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I. WAFER STRUCTURE: DETAILS

The quantum well (QW) samples are grown on (001) n-doped substrates, serving as a

back gate, with total distance of 1210 nm between back gate and QW, including 600 nm of

low-temperature (LT) grown GaAs, see Fig. S1. The LT GaAs creates a barrier by pinning

the Fermi level midgap [1]. Thus, in a simple plate capacitor model, the effective distance

dB between QW and back gate is reduced by the thickness of the LT barrier, increasing
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FIG. S1. Quantum well wafer profiles. MBE growth profiles of the asymmetrically (left) and

more symmetrically (right) doped QW wafers. The GaAs QW width W is 8, 9.3, 11 and 13 nm for

the asymmetric and 11 nm for the symmetric QW, respectively.

the range of tunability and reducing leakage currents at the same time. Similarly, dT is

defined as the distance between QW and top gate. Good agreement is found between dB/T

extracted from the measured back/top gate dependence of the carrier density and the as-

grown thicknesses of the layers in the QW structure. The QWs are 75 nm below the surface

with a setback of 12 nm to the Si δ-doping layer above the well for the asymmetric QWs

with W = 8, 9.3, 11 and 13 nm and an additional doping layer 12 nm below the 2DEG for
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the more symmetric 11 nm QW.

Using top and back gates, the density is tunable typically in a range of n ≈ 2 - 8·1011 cm−2

(Fig. S2a) corresponding to mobilities µ ≈ 2 - 20 m2/(Vs) (Fig. S2b). Tunability is limited

by onset of gate leakage and hysteresis issues. For positive VT > 300 mV and large negative

VB < −2 V, a non-linear gate dependence is observed. Shubnikov-de Haas measurements

indicate that all data in this study are in the single 2D subband regime, consistent with the

numerical simulations. In section VII we show a more detailed analysis of the Shubnikov-de

Haas oscillations. For low densities n <∼ 2 · 1011 cm−2, WAL as a signature of SO coupling

becomes very weak or disappears due to the small wave number k2
F = 2πn. At even lower

densities the electrons become strongly localized by disorder. Hence the lower left corners

of Fig. S2a and b corresponding to low densities are not displayed.
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FIG. S2. Density and mobility map of 9.3 nm QW. Charge carrier density n (a) and mobility µ

(b) as a function of top gate voltage VT and back gate voltage VB. Contour lines are labeled in

units of 1011 cm−2 (a) and m2/(Vs) (b), respectively. The lower left corner was omitted due to a

general lack of WAL at low n.

II. TEMPERATURE DEPENDENCE

Elevated temperatures suppress quantum corrections to conductivity, as shown in Fig. S3.

The magnetic field position BSO of the MC minima, however, appears not affected by tem-

perature (dashed line in Fig. S3), consistent with a spin-orbit (SO) length λSO independent

of T . At elevated temperatures, WAL and the BSO minima are shallower and eventually

can disappear, due to loss of coherence. This leads to a broadening of the WAL-WL-WAL
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transition with increasing temperature, i.e. the size of the gate voltage range where WAL

is suppressed grows with increasing temperature, see Fig. S4 from left to right. Thus, in

absence of symmetry breaking effects of the higher harmonic β3, the phase coherence defines

the width of the WAL-WL-WAL transition in our experiment.
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FIG. S3. Temperature dependence of WAL. Magnetoconductance for a specific gate configuration

(9.3 nm QW, n = 4.5 · 1011 cm−2, VT = −146 mV, VB = 1 V) showing clear WAL signature at

T = 300 mK (green). The WAL maximum at BZ = 0 weakens for T = 650 mK (olive), and

essentially disappears at T = 1200 mK (red). The position of the MC minima (defined as BSO)

appears to be not affected by temperature (dashed vertical line).

III. NUMERICAL SIMULATIONS

A. Self-consistent approach and potential

The confining potential of our GaAs/Al0.3Ga0.7As wells (see Fig. S5) contains [2]: (i) the

structural part Vw arising from the band offset at the interfaces, (ii) the potential Vg from

the top and back gates, which allows us to adjust the symmetry of the well profile and

the electronic densities while keeping the chemical potential µ constant, (iii) the doping

potential Vd, which remains fixed at low temperatures (we also use Vg+d = Vg +Vd), and (iv)
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FIG. S4. Temperature dependence of WAL-WL-WAL transition of the more symmetrically doped

11 nm QW, shown for base temperature (left panel), 500 mK (middle panel) and 1 K (right panel)

for various (VT , VB) configurations (color coded) at constant density n = 6 · 1011 cm−2. The curves

are shifted vertically for clarity. Upon increasing T , WAL weakens and finally disappears on both

sides of the low-T symmetry point (see e.g. green and dark brown curve), resulting in a widening

of the transition.

the electronic Hartree potential Ve which depends on carrier density. The 3D electron charge

density in the well ρe depends on the total potential Vsc = Vw + Vg+d + Ve, which in turn

depends on ρe via the Hartree term. Hence to find the eigensolutions of the system, we solve

the Schrödinger equation for electrons in the total potential Vsc = Vw+Vg+d+Ve. Both Vw and

Vg+d depend only on the z variable (growth direction). Within the Hartree approximation,

the electron charge density is ρe(z, ~r) = 2
∑

ν,~k |ϕν,~k(z, ~r)|2fk,ν , where ϕν,~k(z, ~r) = 1√
A

exp(i~k ·

~r)ψν(z) with ψν(z) being the νth subband wave function of the well, ~k the in-plane electron

wave vector, A a normalizing area, and fk,ν the Fermi-Dirac distribution. Note that within

the Hartree approximation, ρe(z, ~r) → ρe(z) because of the plane-wave dependence of the

wave function in the xy-plane and hence the Hartree potential Ve depends only on z.

