepancy suggests that the observed
magnetoconductivity correction cannot be generated by
coupled triplet scattering modes and a different approach is
needed to find the eigenvalues of the Cooperon.
Decoupled Cooperon modes.—We solve Eq. (8) by

proposing the following form for its solutions:

E ¼ Dq2 þ 1

τϕ
þ 2Dq0ðφÞqþ μðφÞ; ð11Þ

where q0 and μ are functions of the angle φmade by q with
the x̂ axis. With the Dyakonov-Perel spin-relaxation rates
along the x, z, y axes, respectively,

ξ3 ¼ DðQ2
S þQ2

3Þ;
ξ2 ¼ DðQ2

A þQ2
3Þ;

ξ1 ¼ DðQ2
A þQ2

S þ 2Q2
3Þ; ð12Þ

we denote εi ¼ ξi − μ.
We treat Eq. (8) as a polynomial identity in q and equate

the coefficients of all the independent terms to obtain the
following system of equations:

ε1ε2ε3 ¼ 0; ð13aÞ

q0ðε1ε2 þ ε2ε3 þ ε3ε1Þ ¼ 0; ð13bÞ

q20ðε1þε2þε3Þ¼Q2
Sε2cos

2φþQ2
Aε3sin

2φ; ð13cÞ

q30 ¼ q0ðQ2
A sin

2 φþQ2
S cos

2 φÞ: ð13dÞ

Equation (13) always admits the trivial solution q0 ¼ 0,
εi ¼ 0, or, equivalently, μi ¼ ξi, the diagonal matrix
elements in Eq. (8).
Here we demonstrate that a set of nontrivial solutions is

also available. Equation (13d) actually generates three
solutions for q0, each associated, respectively, with the
three Cooperon eigenvalues we are looking for:

q0 ¼ 0; �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

Asin
2φþQ2

Scos
2φ

q
: ð14Þ

For q0 ¼ 0, Eq. (13a) has to be satisfied independently by
setting ε2 ¼ 0. This choice, which leads to μ2 ¼ ξ2, is
supported by the form of the solution of Eq. (8) in the two
limiting casesQA ¼ QS andQA ¼ 0, when it can be solved
exactly. (ε3 ¼ 0, leading to μ3 ¼ ξ3, is the appropriate
solution for QS ¼ 0.) The corresponding Cooperon eigen-
value is, therefore,

E2 ¼ Dq2 þ 1

τϕ
þDðQ2

A þQ3Þ2; ð15Þ
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a scattering mode associated with the j1; 0iz eigenstate.
Both the antilocalization contribution Eq. (7), determined
by the j0; 0iz state, and E2 describe dispersions localized at
the origin in the momentum q space.
When ε2 ¼ 0, Eq. (13c) is satisfied for as long as terms

of order 4 in SO constants are neglected, since Q2
Aε3 ¼

DðQ2
S −Q2

AÞQ2
A. Equation (13c) is satisfied exactly when

QA ¼ 0 or when QA ¼ QS.
When inserted in Eq. (13c), the other two solutions for q0

generate the same value of μ for the remaining Cooperon
modes:

μ1;3ðφÞ ¼
ðξ1 þ ξ3ÞQ2

Scos
2φþ ðξ1 þ ξ2ÞQ2

Asin
2φ

2ðQ2
Scos

2φþQ2
Asin

2φÞ : ð16Þ

For these solutions, Eqs. (13a), (13b) are always satisfied
since they generate terms of order 6 and 4, respectively, in
the SO constants, which are negligible.
From Eq. (14) we define an in-plane vector q0 ¼

ðQS cosφ; QA sinφÞ, which makes an angle θ with q given
by cosθðφÞ¼ðQScos2φþQAsin2φÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

Scos
2φþQ2

Asin
2φ

p
.

With this, the solutions 1,3 of the Cooperon equation
become

E1;3 ¼Dðq�q0=cosθÞ2þ
1

τϕ
þμ1;3ðφÞ−

q20ðφÞ
cos2θðφÞ ; ð17Þ

describing two independent dispersions separated in the
momentum space by 2q0ðφÞ= cos θðφÞ, associated with
linear combinations of j1; 0ix and j1; 0iy spin states, of
identical effective anisotropic spin-relaxation rate:

1

τeffðφÞ
¼ μ1;3ðφÞ −

q20
cos2 θðφÞ : ð18Þ

Exploration of the anisotropic character of the SO
interaction and its effect on the electron spin relaxation
rates is not possible in the usual full quantization formal-
ism, in which the operator expressions of qx and qz
do not commute [6,9,18]. Presently, the only representa-
tion-invariant solutions to the WL problem in SO-coupled
systems obtained in this way correspond to the α ¼ β
limit [9]. In all other cases, the WL magnetoconduc-
tivity depends explicitly on off-diagonal SO matrix ele-
ments, so a simple change of axes leads to a different
numerical result [6,11–13]. Here, the quantization of
the electron orbits in the magnetic field is considered
only for as long as it establishes the lower value of the
magnitude square of the scattered momentum, as previ-
ously discussed.
Weak localization magnetoconductivity.—Since the

experimental detection of the WL occurs at magnetic
fields of the order 10−4 T, the quantization in Landau
levels of the electron states introduces differences between

