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Supplementary Note 1. IN-PLANE MAGNETIC FIELD ALIGNMENT

For the measurements shown, it is crucial to have a good alignment of the external magnetic field B with the

plane of the 2DEG. Large enough in-plane magnetic field needs to be applied to induce sufficient Zeeman splitting

for energy readout. On the other hand, formation of Landau levels due to the perpendicular magnetic fields must

be avoided. We extract the out-of-plane angle ξ via Hall measurements using the standard van der Pauw geometry.

The Hall coefficient RH,⊥ for a perpendicular magnetic field was determined in a separate cool-down. In a parallel

field configuration, the finite Hall slope from the out-of-plane field component is RH,‖ = RH,⊥ sin (ξ) and depends

on the tilt of the device. No quantum oscillations were observed up to 10 T, which indicates that the out-of-plane

component of the applied magnetic field is very small. We use a piezo-electric rotator (Fig. 1b) to rotate the device

in a 4 T magnetic field. In Supplementary Figure 1b, ξ is plotted as a function of φ, the angle with respect to [100]

(Supplementary Figure 1a). As expected, ξ shows a sinusoidal behavior in φ with periodicity of 360◦. We find a

maximal misalignment of 1.3◦ close to the crystalline direction [110]. Therefore, we conclude that the effect on our

measurements due to the field misalignment is negligible (see Supplementary Note 7).

2DEG

a b

B

-1.2

-0.8

-0.4

0.0

O
ut

 o
f p

la
ne

 a
ng

le
(°

)

[1
10

]
[1

00
]

90
°

18
0°

27
0°

[1
00

]

magnetic field direction

[11
0]

[11
0]

[11
0]

[010]

[001]

[100]

𝜙

𝜉

𝜙

𝜉

Supplementary Figure 1. In-plane field alignment with 2DEG. a The angles parametrizing the external

magnetic field orientation. The small misalignment of the external magnetic field B with the plane of the 2DEG is

described by the out of plane angle ξ. The in-plane angle φ is defined as the angle with respect to crystal direction

[100]. b The out-of-plane angle ξ alters as the sample is rotated by the piezoelectric rotator. The data set is very

well fitted with a sine of 2π periodicity (purple solid). Between φ = 115◦ and 165◦ the sensor of the piezo-rotator

does not encode angles.
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Supplementary Note 2. LEVEL POSITIONING ALGORITHM AND SENSOR STABILIZATION

The spin relaxation measurement scheme strongly depends on the associated tunneling rates (see Supplementary

Note 3) which themselves strongly depend on the energy detuning of ground-state and the chemical potential µ of the

lead1. The dot energy levels drift over time, and to compensate for changes in the tunnel rates, we integrate active

stabilization protocols. In this section we first give a brief introduction to resonant tunneling before explaining how

we exploit this energy dependence for our active level positioning algorithm (LPA)1. We then focus on our protocol

to maintain the sensitivity of our sensor quantum dot which is also susceptible to fluctuations.

Resonant tunneling of an electron occurs if the occupation probability of the quantum dot is between 0 and 1.

In our system, this is observed when the orbital ground-state level of the quantum dot is energetically within the

temperature broadening of the 2DEG reservoir (a few kBT ) around the lead chemical potential µ. An example is

presented in Supplementary Figure 2a where the dot ground state is aligned with µ. Then the occupation probability

of the dot is 1/2 and electrons resonantly tunnel from the reservoir to the dot and vice versa. The timescale for this

tunneling events is given by the details of the tunnel-barrier and is tunable by the surface gates. Quantitatively the

tunneling rate at energy E is Γ(E) = (2π/~)T (E)ρ(E) with T the transmission coefficient and ρ the density of states

in the reservoir2. Here, we assume that the tunnel-barrier and the corresponding transmission coefficient T are energy

independent for small detuning from µ by a few kBT .

In Supplementary Figure 2b we show an example of resonant tunneling reflected in ISQD, the current through the

sensor quantum dot. We use histograms of ISQD (Supplementary Figure 2c) to distinguish the charge states. For a

given waiting time tw, we define the total time of the dot being occupied as Ton, and being empty as Toff respectively.

The tunnel rates in and out of the quantum dot are then given by Γin = Ntotal/ (2Toff) and Γoff = Ntotal/(2Ton)

with Ntotal = Non + Noff the total number of tunneling events during tw. Another method is to histogram the time

intervals where the dot is empty (toff) or occupied (ton). These times show an exponential distribution, for example,

ρoff(toff) ∝ exp(−Γintoff), from where the rates are fitted. In our experiment, the tunnel rates using these methods

are in very good agreement. However, the first method avoids errors induced by binning or fitting, thus is preferred

for automatized control. In Supplementary Figure 3a-e, the energy diagrams illustrate µ, the ground-state energy of

the dot and resonant tunnel rates in (Γin) and out (Γout) of the dot for five exemplary situations3,4. Here the dot level

is controlled by adjusting the voltage on the center plunger gate CP (see Fig. 1a in the main text). In Supplementary

Figure 3a, the ground state is well above µ such that an electron on the dot would tunnel out immediately. When

the detuning to µ is made smaller, occupied states in the reservoir become resonant with the dot level and elastic

tunneling could occur (Supplementary Figure 3b). Because there are more empty than occupied states in the reservoir,

the dot is predominantly empty and Γoff > Γon. When the ground state is aligned with µ (Supplementary Figure

3c), Γoff = Γon and the dot occupation probability is 1/2. Further lowering the dot level reverses the behavior and

Γoff < Γon (Supplementary Figure 3d) until there is no available empty state in the reservoir for the electron to

elastically tunnel out of the dot (Supplementary Figure 3e). In our system, we find that inelastic tunneling is strongly

suppressed and the electrons are usually trapped for tens of seconds.

Supplementary Figure 3f shows the quantitative dependence of Γin and Γoff on the detuning from µ. To illustrate

that this behavior is explained by the occupation statistics of the lead, the data is fit to a Fermi-Dirac distribution.

The knowledge that the rates are distributed accordingly is used for positioning the ground state relative to µ by
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Supplementary Figure 2. Resonant tunneling and discrimination of charge states. a Schematics of

resonant tunneling of electrons between the quantum dot and the reservoir. The purple curve indicates the thermal

broadening of occupation statistics. This Fermi-Dirac distribution represents the probability of finding an electron

in the reservoir as a function of energy. Due to Coulomb blockade we assume no other level is available and the dot

is either empty (0) or loaded (1). b An exemplary time trace of the resonant tunneling reflected as jumps between

two distinguished values of ISQD. As described in the main text, the tunnel rates Γon,off are calculated by analyzing

such resonant tunneling traces. c Histogram of the trace shown in b exhibits two-level statistics. Due to the large

signal-to-noise ratio the charge states (0) and (1) are distinguished with high fidelity. Also, we measure with tunnel

rates well below the bandwidth of the charge sensor what minimizes errors due to missed events.

establishing a closed-loop feedback either on the tunnel rates or on the dot occupation probability.