Upon summing over ~k, ρe(z) simplifies to ρe(z) =
∑

ν |ψν(z)|2nν , with the electron oc-
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cupation of the νth subband nν = m∗

πh̄2
kBT ln[1 + exp(µ− Eν)/kBT ] and confinement energy

Eν . Here µ is the electron chemical potential, kB the Boltzmann constant and T the ab-

solute temperature. The areal electron density n in the well and ρe(z) are related via

n =
∫
dzρe(z) =

∑
ν nν . We then solve the resulting one-dimensional Schrödinger equation

together with the Poisson’s equation for the total charge density ρtot(z) = ρe(z) + ρd(z),

where ρd(z) denotes the ionized donor concentration profile. We obtain the subband en-

ergies Eν and wave functions ψν(z) iteratively within this self consistent procedure when

convergence is attained.

The potential profile and the corresponding wave function for the 9.3 nm well based on

our self-consistent scheme are shown in Fig. S5 for top and back gates set to VT = 75 mV

and VB = −500 mV, respectively, corresponding to point 4 in Fig. 2 of the main text.
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FIG. S5. Self-consistent potential Vsc and the corresponding wave function Ψ for our

GaAs/Al0.3Ga0.7As 9.3 nm quantum well with the top gate VT = 75 mV and back gate VB =

−500 mV. The QW band offset potential Vw, the electron Hartree potential Ve and the gate plus

doping potential Vg+d are also shown. The first subband energy level is E1 = −776.0 meV (indi-

cated by solid green line inside QW), i.e. 16.4 meV below the Fermi energy (not shown), which is

pinned at −759.6 meV (i.e., the mid gap energy in bulk GaAs). The resulting carrier density is

n = 4.5 · 1011cm−2. Note that the origin of the abscissa is in the center of the well and the wafer

surface is located slightly farther away than specified in the growth profile (see also Fig. S1) due

to the lever arm measured in the experiment.
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B. Expressions for the SO coupling terms

Rashba spin-orbit coupling α. As shown in Ref. [2], the strength α of the Rashba cou-

pling can be cast as the expectation value 〈...〉 of the weighted derivatives of the potential

contributions (i)-(iv) above:

α = ηw〈∂zVw〉+ ηH〈∂zVe〉+ ηH〈∂zVg+d〉, (S1)

with

ηw =
P 2

3

(
δv/δc

E2
g

− δ∆/δc

(Eg + ∆w)2

)
, (S2)

and

ηH = −P
2

3

(
1

E2
g

− 1

(Eg + ∆w)2

)
, (S3)

which involve the bulk quantities of the well layer, such as the band gap Eg and the usual

Kane parameters ∆ (“spin orbit”) and P , in addition to the potential offsets δi, i = c, v,∆

(e.g., in Fig. S5 Vw = δc[Θ(W/2− z) + Θ(z−W/2)] for a well of width W centered at z = 0;

here Θ(z) is the Heaviside function. See also Fig. S7 and Sec. (III.E) below for a further

discussion of these parameters). Even though α = αw + αe + αg+d comprises seemingly

independent contributions, we note that each of these αw, αe, and αg+d does depend on all

four potentials (i)-(iv) via the self-consistent wave function used in the expectation values.

In particular, they all change as we vary the gates (top and back), which allows us to fine

tune α and thus attain the α = β regime when the Dresselhaus term is considered.

We emphasize that the Rashba coefficient α can be rewritten in terms of an “external”

electric field Eext = Egate + Ed + Ee, where we have defined Egate = 1
e
〈∂zVg〉, Ed = 1

e
〈∂zVd〉,

and Ee = 1
e
〈∂zVe〉 with e > 0 the elementary charge. Since the total force on a bound state

is zero (Ehrenfest’s theorem), i.e., 〈∂zVsc〉 = 〈∂z(Vw +Ve +Vg +Vd)〉 = 0, one has the relation

of α with Eext,

α = (ηH − ηw)eEext. (S4)

Now let us turn to the change of α due to a variation of Eext, i.e. a variation δVT of the top

gate voltage and/or a variation δVB of the back gate voltage, giving δα = e(ηH−ηw)(δEgate +

δEd + δEe). In our model, the variation δEd ' 0 since the doping potential does not vary

with the gates. Furthermore, in the case of constant density (as shown in Figs. 2c and 4c of
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the main text), we also have δEe ' 0 since the rearrangement of the quantum mechanical

distributions of electrons in the gate range we studied is negligible. Therefore, to keep

the carrier density n unchanged when we tune the gates, we have δα ' e(ηH − ηw)δEgate.

Note that in the main text of the paper (and in Figs. 1c and 3c), we use the notation of

δEz = δEgate to describe the change of electric field along the growth direction due to the

gates.

Dresselhaus spin-orbit couplings β1 and β3. The linear β1 and cubic β3 coefficients of the

Dresselhaus well Hamiltonian arise from the expectation value of the bulk cubic Dresselhaus

Hamiltonian [3]. Using our self-consistent electron wave functions, we obtain β1 = −γ〈∂2
z 〉

and β3 = γk2
F/4, where γ is the bulk Dresselhaus parameter and kF the Fermi wave vector.

To a very good approximation the Fermi contours are essentially circles and hence can be

approximated by the 2D free electron result kF '
√

2πn, with n being the areal electron

density, and β3 ' γπn/2.

C. Input from the experiment

Input for our simulations are mainly based on the experimental conditions:

1. The chemical potential is pinned at mid gap in GaAs (= −759.60 meV) [1].

2. The top gate voltage VT and back gate voltage VB enter the numerical calcula-

tion as boundary conditions when solving the Poisson’s equation for Vg(z), i.e.,

Vg(−dT ) = −eVT and Vg(dB) = −eVB with the coordinate origin being chosen as

the center of the well, which amounts to a linear external gate potential Vg(z) =

−e
[
VT + (VB−VT )

dB+dT
(z + dT )

]
. The gate lever arms, i.e., the dT and dB values, are taken

from the experiment and are close to the nominal values from the wafer growth profile.

