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A.M.J Zwerner  Post Doc (PhD on Intel MOS devices)
S.V. Amitonov  Fabrication now done only by TNO 
Sammak/Scappucci Material Growth
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SWAP gate

Resonator mediated

Electron transfer - Shuttling

micrometers
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Electrons surfing on a sound wave
Sylvain Hermelin et al. (2019)

A shuttling-based two-
qubit logic gate for 
linking distant silicon 
quantum processors 
Akito Noiri et al. (2022)

Conveyor-mode single-electron shuttling in Si/SiGe for a scalable 
quantum computing architecture Inga Seidler et al. (2022)

Coherent shuttle of electron-spin states 
Takafumi Fujita et al. (2015)

Prior Art on Shuttling



Device

Si28

SiGe

SiGe

Ti/Pd 5/15nm

Ti/Pd 5/35nmAlOx 7 nm

AlOx 10 nm

30 nm

9 nm
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• Yield of devices low – leakage between gates
• Valley spitting random – can be 50-150 μeV no PSB many times
• B  1.3 T ,  Ez  150 μeV 

Ti/Pd 5/15nm
AlOx 7 nm

Si28/SiGe 3 layer
5 QDs + 2 SETs/Reservoirs 



Electron shuttling protocol
• Load an electron ( Latching due to low tunnelling rate)

• Abruptly pulse to a point close to but before the anticrossing, 

• Ramp through the anticrossing (2 μs over a ≈ 300 μeV detuning range)

• Abruptly pulse far beyond the anticrossing. 

• Readout (spin selective)

Tunnel couplings  4-7 GHz

Deplete the rest of dots

Charge transfer as sensed by the SET
Time in each QD 100-400 μs 
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Spin shuttling 

• No indication of T1 suppression due to 
shuttling

• Shuttling T1 agrees with respective T1 od 
each dot

• Fastest wait time between shuttling is 
12.5 μs 



Discussion & Conclusion

• Absence of micromagent – SOI – Nuclear spins leads 
to large T1 during shuttling similar to the original T1 
of each dot

• Fastest shuttling needed for a useful scheme that 
can characterize T2*

• Conveyor-mode is the scalable route but larger 
valley spitting and dot homogeneity is needed

• How SOI can influence this in a hole spin shuttling ?? 
(coming next…)