The feedback protocol is illustrated in Supplementary Figure 3f. As shown in the example, the measured tunnel

rate off the dot Γnow is feedbacked to adjust the dot level. Therefore, a correction ∆E is calculated and applied to

the plunger gate CP (see in Fig. 1a) to restore the set tunnel rate Γset. This process is repeated until Γnow is within
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the tolerance Γtol around Γset.
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Supplementary Figure 3. Level positioning algorithm (LPA). a-e Schematics of tunnel rates (purple

arrows) for different positions of the ground state with respect to µ. The purple curve in the reservoir (left) depicts

the probability of finding an electron in the reservoir as a function of energy. f Energy dependence of resonant

tunnel rate out of the dot Γoff (red square). Γin exhibits Fermi-Dirac statistics around the regime of resonant

tunneling. The electron temperature is around 200 mK. The ground state of the dot drifts over time. Γtol of Γset is

the tolerance interval, which, in practice, is usually set to be 10% of Γset, as shown by the green shaded region. For

illustration, an example for a correction is shown: if the measured tunnel off rate Γnow is beyond the tolerance

interval, the corresponding plunger gate is corrected by ∆E to reset the initial position the ground state. This

process is repeated in a closed-loop until Γset is restored. g The stability of the quantum dot is represented by the

correction ∆E for one spin relaxation measurement whereas the LPA is performed about every three minutes. A

histogram of ∆E is shown on the right side of the panel. The data exhibits a Gaussian distribution centered at 0

with standard deviation of 1.4µeV. It demonstrates that the dot is very stable.

During the spin relaxation measurements, this feedback is performed about every three minutes. As will be discussed

in Supplementary Note 3, it is of great significance to have a small, well known and constant Γoff of the spin ground

state to guarantee a reliable spin-to-charge conversion. The dot is usually loaded and in Coulomb blockade when the

spin excited state becomes resonant, so that only resonant tunneling with the spin ground state is visible. In reality,

due to the thermal broadening, the spin excited state at the smallest fields also contributes to the total resonant

tunneling which distorts the measured rates. However, even if the rates are distorted the tunnel off rates of the spin

excited state is much larger than for the spin ground state which is needed for the spin-to-charge conversion (see

Supplementary Note 3).

In Supplementary Figure 3g, a series of 5000 corrections (∆E) are shown for a single spin relaxation measurement at

0.7 T over a continuous measuring time of almost 10 days. For this measurement, the spin ground state is maintained

at Γoff = 10 Hz. We record resonant tunneling (Supplementary Figure 2) for 14 s and extract the rates Γin,off . Note

that Γoff is equivalent to the background rate Γb described in the spin-to-charge conversion in Supplementary Note 3.

The LPA allows measurements relying on precise alignment of the dot energy levels for an extended period of time,

which is crucial to acquire enough data to provide statistics for extractions of long spin relaxation times.
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Next, we turn to corrections of the sensor quantum dot. The best sensitivity is achieved when the sensor is positioned

on the steepest point of a Coulomb peak (see Supplementary Figure 4a). To preserve this operation point, a feedback

is regularly carried out to compensate for sensor drifts. Before the sensor feedback was carried out, the main dot is

slightly detuned from µ to avoid resonant tunneling and a stable ISQD is read. Drift results in changes of the sensor

dot energy spectrum indicated in Supplementary Figure 4a. This leads to a change of ISQD and, more importantly,

to a reduction in sensitivity (dISQD/dVSP). By applying corrections to the sensor plunger SP (Supplementary Figure

4b) in a closed loop, the original sensor operation point is restored. These corrections are calculated with the flank of

the Coulomb peak being linearly approximated in VSP. In Supplementary Figure 4b, the evolution of applied voltage

on SP, VSP, is shown for the same spin relaxation measurement discussed in Supplementary Figure 3. In contrast to

Supplementary Figure 3g, only a few and solely positive corrections were carried out. This unidirectional behavior is

often seen but its origin is not clear.
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Supplementary Figure 4. Sensor feedback. a ISQD of a sensor Coulomb peak (red solid curve) with the

sensor operation point (OP, black circle). With time, the Coulomb peak shifts in energy and hence in plunger

voltage VSP (red dashed curve). This changes the sensor signal as well as the sensitivity indicated by the vertical

arrow. To restore the original operation point, VSP is adjusted until ISQD is once more within a tolerance. b The

effective voltage on SP for a long measurement showing corrections to compensate drift. The carried-out corrections

are of similar magnitude because the feedback is applied as soon as ISQD is out of the tolerance. The inset

schematically shows the sensor dot becoming more confined (dashed circle) due to the drift. Scale bar is 200 nm.
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Supplementary Note 3. SPIN RELAXATION MEASUREMENT SCHEME

In this section, we present the rate equations describing the three-step pulse measurement scheme used to extract

the spin relaxation rate W. This section gives a brief summary of the rate equations solved in Ref. 1.

3a. Ionization

Both spin-up and spin-down states are pulsed well above µ for several ms. If the dot is occupied, the electron will

tunnel off so that the dot will be empty or ionized. We choose the duration and the ground state energy detuning

such that the ionization probability is more than 99%.

3b. Charge and Relax

In the charge and relax pulse step, both spin states are pulsed below µ (see Supplementary Figure 5a). During the

waiting time tw, four pathways are possible: (1) the dot stays empty; (2) an electron tunnels into the spin ground

state; (3) an electron tunnels into and stays in the spin excited state; (4) an electron tunnels into the spin excited

state and relaxes into the spin ground state. There are other suppressed paths like exchange with the reservoir after

loading. Such alternative events are found not to influence the statistics and therefore are neglected. Put simply, the

measurement scheme relies on counting electrons taking path (3), which are identified by observing a tunneling out

of the spin-excited state during the spin-to-charge conversion.

Under the assumption that the dot is ionized in the beginning of the charge and relax step (see Supplementary

Figure 5a), the rate equation for the probability for the dot being empty is

Ṗempty(t) = −ΓinPempty → Pempty(t) = e−Γint. (Supplementary Equation 1)

Γin = (Γe + Γg) (Supplementary Equation 2)

Note that Pempty(t) = 1 − PL(t) with PL the loading probability during the charge and relax step. Although the

individual coupling of the spin excited and ground states to the reservoir, Γe and Γg, is unknown5–8, the total coupling

Γin can be obtained by two different methods. Supplementary Figure 5b shows Pempty(tw), the probability distribution

of the dot being empty when entering the read-out stage (3c) after waiting time tw in the charge-and-relax stage.