3. We model the delta-doping regions in our samples by considering monolayer-thick

doped regions with an effective ionized areal doping density ρeff used in the simulation,

distinct from the nominal doping ρnom specified in the MBE growth.

In the asymmetrically doped wafers, the effective doping density ρeff is chosen so that the

areal electron density n(VT , VB) in the QW matches the measured values for all gate voltages

using the experimentally determined gate lever arms. We find a donor ionization efficiency
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ρeff/ρnom of about 50% for all asymmetric wafers. We need to introduce the effective doping

density ρeff because the simulation does not include effects such as partial absorption of donor

electrons e.g. by positive background doping or DX centers, resulting in partial (∼ 50%)

rather than full ionization of donors.

In the more symmetrically doped wafer, in contrast to the asymmetric ones, we have two δ-

doping layers: an upper layer above the QW with effective doping ρeff
u and a lower layer below

the QW with effective doping ρeff
l . The effective doping asymmetry ratio r = ρeff

l /ρ
eff
u modifies

the Rashba coefficient α by changing the electric field across the QW. In the experiment, we

detect the α = β regime (absence of WAL), where β ∝ γ. Thus, r and with it the simulated

α will directly affect the extracted γ. There is no reason to have a γ for the symmetrically

doped QW that is different from the asymmetrically doped, but otherwise identical QW.

Thus, we choose the doping asymmetry r by requiring that the Dresselhaus parameter γ

take on the same value γ = 11.6 eVÅ3 as for all the asymmetric wafers, while choosing ρeff
u

to maintain the measured charge density in the QW. Here, we obtain ρeff
u ∼ 0.61 · ρnom

u and

r ∼ 0.3, i.e., about three times more doping from above than from below the QW.

We note that the QW electron density n is significantly smaller than the total effective

ionized doping ρeff = ρeff
u +ρeff

l , e.g. n ∼ 5 ·1011 cm−2 versus ρeff ∼ 15 ·1011 cm−2. Due to the

close proximity of the QW to the surface and to the interface with the LT GaAs barrier, a

large fraction of the ionized donor electrons will populate surface and interface states, rather

than the QW. This results in strong band bending at the surface and LT interface, lowering

the QW energy below the chemical potential and allowing populate the QW with electrons.

D. Fit of the Dresselhaus parameter γ

With our self-consistent calculation of α and 〈k2
z〉 we can determine a so-called γ-map,

which gives contours in the VB and VT space where the condition α = γ(〈k2
z〉 − 1

4
k2
F ) is

fullfilled. We fit our symmetry points (where α ≈ β) to this map and extract an effective

value of γ = 11.6eVÅ3. In Fig. S6 we show our experimentally determined symmetry points

and the fit to these, as well as contours with similar values for γ. Our extracted value of γ is

clearly in good agreement with the data, since the other values of γ would require symmetry

points at different values of VB and VT .
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FIG. S6. γ-map. Contours of various values for γ for the 9.3nm wafer and the determined

symmetry points with their fit. The value of γ is indicated at each contour in units of eVÅ3

E. Gate voltages and contours of constant density

We will now describe the effect of the gate voltages within a quantum mechanical model

and compare the results to that of a simple classical plate capacitor model.

Quantum mechanical description. Here we treat the variation δV T
g (z) due to a change

of top gate voltage δVT and the variation δV B
g (z) due to a change of back gate voltage

δVB as a perturbation and obtain the first order correction to the lowest subband energy,

δE1 = δET1 + δEB1 with

δET1 = 〈ψ0|δV T
g (z)|ψ0〉 = −edB − 〈ψ

0|z|ψ0〉
dB + dT

δVT , (S5)

and

δEB1 = 〈ψ0|δV B
g (z)|ψ0〉 = −edT + 〈ψ0|z|ψ0〉

dB + dT
δVB, (S6)

where ψ0 is the envelope function in absence of δV T
g (z) and δV B

g (z), and dT (dB) the top

(back) gate lever arms. Notice that in all our wafers the well width W � dT (dB), which
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ensures 〈ψ0|z|ψ0〉 � dT (dB) since ψ0 is mostly confined in the well (if ψ0 is symmetric

with respect to the center of the well, i.e., in a symmetric wafer, 〈ψ0|z|ψ0〉 is always zero).

Therefore we have

δET1 ' −e
dB

dB + dT
δVT , δEB1 ' −e

dT
dB + dT

δVB. (S7)

The resulting change of carrier density δn can be straightforwardly written as

δn = −m
∗

πh̄2 (δET1 + δEB1 ) =
m∗

πh̄2 e

(
dB

dB + dT
δVT +

dT
dB + dT

δVB

)
. (S8)

Note that this change of density considers only the response to changes of the gate volt-

ages and neglects the resulting change of the self-consistent Hartree potential. When the

self-consistent Hartree potential is also included, the resulting gate lever arm is identical to

the lever arm obtained in the plate capacitor model (see below) and reproduces the experi-

mentally measured density changes very well. On a contour of constant density, the Hartree

potential is essentially constant in the voltage range considered here, and thus drops out.

From Eq. S8, a constant density results for δVT/dT = −δVB/dB. Furthermore, the change

of electric field for constant density is

δEz =
δVT − δVB
dT + dB

=
δVT + δVT

dB
dT

dT + dB
=
δVT
dT

dT + dB
dT + dB

=
δVT
dT

= −δVB
dB

. (S9)

Classical plate capacitor model. Based on a simple plate capacitor model, a variation of

top gate δVT and back gate δVB induces a change of carrier density δnT and δnB, respectively,

δnT =
εε0
e

δVT
dT

, δnB =
εε0
e

δVB
dB

, (S10)

which also agrees very well with the measured gate effect. To ensure a constant density when

varying the top and back gates, i.e., δnT +δnB = 0, we obtain, δVT/dT = −δVB/dB, identical

to the expression from the quantum mechanical description. Furthermore, the change of

average electric field on the left and right of the 2DEG plate is δEz = 1/2(δVT/dT−δVB/dB).