consecutive q values of the order 2eB=ℏ ≃ 10−2qmax, where
qmax ¼ 1=

ffiffiffiffiffiffiffiffi
Dτ1

p
. Consequently, we consider that q varies

quasicontinuously as in the absence of the magnetic field,
thus allowing the simultaneous consideration of qx and qy
as quasicontinuous variables, with the important caveat that
the minimum value of q attainable is imposed by the
quantization condition, which for n ¼ 0 establishes
q2min ¼ 2eB=ℏ.
The magnetoconductivity is calculated by integrating in

the q space the inverse of the eigenvalues obtained in
Eqs. (7), (15), and (17), with input from Eq. (18). The
origin of the integral is chosen, in each case, at the point
where the dispersion equations reach a minimum, with the
magnitude of the scattering momentum between qmin ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB=ℏ

p
and qmax ¼ 1=

ffiffiffiffiffiffiffiffi
Dτ1

p
. The logarithmic terms thus

generated are then averaged over the angular distribution,
defined in the usual way as

R
2π
0 dφ=2π:

ΔσðBÞ ¼ −
e2

4π2ℏ

�
− ln

�
τ−11 þ τ−1ϕ
2DeB
ℏ þ τ−1ϕ

�

þ ln

�
τ−11 þ τ−1ϕ þDðQ2

A þQ2
3Þ

2DeB
ℏ þ τ−1ϕ þDðQ2

A þQ2
3Þ
�

þ 2

�
ln

�
τ−11 þ τ−1ϕ þ τ−1effðφÞ
2DeB
ℏ þ τ−1φ þ τ−1effðφÞ

�	
av



: ð19Þ

In the limit α ¼ 0 (or β ¼ 0), when QS ¼ QA, the
separation in the momentum space of the triplet Cooperon
modes 1 and 3 is 2q0= cos θ ¼ 2QSðcosφ; sinφÞ, parallel
with q and τ−1eff ¼ DðQ2

S þ 3Q2
3Þ=2. Within the limits of our

approximation, this solution is exact. When B → 0, this
expression is markedly different from the corresponding
equation in Ref. [6], which considers only the diagonal
elements of the triplet Cooperon eigenvalue matrix.
When α → β, QA ≪ QS, τ−1eff ≃ ðQ2

A þ 3Q2
3Þ=2, and

q0= cos θ ≃ fQS; 0g becomes almost parallel with the x̂
axis. The separation in the momentum space of 2Qsx̂
describes the formation of the two Fermi populations spin
polarized in opposite directions by the effective magnetic
field associated with the SO coupling along the in-plane ẑ
known to lead, when Q3 ¼ 0, to the persistent spin helix
state described in Ref. [20]. In this limit, the localization
term determined by the spin relaxation along the ẑ axis
approaches in value the antilocalization correction, with an
exact cancellation at α ¼ β and β3 ¼ 0. For the same
parameters, Eq. (19) generates numerical values that are
within 1% from the fully quantized version of the magneto-
conductivity derived in Ref. [9].
In Fig. 1, numerical evaluations of ΔσðBÞ given by

Eq. (19), relative to its value in the absence of the magnetic
field Δσð0Þ, are plotted against four sets of data obtained
for different values of the α=β ratio in a GaAs quantum
well with the following parameters: electron density
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n ¼ 7 × 1015 m−2, experimentally determined transport
times τ1 ¼ 2.06 × 10−12 s, τ3 ¼ τ1=3, dephasing time
τϕ ¼ 10−9 s, cubic Dresselhaus coefficient, γ¼12.6 eVÅ,
hk2zi ¼ 3.9 × 1016 m−2 [19]. We focus on the low and
intermediate α=β values because no analytic expressions
are presently available in this regime, where we find
an excellent qualitative and quantitative agreement with
the data.
The result of Eq. (19) is plotted for the whole range of

α=β values in Fig. 2. The displacement of the magneto-
conductivity minimum toward lower field values as α=β
approaches 1, considered a trademark of the SO-coupled
systems, is displayed in the inset. A fit to the numerical
results indicates that the field value for which the minimum
is reached decreases quasilinearly with α=β. Obviously, the
numerical parameters of the regression line are system
dependent.
The numerical values of Eq. (19) in the α → β limit

are larger than those discussed in Ref. [8]. The difference
is a result of the magnetic field being introduced here
only through the lower limit of the integral over q which
contributes a term Dq2min ¼ 2DeB=ℏ to the denominator in
the final expression. Although this is identical to the
magnetic shift rate in Refs. [5,8], there 1=τB ¼ 2DeB=ℏ
is considered as a supplementary dephasing rate for the
whole range of the momentum integral leading to a
significant suppression of the magnetoconductivity value.

Conclusion.—The qualitative and quantitative fit of the
data with the analytical expression for the magnetocon-
ductivity obtained in this algorithm suggest that, in evalu-
ating the WL corrections in a SO-coupled system placed in
a perpendicular magnetic field, the anisotropy of the spin-
relaxation rates along the low spin-symmetry axes, here ŷ
and x̂, plays a fundamental role. The mode associated with
the high spin-symmetry axis of the system, that along
which in the limit α ¼ β the spin projection becomes a
quantum number, ẑ here, compensates the antilocalization
contribution. These results hold for all values of the SO
constants. The closed-form expression obtained here pro-
vides a straightforward tool for the SO parameter extraction
from experimental transport measurements.
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