This probability is fitted to an exponential function to find Γin. In the second method, Γin is obtained by a fit to the

histogram of ton’s, the times for an electron to tunnel into the empty dot (Supplementary Figure 5c). The drawback

of this method is that in addition to the readout the sensor must also be sensitive during the charge and relax stage to

detect ton.We therefore apply a compensation pulse to sensor plunger gate SP (see the inset of Supplementary Figure

4b) to retain sensitivity. This method also allows to obtain Γin for each waiting time tw individually. As shown in

Supplementary Figure 5d, Γin is independent of tw as expected.

Without considering the contribution due to the thermal excitation from the spin ground state, the rate equation

of the probability for an electron being in the spin excited state is Ṗe = ΓePempty −WPe. By solving this equation,

we find the probability

Pe(t) =
Γe
Γin
· Γin

Γin −W
· (e−Wt − e−Γint). (Supplementary Equation 3)

Note that Γe

Γin
, which is not known, is only a scaling factor.
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3c. Read out

When entering the read-out (RO) stage, the probability of the electron still being in the spin excited state after the

charge and relax stage is Pe(tw). In the read-out stage, an electron can leave the spin excited state by either tunneling

off the dot with a rate ΓRO
off,e or by relaxing into the spin ground state with spin relaxation rate W . Thus, the rate

equation for an electron tunneling out of the spin excited state is Ṗe
RO

= −ΓRO
off,eP

RO
e −WPRO

e , which leads to

PRO
e (t) = Pe(tw) · e−(ΓRO

off,e+W )t. (Supplementary Equation 4)

For the spin ground state, either an electron in the spin excited state can relax with rate W or an electron can tunnel

into the reservoir with background rate Γb. The rate equation is Ṗg
RO

= −ΓbP
RO
g +WPRO

e , whereas the spin excited

state is involved due to spin relaxation. The solution for this equation is

PRO
g (t) = Pg(tw)e−Γbt + Pe(tw) · W

ΓRO
off,e +W − Γb

(e−Γbt − e−(ΓRO
off,e+W )t), (Supplementary Equation 5)

where Pg(tw) = 1−Pe(tw)−Pempty(tw) is the probability for an electron to be in the spin ground state when entering

the read-out configuration. PRO
g (t) and PRO

e (t) are not directly observable in the experiment. But we can detect the

timing of tunnel events out of the quantum dot during the readout stage. The probability for an electron tunneling

off at time toff in the readout stage is PRO
off = ΓRO

off,eP
RO
e (toff) + ΓbP

RO
g (toff) which is equivalent to

PRO
off = η · Pe(tw)

(
ΓRO

off,e +W
)
e−(ΓRO

off,e+W)toff +

(
Pg(tw) +

W

ΓRO
off,e +W − Γb

Pe(tw)

)
Γbe
−Γbtoff

(Supplementary Equation 6)

with η =

(
1− WΓb

ΓRO
off,e(ΓRO

off,e+W−Γb)

)
ΓRO

off,e

ΓRO
off,e+W

, the fraction of electrons in the spin excited state which tunnel out before

they relax into the spin ground state. For low fields, ΓRO
off,e � W,Γb such that η ≈ 1 while at high fields W ∼ ΓRO

off,e

and η is reduced to ΓRO
off,e/(Γ

RO
off,e +W ). Note that for the measurements presented in Fig. 2 of the main text, η ≈ 1,

and it thus has not been involved in the discussion for better readability.

3d. Extraction of W

Supplementary Figure 5e shows exemplary histograms of toff for three waiting times tw in the charge and relax

stage. The counts out of the dot depend on the loading probability PL(tw) and the probability to relax into the spin

ground state during tw, W . In first panel of Supplementary Figure 5e, tw is short compared to 1/Γin ∼ 1kHz and

the dot is mostly empty when entering the read-out stage. For the next panel, tw > 1/Γin so that PL is increased.

But tw < 1/W and there is an increased number of electrons in the spin excited state which have not yet relaxed

when entering the read out stage. For the third panel, PL ∼ 1 but also tw > 1/W such that almost all electrons

have relaxed into the spin ground state when entering the read-out stage. The total rate out of the excited state

R = ΓRO
off,e + W is independent of tw, as shown in Supplementary Figure 5f. This allows us to extract ηPe by fitting

(Supplementary Equation 6) to our toff histograms for tw’s. Γb is set and fixed by the LPA as mentioned above. For

low fields, where ΓRO
off,e ∼ Γb, we also explicitly fit Γb giving excellent agreement with the values chosen for the LPA.

ηPe is then plotted as a function of tw. The spin relaxation rate W can be explicitly found out by fitting ηPe(tw) to

(Supplementary Equation 3). As mentioned above, Γin is independently obtained from histograms of ton or Pempty(tw).

Note that η is only a scaling factor for (Supplementary Equation 3) and does not affect our ability to extract W .

Supplementary Figure 5g shows ηPe(tw) for selected applied magnetic fields with the respective fits. For the first

three panels W < Γin and the exponential increase in ηPe(tw) is represented by Γin while the decay is characterized
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by W . For the last panel, W > Γin and the exponential increase is actually given by W and the loading rate Γin is

seen in the decay.
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Supplementary Figure 5. T1 measurement scheme. a Schematics of the three-step pulse sequence used for

the T1 measurement for Zeeman energy Ez = gµBB and spin relaxation rate W . Methods to extract Γin by fitting

ionization probability Pempty for different waiting times tw (b) or by fitting the histogram of ton for all data (c). d

shows Γin at various waiting times tw using the second extraction method. It shows that Γin is independent of tw. e

Histograms of tunnel off times toff in the read-out stage for three different waiting times tw exhibit a double

exponential distribution with rates R = ΓRO
off,e +W (solid line) and Γb(dashed) as described in the text. f R as a

function of tw. Colored datapoints correspond to colors adopted in e. g Pe for different tw with fits to

(Supplementary Equation 3) as described in the text for four different fields. W can be then extracted accordingly.

Error bars are fit errors.
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Supplementary Note 4. SPIN-READOUT FIDELITY

In this section, we describe a method to calculate the single-shot read-out fidelity. This method is different from the

technical read-out fidelity often adopted in systems where detection of tunneling events is difficult9,10 or re-tunneling

into the spin ground state during read-out occurs with speed in the order of the detection bandwidth. For the

experiment here, the bandwidth of the sensor exceeds all relevant tunneling rates. Rather, the fidelity here is limited

by our capability to distinguish the ”blind counts” from electrons either tunneling out of the spin excited state or the

spin ground state.