On a contour of constant density, this again becomes δEz = δVT/dT = −δVB/dB, as before

in the quantum description. For simplicity, we use δEz = 1/2(VT/dT − VB/dB), i.e. using

the actual applied gate voltages, rather than only changes of voltages, as a practical choice
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of the origin of Ez, e.g. for Figs. 2c and 4c (main text).

F. Estimate of the error bars in the Rashba coupling due to the uncertainties in

input parameters

The Rashba coupling strength α is more sensitive to the band parameters, especially to

the band offsets of the quantum well (see expression for α above), than the Dresselhaus β1,

which in our phenomenological description solely depends on the well confinement via the

wave function. Therefore, to extract a reliable γ based on the condition α = β (locked α = β

regime or absence of WAL), it is essential to assess how sensitive the Rashba coupling is to

the band parameters.

A sketch of the conduction and valence-band offsets for our GaAs/Al0.3Ga0.7As quantum

well is shown in Fig. S7, where the relevant bulk parameters are indicated. The commonly

accepted band gap in GaAs at low temperature is 1.519 eV [4–8], and the band gap in

Al0.3Ga0.7As is 1.951± 0.006 eV [5]. The main offsets of a GaAs/Al0.3Ga0.7A quantum well,

δc (electrons) and δv (heavy and light holes), are taken from literature with uncertainties of

about 2% [5]. We obtain the split-off hole offset δ∆ straightforwardly through the relation,

δ∆ = δv + ∆b − ∆w with ∆w (∆b) the split-off gap in the well (barrier), see Fig. S7 and

Table I. The split-off gap ∆b of the barrier is obtained from linear interpolation of the GaAs

and AlAs values [6]. From the uncertainties in δv, ∆b and ∆w, one can evaluate the error

bar of δ∆ [9].

Another crucial quantity determining the Rashba α is the Kane parameter P (see Eq.

1-3), usually expressed via the quantity EP = 2m0P
2/h̄2 (see e.g. Ref. [6]), with m0 the bare

electron mass. We take EP for GaAs from the widely accepted values quoted by Hermann

and Weisbuch [10] (see also [6]), who extracted this parameter via a detailed fitting procedure

involving both the effective mass and the g factor. In their fitting, an error of effective mass

and g factor less than 1% has been assumed. As pointed out by Vurgaftman et al. in

their classic review Ref. [6], other estimates of EP with smaller errors seem to have internal

inconsistencies. The band parameters and Kane parameter EP used in the simulations and

their corresponding errors are summarized in Table I.

With all these parameters and the corresponding errors at hand, we can now evaluate the

Rashba coefficient α and its uncertainty. The α coefficient for our 9.3 nm well as a function

11
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FIG. S7. Schematic of the band offsets for GaAs/AlGaAs well. Eg (Eb) and ∆w (∆b) are the

fundamental band gap and the split-off gap in the well (barrier), respectively. δi (i = c, v,∆)

denote the corresponding band offsets: δc for conduction band, δv for heavy hole (and light hole) ,

and δ∆ for split-off hole.

TABLE I. Main relevant parameters for the Rashba coupling. The unit is in eV

∆b(AlAs) ∆w(GaAs) ∆b(Al0.3Ga0.7As)

Value 0.30a,e (0.28c) 0.341a–f (0.340h) 0.329c

Error 0.02 (6.7%) 0.001 (0.3%) 0.007 (2%)

δc δv δ∆ EP

Value 0.261b 0.171b 0.159f 28.9c,g

Error 0.003 (1.2%)b 0.003 (1.8%)b 0.01 (6.3%)f 0.9 (3.1%)c,g

aRef. [4], bRef. [5], cRef. [6],dRef. [7], eRef. [8], fRef. [9], gRef. [10], and hRef. [11].

of back gate is shown in Fig. S8, where we vary both the top and back gates so that the curve

follows a constant density, n = 4.5 · 1011 cm−2. The α plotted here actually corresponds to

the one shown in Fig. 2c (red solid curve) of the paper. The error bar of α for several values

of the back gate is also shown in Fig. S8.

The resulting error of α is found to be ∼ 8%, with two dominating contributions, ∼ 4%

from the uncertainty of the band parameters and ∼ 3% from the Kane parameter P . The

remaining ∼ 1% error of α arises from the uncertainty of the measured carrier density, the

effective lever arms, and the resulting uncertainty of the doping efficiency (ρeff/ρnom). This

error analysis holds for all wafers used in this study. Note that to determine γ (Fig. 2c),
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we use the error bars arising from experimental uncertainty (1 − 2%) only, not taking into

account the 13 nm wafer data due to its significantly larger error bar (using three data

points from the 8, 9.3 and 11 nm wafers in Fig. 2c). We then add the larger systematic error,

resulting in a total error on γ of about 9 − 10% or ±1eVÅ3. Finally, we note that the γ

extracted from the 13 nm wafer is also consistent with this γ-value.

3

4

5

6

7

8

9

−2.5 −2 −1.5 −1 −0.5 0

α(
m

eV
⋅Å

)

VB (V)

Error ≈ 8%

FIG. S8. Error bar on the calculated Rashba coefficient α. Rashba coupling strength α as a function

of VB on a contour of constant density n = 4.5 · 1011 cm−2 for the 9.3 nm QW and corresponds

to the α curve (the red solid curve) in Fig. 1c. The error bar due to the uncertainty in input

parameters for several values of back gate is also shown. The error is about 8%.