As described in Sec. Supplementary Note 3, we do not assign each tunnel-event in the read-out stage as a spin

excited event. Our method takes events from the spin-ground state into account which makes the analysis more

generic. Obviously it is beneficial if the tunneling rate out of the spin excited state ΓRO
e = Γoff dominates over the

rate out of the spin ground state ΓRO
g = Γb which is best fulfilled at large Zeeman splittings Ez (see Supplementary

Figure 5(e) for an example). At low fields, these rates become closer and the spin read-out fidelity drops.

Using the input from our experimental data, we do excessive simulations of the complete spin relaxation measure-

ment (load and read-out stage) which allows us to track the spin information of a single-shot measurement at any given

time (see Fig. Supplementary Figure 6). With these simulations, we generate a complete data set of sensor-current of

the pulse-sequences which we run against our analysis algorithms. The fidelity is then based on simulations describing

how well the experimental data agree with the rate-equation model (see Sec. Supplementary Note 3). We obtain the

spin read-out fidelity by assigning all (simulated) tunnel events counted in the read-out stage before time t∗off as spin

excited events and all events afterward as spin-ground state and determine our success rate. The contribution of the

ground and excited state during read out are described in Eq. (Supplementary Equation 6) of Sec. Supplementary

Note 3 in great detail. We rewrite this formula as

PRO
off = PRO

off,e + PRO
off,g = Ae · e−(ΓRO

off +W )toff +Ag · e−(ΓRO
b )toff (Supplementary Equation 7)

and describe the fidelity as the ratio of the correctly assigned events to the total counted events

F (t∗off) =

´ t∗off

0
PRO

off,edtoff +
´∞
t∗off

PRO
off,gdtoff´∞

0
(PRO

off,e + PRO
off,g)dtoff

. (Supplementary Equation 8)

Note that
´∞

0
(PRO

off,e + PRO
off,g)dtoff does not necessarily equal 1 because of the possibility to enter the read-out stage

with an empty quantum dot. Next, we give the explicit expression for the fidelity

F (toff) =

R

(
e−Γbtoff (Pg(tw)(−R+Γb)−Pe(tw)W )

−R+Γb
+

(1−e−Rtoff )Pe(tw)(RΓoff−Γb(Γoff+W ))

R(R−Γb)

)
(Pg(tw)R+ Pe(tw)(Γoff +W ))

(Supplementary Equation 9)

and the optimal time for the spin state discrimination

t∗off = −
Log

(
Pg(tw)RΓb−Pg(tw)Γ2

b+Pe(tw)ΓbW
Pe(tw)(RRoff−ΓbRoff−ΓbW )

)
R− Γb

. (Supplementary Equation 10)

To prove the validity of our method, we compare the histogram of the total events from the simulations with the

histogram obtained from the experiment and find excellent agreement. Fig. Supplementary Figure 6(a) shows an
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exemplary data set for an intermediate field of 4 T. Because of decent Zeeman splitting, Γoff � Γb and the error

of assigning spin ground state events as the spin excited events is small. A maximal fidelity of 99% is found for

t∗off = 3.7 ms. Note that even for t∗off = 0 the fidelity is larger than 50% because as the measurement-scheme enters

the read-out stage, the majority of electrons loaded into the spin excited state already relaxed into the spin ground

state and will tunnel out with very small rate Γb. For lower magnetic fields, the fidelity drops as the ground state

contribution significantly affects the read out statistics [see Fig. Supplementary Figure 6(b)]. For the low field

measurement presented (0.7 T) we found a maximal fidelity of 81.5%.

Because of spin relaxation, the count of spin excited electrons is always smaller than the spin ground state electrons,

which leads to an increased spin readout fidelity. The formalism presented allows to calculate the fidelity with

Pg(tw) = Pe(tw) = 0.5. This corresponds the the limit of Γon →∞ and tw → 0. In this scenario, the fidelity reduces

to 98.1% at 4 T and 79% at 0.7 T, respectively.

1086420

toff - time of event (ms)

2000

1000

0

co
un

ts

1.00

0.95

0.90

fidelity

Simulation
Excited state
Ground state
Total events
Fidelity

Measurement

2000

1000

0

co
un

ts

0.50.40.30.20.10.0

toff - time of event (s)

1.00

0.75

0.50

fidelity

a b

Supplementary Figure 6. T1 Spin-readout fidelity. Simulated distribution of tunneling events in the read

out stage for electrons tunneling out of the spin excited (green) and spin ground state (red) using the parameters

extracted from the experiment for a dataset of a 4 T and b 0.7T. The simulated total count (black curve) agrees

well with the experimental data (purple triangles). The fidelity (blue curve) is calculated by assigning all events

tunneling out of the quantum dot before a certain toff as excited state events and all other as spin ground state

events and extracting the number of positive classified events from the simulated data set.
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Supplementary Note 5. DEFINITIONS AND NOTATIONS FOR THE ELECTRON, NUCLEAR SPINS,

AND PHONONS

We describe the quantum dot and the spin relaxation by the following model. The total electronic Hamiltonian is

H = T + V +HZ +HSOI +HHF, (Supplementary Equation 11)

the components of which we now discuss. To this end, we define the coordinate system along the crystallographic

directions by defining unit vectors x ≡ [100], y ≡ [010], and z ≡ [001] and the corresponding coordinates x, y, and z.

The heterostructure is grown along z, and the wavefunction corresponding to the lowest 2DEG subband is ψ0(z). In

the xy-plane, the electronic states are defined by the kinetic energy with the electron effective mass m, the anisotropy

tensor M, and a bi-quadratic confinement potential,

T + V =
1

2m
p · M · p +

~2

2m

(
(r · n1)2

l41
+

(r · n2)2

l42

)
. (Supplementary Equation 12)

The tensorM reflects the orbital effects of strong in-plane magnetic fields. It is diagonal in coordinate system with the

first axis along the in-plane component of the magnetic field and the second perpendicular to it. In these coordinates

M−1 = diag(1, 1 + Φ2), so that the mass along the in-plane field is unchanged, and perpendicular to it is enhanced.

The enhancement grows with Φ, the flux penetrating the 2DEG due to the field (see below). The confinement soft

and hard potential axes, n1 and n2, respectively, are slightly rotated, by angle δ ≈ 6◦, with respect to the device axes

[110], and [110]. The confinement lengths l1 and l2 are related to the excitation energies by

E1 = ~2/ml21, (Supplementary Equation 13)

and an analogous equation for index 2.

The electron is subject to spin-dependent interactions. These comprise, first, the Zeeman term,

HZ = µFσ ·B, (Supplementary Equation 14)

where (σx, σy, σz) = σ is the vector of sigma matrices, B = B(cos ξ cosφ, cos ξ sinφ, sin ξ) is the magnetic field, and

µF = (g/2)µB is the reduced electron magnetic moment, with the g-factor g, and the Bohr magneton µB . The

associated Zeeman energy is εz = gµBB = 2µFB. Second, the spin-orbit interactions. We split them to the linear

Rashba and Dresselhaus terms,

H
(1)
SOI = α (σypx − σxpy) + β (−σxpx + σypy) , (Supplementary Equation 15)

and the cubic Dresselhaus term,

H
(3)
SOI =

γc
~3

(
σxpxp

2
y − σypyp2

x

)
. (Supplementary Equation 16)

The linear interactions’ strengths are parameterized by spin-orbit length lso, and angle ϑ by writing α = (~/2mlso) cosϑ,

and β = (~/2mlso) sinϑ. The linear spin-orbit terms can be recast, by a unitary transformation of the Hamiltonian,

into the effective interaction11,

Heff
SOI = µF (nso ×B) · σ, (Supplementary Equation 17)
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Supplementary Figure 7. Angular spin-orbit interaction. The total SOI field BSOI = BR +BD (red) along

various crystal axes from the interplay of the Rashba BR (orange) and linear Dresselhaus BD (dark blue) SOI

components. The interplay of BR and BD leads to an anisotropic BSO. A maximal BSO ∼ |α+ β| is expected along

[110] and minimal BSO ∼ |α− β| along [110]. φ is defined as the angle with respect to [100].

which will be convenient below. The dimensionless spin-orbit vector

nso(r) =
x

lso
[sinϑ,− cosϑ, 0] +

y

lso
[cosϑ,− sinϑ, 0]. (Supplementary Equation 18)

We write it using the dot coordinates as

nso(r) = n(1)
so (n1 · r) + n(2)

so (n2 · r), (Supplementary Equation 19)

by defining the following vectors

n(1)
so =

1

lso
[sin(δ + ϑ),− cos(δ − ϑ), 0], (Supplementary Equation 20a)

n(2)
so =

1

lso
[cos(δ + ϑ), sin(δ − ϑ), 0]. (Supplementary Equation 20b)

For later convenience the following expressions are noted,

|n(1)
so × µFB|2 =

(
µFB

lso

)2 {
cos2 ξ · [cosφ cos (δ − ϑ) + sinφ sin(δ + ϑ)]

2
+ sin2 ξ · (1 + sin 2δ sin 2ϑ)

}
,

|n(2)
so × µFB|2 =

(
µFB

lso

)2 {
cos2 ξ · [cosφ sin (δ − ϑ)− sinφ cos(δ + ϑ)]

2
+ sin2 ξ · (1− sin 2δ sin 2ϑ)

}
.

(Supplementary Equation 21)

These expressions are anisotropic, due to the anisotropy of the spin-orbit interactions, (Supplementary Equation 15),

illustrated in Supplementary Figure 7.

Third, there is Fermi’s contact interaction,

HHF = Av0

∑
n

δ(z − zn)δ(r− rn)σ · In. (Supplementary Equation 22)

Here, n labels the nuclei with spin In and position Rn ≡ (rn, zn), and similarly R = (r, z) is the three dimensional

electron position operator. Further, A is a material constant, and v0 = a3
0/8 is the volume per atom, with a0 the

14



lattice constant. To evaluate the matrix elements HHF, one has to consider also the extension of the electronic state

along the z axis. We define the length scale lh by12

l−1
h =

ˆ
dz |ψ0(z)|4, (Supplementary Equation 23)

which therefore depends on the 2DEG width along the growth direction. The flux due to the in-plane field is also

related to the 2DEG width, by

Φ =
e

~
λ2
zB cos ξ, (Supplementary Equation 24)

through another effective length λz. Both lh and λz are of the order of the nominal width of the 2DEG, lz, with

the precise relation dependent on the heterostructure confinement profile. For ψ0(z), we use the ground state of a

triangular potential (the Airy function), as described in detail in Ref. 13.

The electron-phonon interaction is described by

Hph =
∑
λκ

(
bλκ + b†λ−κ

)
Hλκ

ph , (Supplementary Equation 25)

where λ ∈ {l, t1, t2} is the acoustic phonon branch index, with l the the longitudinal and t1, t2 the two transversal

branches of acoustic phonons, κ is the three dimensional phonon wavevector, and the coupling

Hλκ
ph =

∑
η

√
~κ

2ρV cλ
σηM

η
λκe

iκ·R. (Supplementary Equation 26)

For later notational convenience the index η ∈ {df,pz} labels here the electron-phonon interactions, deformation and

piezoelectric. Further, ρ is the material density, V is the crystal volume, cλ is the sound velocity, Mdf
λκ = δλl with the

latter being the Kronecker delta symbol, σdf = σe is the deformation potential, σpz = −ieh14/κ, with h14 being the

piezoelectric constant, and

Mpz
λκ =

2

κ2
(κxκye

z
λ + κzκxe

y
λ + κyκze

x
λ) , (Supplementary Equation 27)

is a dimensionless factor defined by the components of eλ, the three mutually perpendicular polarization vectors of

unit length.
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Supplementary Note 6. THE SPIN RELAXATION RATE

The relaxation rate between an initial electronic state i and the final state f , with the corresponding energies Ei,

Ef , corresponding to a single phonon emission, is given by the Fermi’s Golden rule

Γ =
2π

~
∑
λκ

|〈f |Hλκ
ph |i〉|2δ (Eif − ~cλκ) [n(Eif ) + 1] , (Supplementary Equation 28)

where we assumed Eif = Ei − Ef > 0, and n is the phonon thermal occupation factor

n(ε) =
1

exp(ε/kBT )− 1
, (Supplementary Equation 29)

with kB the Boltzmann constant and T the temperature.

For the spin relaxation, the initial state is |i〉 = |Ψ0↓〉, the orbital ground state with spin down, the final state is

|f〉 = |Ψ0↑〉, the orbital ground state with spin up, and the transition energy equals to the Zeeman energy, Eif = εz.