IV. INTERFACE DRESSELHAUS AND RANDOM RASHBA SO COUPLINGS

Below we introduce other possible factors that could possibly affect our results, including

the interface Dresselhaus [12] and random Rashba SO couplings[13–15].

A. Interface Dresselhaus term

In addition to the usual Dresselhaus term arising from bulk inversion asymmetry, in

heterostructures and QWs, there is also an extra contribution to the Dresselhaus coupling

due to the interfaces. The general form of linear Dresselhaus term in QWs reads[12],

HD = −〈∂zγ(z)∂z〉(σyky − σxkx) = (βu + βint)(σyky − σxkx), (S11)
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where βu ≡ −〈γ(z)∂2
z 〉 is the usual Dresselhaus coefficient, βint ≡ −〈γint(z)∂z〉 the contribu-

tion due to the interfaces of the QW, and γ(z) characterizes the z dependence of the bulk

Dresselhaus parameter, which depends on the material present at position z (e.g. GaAs or

AlGaAs). Also, 〈〉 stands for the expectation value with respect to the ground state wave

function ψ(z). We have

γ(z) = γb[Θ(−z −W/2) + Θ(z −W/2)] + γwΘ(W/2− |z|)

γint(z) = γb[−δ(z +W−/2) + δ(z −W+/2)] + γw[δ(z +W+/2)− δ(z −W−/2)],

with γw and γb as the bulk Dresselhaus parameter in the well and barrier layers, respectively,

Θ the Heaviside step function, and W± = limδ→0W ± δ with W standing for the well width.

Note that β1 ∼ −γw〈∂2
z 〉 for weak wave function penetration into the barriers. The interface

Dresselhaus coefficient can be written in a more expanded form[12],

βint = −
∫
ψ∗(z)γint(z)∂zψ(z) = γb

[
ψ

(
−W

2

)
ψ′
(
−W

−

2

)
− ψ

(
W

2

)
ψ′
(
W+

2

)]
+γw

[
ψ

(
W

2

)
ψ′
(
W−

2

)
− ψ

(
−W

2

)
ψ′
(
−W

+

2

)]
, (S12)

with ψ′(z) the first derivative of the wave function. From Eq. S12, it is straightforward

to obtain the interface Dresselhaus coefficient in structurally symmetric QWs as a special

case, with βint = 2ψ(W/2)[γwψ
′(W−/2)−γbψ′(W+/2)]. Note that βint in general is nonzero

even in symmetric QWs, in contrast to the Rashba term, which vanishes in systems with no

structural inversion asymmetry.

To estimate the size of the interface Dresselhaus term, we determine βint through our

self-consistent calculation. For completeness, we consider our wells of both asymmetric and

symmetric doping configurations, corresponding to asymmetric 9.3 nm and 11 nm wells

and symmetric 11 nm well. Note that the exact value of the bulk Dresselhaus parameter

γ is controversial in both theory and experiment, and its value in GaAs ranges from 8.5

to 30 eVÅ3[4, 12]. To proceed, we take our value γw = 11.6 eVÅ3 for our self-consistent

calculation, and determine how βint depends on γb [16]. We find that βint essentially has

a linear dependence on γb, as shown in Fig. S9. A sign reversal of βint at γb ∼ 8.5 eVÅ3,

is attributed to the interplay of the quantities γw, γb, and ψ′(z) (Eq. S12), with ψ′(z)

obeying the condition of (1/mw)ψ′(W−/2) = (1/mb)ψ
′(W+/2) and (1/mw)ψ′(−W+/2) =
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FIG. S9. Interface Dresselhaus coefficient βint as a function of γb at γw = 11.6 eVÅ3, for the

asymmetric 9.3 nm well, the asymmetric 11 nm well, and symmetric 11 nm well, respectively. The

range of γb plotted here is based on a similar reduction of the γb value from its k · p value as the

reduction of γw from its k · p value[16].

(1/mb)ψ
′(−W−/2) at the two interfaces, respectively. Here mw (mb) is the effective electron

mass in the GaAs (Al0.3Ga0.7As) layer[17]. Note that here we do not consider the spin-

dependent matching at the interface, the effect of which was found negligible in medium-size

band-gap semiconductors such as GaAs[18].

Though βint appears at least a factor of 5-10 smaller in magnitude than βu and may

thus be negligible, we emphasize that this estimate of the interface Dresselhaus coefficient is

speculative, since (i) the value γb for Al0.3Ga0.7As is not available and (ii) the evaluation of

γb from k.p theory is not reliable. Note that we find γw ∼ 11.6 eVÅ3 for GaAs, more than

a factor of two smaller than the value (∼ 27 eVÅ3)[8, 12] from k.p calculations. Since the

usual Dresselhaus term and the interface term have the same SO form, Eq. S11, the interface

term simply gets absorbed in a changed value of γ which we extract from the experiment.

However, in absence of a reliable value of γb in Al0.3Ga0.7As, the estimate only gives a very

broad range for βint (incl. a sign change of βint, see Fig. S9), we cannot determine how much

the extracted value of γ is affected. To our knowledge, βint was not quantified in other work

studying the SO terms[19–21]. Further work is needed in the future to study the interface
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term, especially in very narrow QWs where the effect is expected to be large.

B. Random Rashba term

Fluctuations of the concentration of dopant ions could lead to a random electric field along

the growth direction of QWs[13], and hence a random Rashba coupling [13–15, 22, 23]. Our

recent self-consistent calculations showed that the averaged random Rashba strength αR in

GaAs QWs, similar to our wafers here, is around one order of magnitude smaller than the

linear Rashba α term, i.e., αR ∼ 0.1α[24]. Furthermore, we found that at the α = β point

the random Rashba spin relaxation rate is more then 20 times smaller than relaxation due to

the cubic Dresselhaus term, indicating a negligible effect of the random Rashba term in our

QWs[24]. For more detailed discussions about the random Rashba term in GaAs wells and

in other systems in which the random Rashba coupling could possibly become important,

see Ref. 24.