In the continuum limit for phonons,
∑

κ → [V/(2π)3]
´

dκ, we get (Supplementary Equation 28) in the following form

Γ = [n(εz) + 1]
∑
ηλ

ˆ
dκ

κ

8π2ρcλ
|ση|2|Mη

λκ|
2|τ(κ)|2δ (εz − ~cλκ) , (Supplementary Equation 30)

where we introduced

τ(κ) = 〈Ψ0↓|eiκ·R|Ψ0↑〉, (Supplementary Equation 31)

as the matrix element of the electron-phonon interaction between the initial and final state. Even though our numerics

implements the evaluation of these formulas exactly, to substantiate the discussion in the main text introduction, we

also provide analytical results. To this end, we adopt some approximations, most importantly the dipole approxima-

tion, expanding the exponential in (Supplementary Equation 31) to the lowest order. The quantity |τ |2 is then given

by the dipole matrix element between the lowest spin opposite quantum dot states and is bilinear in the components

of vector κ (see Supplementary Note 8). To proceed with such an expression, we define the following average

〈f(κ)〉 =

ˆ
dκ|Mη

λκ|
2f(κ)δ (εz − ~cλκ) , (Supplementary Equation 32)

as the integral over phonon wavevectors with the weights from (Supplementary Equation 30). The zinc-blend crystal

symmetry gives the following result

〈(κ · n)(κ ·m)〉 = Cηλ
κ4
λ

~cλ
(n ·m), (Supplementary Equation 33)

for n and m being in-plane unit vectors, κλ = εz/~cλ, and the numerical constants Cdf
l = 2π/3, Cpz

l = 8π/35, and

Cpz
t1 = Cpz

t2 = 2/3× Cpz
l . We now write the rate as

Γ = γ〈d2〉, (Supplementary Equation 34)

splitting it to the phonon part and the (averaged) dipole moment between the spin opposite states. The first is

γ = [n(εz) + 1]
∑
ηλ

Cηλ
κ5
λ

8π2~ρc2λ
|ση|2 =

n(εz) + 1

15π~ρ

(
5

4

σ2
e

~5c7l
ε5z +

(eh14)2

~3c5
ε3z

)
, (Supplementary Equation 35)
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where we defined a weighted phonon velocity

1

c5
=

(
3

7

1

c5l
+

4

7

1

c5t

)
. (Supplementary Equation 36)

The second, derived in Supplementary Note 8, is

|dSOI|2 ≈ |µFB× n(1)
so |2l41

E2
1

(E2
1 − ε2z)2

+ |µFB× n(2)
so |2l42

E2
2

(E2
2 − ε2z)2

, (Supplementary Equation 37a)

|dHF|2 ≈
2I(I + 1)

3

A2

N

(
l21

E2
1

(E2
1 − ε2z)2

+ l22
E2

2

(E2
2 − ε2z)2

)
. (Supplementary Equation 37b)

Equations (Supplementary Equation 35) and (Supplementary Equation 37) make the power dependence on the mag-

netic field explicit for any combination of the phonon interaction, with γdf ∝ B5 and γpz ∝ B3 and the spin-

dependent electron interaction, with |dSOI|2 ∝ B2, and |dHF|2 ∝ B0 (up to the small magnetic field orbital effects;

see below). The expressions for the relaxation rates given in the Methods, Eq. (1) and (2), can be obtained by

restricting to the dominant piezoelectric phonons in (Supplementary Equation 35), neglecting the Zeeman term with

respect to the orbital energies, and using (Supplementary Equation 13), and for the spin-orbit interaction case also

(Supplementary Equation 21).
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Supplementary Note 7. ANISOTROPY OF THE HYPERFINE RELAXATION RATE

The strong anisotropy of the relaxation induced by the spin-orbit interactions played a major role in our ex-

periment and allowed to distinguish it from the hyperfine effects. Indeed, compared to the explicitly anisotropic

(Supplementary Equation 37a), the expression in (Supplementary Equation 37b) stays unchanged, as long as the dot

shape is fixed. Neglecting the orbital effects of the magnetic field, this is indeed the case. In this section we estimate

the small anisotropy induced by going beyond this approximation (of a purely in-plane field, and a 2DEG with zero

width). We first consider the orbital effects of a purely in-plane field, and then an out-of-plane field. For both of

these it is useful to consider a change of the mass in the kinetic term of a linear harmonic oscillator, m→ m∗. With

the Hamiltonian written in the form of (Supplementary Equation 12),

p2

2m
+

~2

2m

r2

l4
→ p2

2m∗
+

~2

2m

r2

l4
≡ p2

2m∗
+

~2

2m∗
r2

l∗4
, (Supplementary Equation 38)

Upon such a change the oscillator energy and dipole elements rescale to

E∗ = E
( m
m∗

)1/2

, and l∗ = l
( m
m∗

)1/4

. (Supplementary Equation 39)

the latter following from E∗ = ~/m∗l∗2, the standard relation for the LHO energy. The in-plane field orbital effects

will lead to such changes along the axis perpendicular to the magnetic field. If the dot is anisotropic, this will lead to

anisotropic change of the dipole moment |dHF|2. We quantify the magnitude of such anisotropy by the ratio of the

difference and sum, of the dipole moment extrema (as a function of the magnetic field direction), which are achieved

with the magnetic field along the potential axes,

∆in
|d|2 ≡

|d(B ‖ n1)|2 − |d(B ‖ n2)|2

|d(B ‖ n1)|2 + |d(B ‖ n2)|2
=

1− (1 + Φ2)3/2

1 + (1 + Φ2)3/2

E−3
1 − E−3

2

E−3
1 + E−3

2

. (Supplementary Equation 40)

The left hand equality sign is a definition, and the right hand side was obtained by neglecting the Zeeman energy in

(Supplementary Equation 37b), and using that that the in-plane field renormalizes the mass according to m∗/m =

1 + Φ2, with the flux given in (Supplementary Equation 24). The expression in (Supplementary Equation 40) is

plotted for our parameters in Supplementary Figure 8.

We now turn to the case of a magnetic field with an out-of-plane magnetic component, B sin ξ 6= 0. We will

consider an isotropic quantum dot, for simplicity, and define the anisotropy of the rate by comparing its value for

a purely in-plane field, and a value for a finite out-of-plane component. With these two values, we define ∆ for

this case analogously to (Supplementary Equation 40). The orbital effects of an out-of-plane field are described by a

renormalization of the confinement length, and splitting the excited states energies according to their orbital moment

L. These two effects are for the two excited lowest states, L = ±1, given by

l∗−4 = l−4 +

(
eB sin ξ

2~

)2

, and E∗ =
~2

ml∗2
± ~e

2m
B sin ξ. (Supplementary Equation 41)

Calculating ∆ becomes a straightforward algebra, using the previous equation, and (Supplementary Equation 37b),

and we plot the result in Supplementary Figure 8. We note that for the case of a slightly asymmetric dot, the energy

effect is quenched as long as (~e/2m)Bz � |E1 − E2|, which is the case in our experiment. Keeping only the orbital

squeezing effect (the renormalization of the confinement length), we then get

∆out
|d|2 ≡

|d(ξ)|2 − |d(ξ = 0)|2

|d(ξ)|2 + |d(ξ = 0)|2
≈ 3

e2B2

8~2
sin2 ξ. (Supplementary Equation 42)
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Supplementary Figure 8. Anisotropy of the hyperfine induced relaxation rate. The blue curve shows

∆in, (Supplementary Equation 40), the in-plane anisotropy of the relaxation rate. It equals the ratio of the maximal

deviation of the rate from its average, and the average, upon varying the magnetic field within the 2DEG plane. The

red curve shows ∆out, (Supplementary Equation 42), the out-of-plane anisotropy of the rate (the full expression and

its approximation discussed in the text are indistinguishable on the figure resolution). It shows, again on relative

scale, the change of the rate upon misaligning the field out of the 2DEG plane. We adopted the parameters of the

dot, and for the second quantity we set ξ = 1.3◦, the maximal misalignment angle found in Supplementary Figure 1b.

Looking at the figure, we conclude that the expected anisotropies of the hyperfine relaxation rates due to the orbital

effects of the magnetic field are indeed very small, and the hyperfine induced relaxation is therefore expected to be

isotropic within the experimental resolution.
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Supplementary Note 8. DIPOLE MATRIX ELEMENTS BETWEEN THE SPIN OPPOSITE STATES

We now derive (Supplementary Equation 37), considering the spin-dependent effects (other than the Zeeman

energy) in the Hamiltonian (Supplementary Equation 11) perturbatively. To this end, we define the unperturbed

Hamiltonian H0 = T + V + HZ and consider the effects of the remaining terms, H ′ = HSOI + HHF, in the basis of

the unperturbed eigenstates, denoted |Φ〉, while the exact eigenstates are denoted by |Ψ〉. Both are labelled by the

orbital and spin index of the electronic wavefunction, j = 0, 1, . . ., and σ =↑, ↓, respectively, and the many-particle

state of the nuclear spins in the quantum dot, denoted as a multi-index µ.

With this notation, we calculate the matrix element in (Supplementary Equation 31) in the lowest order perturba-

tion in H ′. Expanding the indexes by the one corresponding to the nuclear spins, the initial state is

|Ψ0σµ〉 ≈ |Φ0σµ〉+
∑

jσ′µ′ 6=0σµ

〈Φjσ′µ′ |H ′|Φ0σµ〉
E0σµ − Ejσ′µ′

|Φjσ′µ′〉, (Supplementary Equation 43)

where the phonon emission (absorption) corresponds to σ =↑ (↓), while the final state is

|Ψ0σµ∗〉 ≈ |Φ0σµ∗〉+
∑

jσ′µ′ 6=0σµ∗

〈Φjσ′µ′ |H ′|Φ0σµ∗〉
E0σµ∗ − Ejσ′µ′

|Φjσ′µ′〉. (Supplementary Equation 44)

We assume that the unperturbed basis can be factorized

|Φjσµ〉 = |Φj〉 ⊗ |σ〉 ⊗ |µ〉, (Supplementary Equation 45)

so that the orbital part does not depend on the spin indexes, and that the electron-phonon interaction, the matrix

element of which we are calculating, is diagonal in both spin indexes. This gives

τ(κ) =
∑
j

〈σµ|
eiκ·R0jH ′j0

E0j + (Eσσ + Eµ∗µ)
+

eiκ·Rj0H ′0j
E0j − (Eσσ + Eµ∗µ)

|σµ∗〉, (Supplementary Equation 46)

where we have introduced the notation for orbital matrix elements as

Oij = 〈Φi|O|Φj〉, (Supplementary Equation 47)

for energies as Eij = Ei − Ej , and similarly for the spin indexes. Note also that the j = 0 term cancels exactly from

the sum in (Supplementary Equation 46).

We now adopt the dipole approximation, by expanding the electron-phonon interaction to the lowest order

eiκ·R ≈ 1 + iκ ·R, (Supplementary Equation 48)

which leads to

τ(κ) = iκ ·
∑
j 6=0

〈σµ|
R0jH

′
j0

E0j + (Eσσ + Eµ∗µ)
+

Rj0H
′
0j

E0j − (Eσσ + Eµ∗µ)
|σµ∗〉, (Supplementary Equation 49)

This leads to substantial simplification for a bi-harmonic confinement. Indeed, in such case, only the lowest two

excited states have non-zero dipole matrix element with the ground state, which are mutually orthogonal (even if

they are complex, which is, however, not considered here). In this case, the integration over the phonon wavevectors

κ makes the mixed terms in |τ |2 zero, see (Supplementary Equation 33). We therefore get

〈|τ(κ)|2〉 = 〈|κ · d1|2〉+ 〈|κ · d2|2〉, (Supplementary Equation 50)
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where the dipole moments for the excited states are given by

dj = 〈σµ|
R0jH

′
j0

E0j + (Eσσ + Eµ∗µ)
+

Rj0H
′
0j

E0j − (Eσσ + Eµ∗µ)
|σµ∗〉. (Supplementary Equation 51)

Next we evaluate these dipole elements separately for the spin-orbit, and hyperfine interactions. We will also neglect

the nuclear Zeeman energies Eµ∗µ as negligible compared to the electron Zeeman energy Eσσ = σεz, and notice that

we can put Rij = rij , if all considered states are from the lowest 2DEG subband, what is the case here.

Let us take first the spin-orbit interactions. We take into account only the linear terms in their effective form,

H ′ = Heff
SOI, and neglect the cubic term, and ignore nuclear effects, by putting µ∗ = µ. Since the effective spin-orbit

interaction is also of the dipole operator form, we easily get

|dj|2SOI = |r0j |4|n(j)
so × µFB|2

4E2
0j

(E2
0j − ε2z)2

. (Supplementary Equation 52)

Using here the results for the Fock-Darwin eigenfunctions, r01 = (l1/
√

2)n1, and r02 = (l2/
√

2)n2, and Eq.

(Supplementary Equation 50) gives Eq. (Supplementary Equation 37a).