V. EFFECTIVE SPIN-ORBIT MAGNETIC FIELD

For a 001-grown GaAs well, the linear-in-the-wave-vector SO term contains both the

Rashba and Dresselhaus contributions

H
(1)
SO = α(kxσy − kyσx) + β1(kyσy − kxσx), (S13)

with α and β1 = γ〈k2
z〉 the linear Rashba and (“bare”) Dresselhaus coefficients, respectively,

and kx,y the electron wave vector along the x̂||[100] and ŷ||[010] directions. The cubic (in k)

Dresselhaus term reads

H
(3)
SO = γ(kxk

2
yσx − kyk2

xσy). (S14)

Equations S13 and S14 can be rewritten in terms of sin/cos functions of φ (1st harmonic)

and 3φ (3rd harmonic) with φ the polar angle between k and x axis. The linear term has

only the first harmonic contribution

H
(1)
SO = k

{
[α cos(φ) + β1 sin(φ)]σy − [α sin(φ) + β1 cos(φ)]σx

}
, (S15)
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while the cubic term contributes to both the first and third harmonics,

H
(3)
SO = k

{
β3[cos(φ)− cos(3φ)]σx − β3[sin(φ) + sin(3φ)]σy

}
, (S16)

with β3 = γk2/4 the cubic Dresselhaus coefficient.

Rotating the reference frame. For convenience, we further rewrite the above equations in

the rotated coordinate system The x̂+||[110] and x̂−||[1̄10]. The linear SO term becomes

H(1)
SO = (−α + β1)k−σ+ + (α + β1)k+σ−

= k
[
(−α + β1) sin(θ)σ+ + (α + β1) cos(θ)σ−

]
, (S17)

while the cubic term reads

H(3)
SO =

γ

2
(k2

+ − k2
−)(k−σ+ − k+σ−)

= k
{
β3[sin(3θ)− sin(θ)]σ+ − β3[cos(3θ) + cos(θ)]σ−

}
, (S18)

with θ the polar angle in the rotated coordinate system, i.e., the angle between k and x+

axis. From Eqs. S17 and S18, one has all the first- and third-harmonic terms,

HSO = H(1)
SO +H(3)

SO

= k
{

[(−α + β) sin(θ) + β3 sin(3θ)]σ+ + [(α + β) cos(θ)− β3 cos(3θ)]σ−
}
, (S19)

with β = β1−β3 the renormalized “linear” Dresselhaus coefficient. Note that here β = β1−β3

implying that part of the cubic Dresselhaus term (H(3)
SO) renormalizes the linear parameter

β1 thus altering the condition for attaining the regime of matched SO strength (or absence

of WAL) from α = β1 to α = β. With the approximation (main text) β3 ' γπn/2,

which neglect the small anisotropy of the Ferm wave vector, this renormalization renders

the Dresselhaus coupling β density dependent thus providing a means to gate-tune β and

attain the “dynamical” locking α = β over a wide range of gate voltages, as described in the

main text (see Fig. 2b). The remaining part of the cubic term (third harmonic) breaks the

angular symmetry of the SO terms and is detrimental to the protection from relaxation.

Effective SO magnetic fields. It is convenient to reexpress the spin-orbit HamiltonianHSO

in a compact form, i.e, in terms of an effective magnetic field BRD(k) due to the Rashba

17



and Dresselhaus terms,

HSO =
1

2
gµBBRD(k) · σ, (S20)

with g the electron g-factor in the well, µB the Bohr magneton and

BRD(k) = B
(1)
RD(k) + B

(3)
RD(k), (S21)

B
(1)
RD(k) =

2

gµB

k [(−α + β) sin(θ)x̂+ + (α + β) cos(θ)x̂−] , (S22)

and

B
(3)
RD(k) =

2

gµB

k [β3 sin(3θ)x̂+ − β3 cos(3θ)x̂−] , (S23)

where B
(1)
RD(k) and B

(3)
RD(k) are the first- and third-harmonic SO fields, respectively. [25, 26]

Note that within the approximation β3 ' γπn/2 both B
(1)
RD(k) and B

(3)
RD(k) are linear in

k. In addition, observe that for matched SO couplings α = ±β, B
(1)
RD(k) is unidirectional,

i.e., its direction in real space is k independent, while B
(3)
RD(k) has a k-dependent direction

(through 3θ), as can be seen in Eqs. (S22) and (S23), respectively. As discussed in the main

text, the third harmonic contribution of the cubic Dresselhaus term is detrimental to spin

protection because its resulting effective field B
(3)
RD(k) causes random spin precessions upon

momentum scattering even at α = ±β.

VI. DIFFUSIVE SPIN-ORBIT TIME AND LENGTH

Here we calculate several relevant time and length scales in our systems by using a simple

2D diffusive model.

A. Random walk in two dimensions: diffusive motion

We determine the theoretical spin relaxation time τeff via the D’Yakonov-Perel’ (DP) spin

dephasing mechanism: as an electron performs a two-dimensional random walk in real space

due to momentum scattering, it precesses about the momentum-dependent spin-orbit field

BRD(k), whose direction is randomly changing as well, thus accruing random precessional

phases and spin dephasing after many scattering events in a time τDP.

Let rxi =
∑N

j=1 δ
j
xi

be the xi component of the electron position vector on the (x−, x+)
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plane after a total of N scattering events whose jth displacement along the corresponding

direction we denote by δjxi . As usual in random walks [27], 〈rxi〉t = 0 = 〈δjxi〉t and its

variance σ2
xi

= 〈r2
xi
〉t = N〈(δjxi)

2〉t. Here 〈...〉t denotes a time average over the survival

probability P (t) = exp(−t/τp), with τp being the momentum scattering time. Here, P (t) is

the probability of surviving a time t without suffering a collision (momentum scattering).