The calculation for the hyperfine interaction proceeds analogously, and we get

|dj|2HF = (Av0)2
∑
mn

(
r0jδ

n
j0

E0j + Eσσ
+

rj0δ
n
0j

E0j − Eσσ

)
·
(

rj0δ
m
0j

E0j + Eσσ
+

r0jδ
m
j0

E0j − Eσσ

)
〈σµ|In · σ|σµ∗〉〈σµ∗|Im · σ|σµ〉,

(Supplementary Equation 53)

where we denoted δnij = [δ(R −Rn)]ij . The expression in (Supplementary Equation 53) depends on the initial and

final state of the nuclear subsystem. The experimentally relevant situation is that these two states are not restricted

in any way, which corresponds to a rate being summed over all possible final states and averaged, with the proper

statistical weights, over the possible initial states,

|d|2 =
∑
µν

p(µ)|d(µ, ν)|2. (Supplementary Equation 54)

A straightforward calculation for an unpolarized nuclear ensemble, p(µ) = const, gives

〈σµ|Im · σ|σν〉〈σν|In · σ|σµ〉 =
2

3
I(I + 1)δnm, (Supplementary Equation 55)

with δ the Kronecker delta. Using this in (Supplementary Equation 53) we get

|dj|2HF =A2 2

3
I(I + 1)|r0j |2

4E2
0j

(E2
0j − ε2z)2

v2
0

∑
m

|Φ0(Rm)|2|Φj(Rm)|2. (Supplementary Equation 56)

As the linear density of the nuclear spins, 2/a0, is very high compared to the lengthscales of the electronic wavefuncti-

ons, l1, l2, lz, the sum over nuclei can be well approximated by an integral, v0

∑
m →

´
dR. Defining inverse volumes

as the following wavefunction overlaps

V −1
0j =

ˆ
dR|Φ0(R)|2|Φj(R)|2, (Supplementary Equation 57)

the harmonic model gives V00 = 2πl1l2lh, and V01 = V02 = 4πl1l2lh. Putting N = V00/v0 as the number of the nuclei

”within” the quantum dot volume, leads to (Supplementary Equation 37b) by using (Supplementary Equation 56) in

(Supplementary Equation 50).
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Supplementary Note 9. NUMERICAL IMPLEMENTATION

The spin relaxation rates are obtained inserting the numerically exact eigenstates into (Supplementary Equation 28)

and performing the integration over the phonon momenta numerically, by standard methods14. Whenever the Hamilto-

nian includes the hyperfine interaction, the given relaxation rate is a geometric average of rates for 1000 configurations

of static nuclear spins with random orientations (the approximation of unpolarized nuclei at infinite temperature).

Specifically, the rate obtained at run i is written as Γi = exp(γi), and the average rate is defined as Γmean ≡ exp(γ),

while the ”error bar” given on such a value is defined by the maximal and minimal rates being Γmax/min = exp(γ±δγ),

with δγ2 the dispersion of the exponents γi. This definition is chosen for convenience of resulting in a symmetric

”error” interval on a logarithmic plot, so that the minimal rate stays non-zero, irrespective of the degree of the fluctu-

ations among the individual rates. It should be taken only as a way to compare the degree of fluctuations among two

values from numerics, rather than an assessment of fluctuations possibly observed in the experiment, since the latter

depend in a non-trivial way on the relation between the measurement total time and the nuclear ensemble ergodic

time15.
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Supplementary Note 10. PARAMETERS AND FITTING OF THE SPIN-ORBIT CONSTANTS

In the evaluation of the rates according to the above described model, we use the parameters of GaAs, ρ =

5300 kg m−3, cl = 4784 m s−1, ct = 3350 m s−1, σe = 7 eV, h14 = 1.4 × 109 V m−1, m = 0.067me, γc = 11 eVÅ3, I =

3/2, A = 45µeV nm, a0 = 5.65 Å. We also estimate the electron temperature T = 60 mK, though the corresponding

thermal factor in (Supplementary Equation 29) is negligible even for highest magnetic fields, so that the temperature

plays little role for the value of the spin relaxation (it can be set to zero in (Supplementary Equation 28) leading to no

visible changes). In addition to these parameters, we extract the excitation energies Ex = 2.3 meV and Ey = 2.6 meV,

corresponding to lx ≈ 22 nm, and ly ≈ 21 nm, and the g-factor g = −0.36, from the spectral data such as those shown

on Fig. 1c–d of the main text, and their spin-resolved analogues. As noted in the above and in the main text, to match

the experimental relaxation rates quantitatively, one needs further details on the dot shape. As explained in detail

in Ref. 13, we fit lz = 6.5 nm, and δ = 5.6 ± 1◦, which gives lh/lz = 2.4, λz/lz = 1.009 upon assuming a triangular

confinement potential along the heterostructure growth direction.

With all these values fixed, we fit the linear spin-orbit lengths by minimizing the following chi-square sum

χ2 =
∑
i

(
ln Γ

(i)
theory − ln Γ(i)

exp

)2

wi, (Supplementary Equation 58)

with respect to the fitting parameters lso and ϑ. In the sum the index i runs through the whole measured dataset of

the relaxation rates Γ = 1/T1 and we take the logarithm of the rate as it spans a range of many orders of magnitude.

The weights are chosen as wi = ln(1.05 + δΓ
(i)
exp/Γ

(i)
exp), with δΓ the error estimated when fitting the value of Γ, as

explained in Supplementary Figure 5, and 1.05 is an arbitrarily chosen factor. However, we find that the extracted

values of lso and ϑ are rather robust to many other choices (including ignoring the errors altogether). We find that

the minimization converges into the following two local minima

lso = 2.1(1)µm, ϑ = 31(1)◦, (Supplementary Equation 59a)

lso = 2.1(1)µm, ϑ = 61(1)◦. (Supplementary Equation 59b)

where the values in the brackets give the typical error on the last given digit. These errors are estimated from the

spread of the converged values upon running the minimization algorithm many times. The reason that we are not

able to quantify these errors more precisely, is due to several uncertainities pertaining to the experimental as well

as numerical inputs to the chi square sum. For example, the numerical value Γ
(i)
theory is a random variable, due to

the randomness in the nuclear configuration. For the minimization, which is very computationally demanding, we

are able to perform an average over typically only tens of random nuclear configurations for each i, which makes

these statistical fluctuations quite large. For the same reasons, we are not able to quantify the likelihood ratio for

the two local minima given in (Supplementary Equation 59). However, using again multiple runs, we conclude that

the difference between the two possibilities is, within our model, statistically significant, and the value ϑ = 31◦ fits

the measured data better. Figure Supplementary Figure 9 illustrates the amount of data used to calculate χ2 in the

described minimization procedure.
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Supplementary Figure 9. The total set of T1 data used to fit the spin-orbit parameters. In all panels,

we show the measured spin relaxation rates (black points with error bars) versus the theoretical values (lines) for the

full model (red), the model excluding the hyperfine interactions (green) and the model excluding the spin-orbit

effects (blue). The plotted values were obtained for ϑ = 31.3◦ and lso = 2.08 µm and illustrate a single step in the

minimization routine. Typically less than hundred steps are needed for convergence. In panel a–e, the following

parameters are fixed: a B = 4 T, b φ = 45◦, c φ = 356◦, d φ = 315◦, e B = 1.25 T. Error bars in the calculated

data is from geometric average of rates for 1000 configurations of static nuclear spins with random orientations (see

Supplementary Note 9). Error bars on experimental data are fitting errors.
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