The individual mean square displacement 〈(δjxi)
2〉t = 〈(vxit)2〉t is independent of j and equals

to 〈(δjxi)
2〉t = v2

F τ
2
p , where we have used 〈v2

xi
〉t = v2

F/2 and 〈t2〉t = 2τ 2
p . Since N = τDP/τp, we

find σ2
xi

= (τDP/τp)v
2
F τ

2
p = τDPl

2/τp = 2DτDP, where l = vF τp is the electron mean free path

and D = l2/2τp. We now define the spin diffusion lengths along x+ and x− via λ2
DP,x+

=

σ2
x+

= 2DτDP and λ2
DP,x−

= σ2
x− = 2DτDP, respectively. Since λDP,x+ = λDP,x− = λDP, the

direction of the diffusion is isotropic and the product λDP,x+λDP,x− = λ2
DP = 2DτDP gives

the characteristic loop area A of a closed trajectory. Thus we obtain λDP =
√

2DτDP for the

conversion between spin relaxation time and spin diffusion length. As already shown in the

main text and methods, using an Aharonov-Bohm phase of ∆ϕ = 1 from the flux through

A, we can convert the experimental BSO to a SO length λSO =
√
h̄/2eBSO, which we can

further convert to a SO time τSO = λ2
SO/(2D).

For a degenerate 2DEG, the individual DP spin relaxation rates are spin-direction de-

pendent, with τDP,sxi
(i = +,−, z) for spins polarized along x̂+, x̂−, and ẑ, being described

by [28]
1

τDP,sx±

=
2τ1k

2
F

h̄2

[
(α± β)2 +

τ3

τ1

β2
3

]
, (S24)

1

τDP,sz

=
4τ1k

2
F

h̄2

[
α2 + β2 +

τ3

τ1

β2
3

]
. (S25)

Here, τ1 is the transport scattering time τp and we assume τ1 ≥ τ3, where τ3 is the third

moment of the momentum relaxation time [28]. For dominant small angle scattering, one

obtains τ1 = 9τ3.

B. Effective spin-dephasing time and effective spin-diffusion length

Note that Eqs. S24 and S25 describe the relaxation of polarized spins, e.g. optically

excited spins. In contrast, there is a negligible spin polarization in our transport experiment,

therefore we define an effective τeff for a random spin, by taking the average of the spin
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lifetimes

τeff =
1

3

(
τDP,sx+

+ τDP,sx−
+ τDP,sz

)
. (S26)

Here we average the spin relaxation times rather than the spin relaxation rates. This is be-

cause we have three independent, equally populated spin components that are each relaxing

through its own, separate channels (diffusion), in contrast to a single spin species that can

relax through three different channels. More precisely, we note that the initial electron spin

in a loop can point (with equal probabilities) along the sx− , sx+ , and sz axes (analogous to

x+, x−, and z, respectively), which have unequal (and independent) spin-dephasing times

τDP,sx−
, τDP,sx+

, and τDP,sz . Hence we take τeff to be the average in Eq. S26. Note that this

also correctly results in a diverging τeff for α = ±β in case of negligible β3. With this at

hand, we can define an effective diffusive SO length λeff =
√

2Dτeff reading

λeff =
h̄2

√
6m∗

√[
(α− β)2 +

τ3

τ1

β2
3

]−1

+

[
(α + β)2 +

τ3

τ1

β2
3

]−1

+
1

2

[
α2 + β2 +

τ3

τ1

β2
3

]−1

(S27)

Equivalently, this average spin diffusion length can be defined from the variance σ̄2
xi

=

(σ2
xi,sx−

+ σ2
xi,sx+

+ σ2
xi,sz

)/3, along x̂i i = +,−, obtained by averaging over the initial spin

directions. At α = ±β and small β3 (and/or τ3 � τ1) the SO length λeff diverges, as

explained in the main text. We fit our data points using Eq. S27 and the ratio τ3/τ1 as a free

parameter, as shown in Fig. S10. The resulting ratio τ3/τ1
<∼ 0.2 (0.4) for n = 6 · 1011 cm−2

(9 · 1011 cm−2) can be explained by small angle scattering, originating from the long range

potential of the remote donors.

C. Equivalence between ballistic and spin-diffusion lengths

We now argue that the ballistic spin precession lengths λ± = h̄2/(2m∗|α±β|) introduced

in the main text and the spin diffusion lengths λDP
sx−

=
√
σ2
sx−

=
√

2DτDP,sx−
and λDP

sx+
=√

σ2
sx+

=
√

2DτDP,sx+
defined via the DP random-walk process are equivalent. Here we drop

the index xi on the variance, as it does not depend on x̂i since D is assumed isotropic in our

model (Sec. VI A), and add a spin index to it, which we had mostly omitted in the preceding

paragraphs for ease of notation. From its definition, λDP
sx−

describes the spin diffusion length

for an electron performing a random walk in two dimensions with its spin pointing initially
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FIG. S10. Theoretical and experimental SO lengths including symmetry breaking. In contrast to

the ballistic λ± (dotted red and blue), the diffusive λeff (dashed black and green, fits to λSO data

points) includes the symmetry breaking higher harmonic term and does not diverge at α = ±β.

The highest density n = 9 · 1011 cm−2 (green markers) shows the strongest symmetry breaking

effect, where WAL remains visible through α = ±β, thus allowing extraction of λSO < Lϕ at

α = β.

along sx− . A similar interpretation holds for λDP
sx+

. The definition of the ballistic λ± did

not include third harmonic effects. Thus when setting to zero the third harmonic term

in Eq. S24 and converting the resulting τDP,sx±
to lengths using λDP

sx+
and λDP

sx−
, we obtain

straightforwardly λDP
sx+

= h̄2/(
√

2m∗|α+ β|) ' λ+ and λDP
sx−

= h̄2/(
√

2m∗|α− β|) ' λ−. The

diffusion constant D cancels in the conversion from time to length. Hence the diffusive spin

relaxation length and the ballistic spin precession length are mathematically equivalent.

The physical reason for this equivalence is as follows. Firstly, recall that the ballistic

precession lengths λ± define distances over which an electron traveling along x̂± with its spin

perpendicular to the effective Rashba-Dresselhaus field [Eq. S22] precesses by 1 radian. More

specifically, an electron traveling along x̂− (x̂+) with its spin pointing along either x̂− (x̂+)

or ẑ (or any linear combination of these) will undergo spin precession about B
(1)
RD(k−, 0) =

2
gµB

(β − α)k−x̂+ ( B
(1)
RD(0, k+) = 2

gµB
(β + α)k+x̂−) covering a distance λ− (λ+) as it rotates

by 1 radian. Secondly, note that the spin diffusion length λDP
sx−

(λDP
sx+

) denotes a distance over

which an electron moving initially along an arbitrary direction on the (x+,x−) plane and with

its spin pointing along sx− (sx+), accrues a net precession of 1 radian about the total Rashba-
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Dresselhaus field [Eq. S22] after many random momentum scattering events. However,

because the initial spin polarization is pointing along sx− (sx+) we can neglect the Rashba-

Dresselhaus field component that is parallel to sx− (sx+), i.e., the x̂− (x̂+) component, when

calculating the spin dephasing due to the DP mechanism. This is physically justified as the

precession around the parallel field component does not drive the spin direction away from

its initial spin polarization, but rather just randomizes its phase around that direction. In

the presence of just the x+ (x−) component of BRD, which is perpendicular to the initial

sx− (sx+), the real-space random-walk problem in two dimensions becomes a 1D problem

in spin space with the electron spin performing random (“Abelian”) precessions about this

unidirectional field component. What we just described, despite 2D charge diffusion, is

similar to a ballistic spin precession about a fixed axis, which is precisely what λ+ (λ−) is;

hence the equivalence between the spin diffusion λDP
sx+

(λDP
sx−

) and ballistic λ+ (λ−) lengths.

Note that when the initial spin polarization for the diffusive motion is pointing along sz then

both components of the Rashba-Dresselhaus field are relevant for spin dephasing away from

this initial spin direction; a simple calculation using λDP
sz =

√
2DτDP,sz and Eq. S25 yields

λDP
sz = h̄2/(2m∗

√
α2 + β2).

VII. SHUBNIKOV-DE HAAS OSCILLATIONS

In this section we show Shubnikov-de Haas (SdH) oscillations measured during a separate

cooldown of the 9.3 nm QW. Measurements were performed in a dilution refrigerator with

base temperature 20 mK. We have used a standard four-wire lock-in technique at 633 Hz

and 100 nA current bias. In Fig. S11 a) and b) the density and moblitiy maps for this

cooldown are shown. The lower panels labeled with 1-3 show the SdH oscillations (left

column) and their respective Fourier spectra (right column) for a contour of constant density

(n = 4.5 · 1011 cm−2) as indicated in the density and mobility map. In Fig. S12 the SdH

oscillations and Fourier spectra for the gate configurations 4-6 from Fig. S11 a) are shown.

The SdH oscillations are clearly visible for all gate configurations. In the Fourier spectra

we see a peak at the fundamental frequency of approximately 10 cycles per Tesla and multi-

ples of it. Panel 1 of Fig. S11 also shows the SdH oscillations calculated from theory (to be

presented elsewhere) with up to k = 6 Fourier components (black). These higher harmonics

are clearly seen in the Fourier spectra and are in good agreement with the experimentally
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FIG. S11. Shubnikov de Haas oscillations measured on the 9.3 nm QW - I. Charge carrier density n

(a) and mobility (b) as a function of top gate voltage VT and back gate voltage VB. Contour lines

are labled in units of 1011 cm−2 (a) and m2/Vs (b), respectively. Gate configurations at which the

SdH data was measured are indicated on the density and mobility map as points labled with 1-6.

The gate configuration at which α = β is also shown. In the panel below the corresponding SdH

oscillations at the gate configurations 1-3 are shown (left column) and beside its Fourier spectra

(right column). In panel 1 the SdH oscillations plotted from theory and its Fourier spectrum are

shown as well (black curves).
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FIG. S12. Shubnikov-de Haas oscillations measured on the 9.3 nm QW - II. Continued SdH

oscillations and their Fourier spectra for the gate configurations 4-6 as indicated in Fig. S11 a.

observed ones. We also note that these peaks are not accompanied by any additional peaks.

The influence of the SO interaction on the magnetoconductance oscillations can cause a spin

splitting of the subbands which leads to a beating pattern in the oscillations. Here we do

not see any beating nor are there any other frequencies visible. The beating pattern due to

SO induced spin splitting has been reported in InxGa1−xAs quantum wells [29]. Generally

the SO strength is much larger in In-based semiconductors than in GaAs, thus one would

not expect to see here a beating of the SdH oscillations. We try to estimate the beating

frequency compared to the SdH frequency for the measured data. The MC oscillations can

simply be described by an oscillation of the density of states in 1/B [8]. For a beating to

occur there must be two frequencies. By comparing the relevant energy scales we can get

an estimate about the period with which the beating would occur in the low field regime.
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For simplicity we assume only a contribution of the Rashba SO interaction. We compare

the Fermi energy EF to the Rashba energy ER = αkF . We get ER = 2αkF = 0.13meV

and EF =
h̄2k2F
2m∗ = 14.0meV, where we have used α ≈ 8meVÅ and n = 4.5 · 1011cm−2. This

means that these beatings would occur at a very large magnetic field, which is beyond the

low field limit. Thus it is impossible to observe these oscillations in our data.
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