Announcements

Basel – IBM Journal club every 1st Friday of the month (except next one)

Programme on the same website

Shuttling an electron spin through a silicon quantum dot array

A.M.J. Zwerver¹, S.V. Amitonov², S.L. de Snoo¹, M.T. Mądzik¹, M. Russ¹, A. Sammak², G. Scappucci¹, and L.M.K. Vandersypen^{1*} ¹QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands ² QuTech and Netherlands Organization for Applied Scientific Research (TNO), Delft, The Netherlands (Dated: September 13, 2022)

Shuttling an electron spin through a silicon quantum dot array

A.M.J. Zwerver¹, S.V. Amitonov², S.L. de Snoo¹, M.T. Mądzik¹, M. Russ¹, A. Sammak², G. Scappucci¹, and L.M.K. Vandersypen^{1*} ¹QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands ² QuTech and Netherlands Organization for Applied Scientific Research (TNO), Delft, The Netherlands (Dated: September 13, 2022)

> A.M.J Zwerner \rightarrow Post Doc (PhD on Intel MOS devices) S.V. Amitonov \rightarrow Fabrication now done only by TNO Sammak/Scappucci \rightarrow Material Growth

Interfacing spin qubits in quantum dots and donors LMK Vandersypen et al.

Spiderweb array: A **sparse** spin-qubit array Jelmer M. Boter et al.

Interfacing spin qubits in quantum dots and donors LMK Vandersypen et al.

Spiderweb array: A **sparse** spin-qubit array Jelmer M. Boter et al.

SWAP

Coherent spin-state transfer via Heisenberg exchange Yadav P. Kandel et al.

Interfacing spin qubits in quantum dots and donors LMK Vandersypen et al.

Spiderweb array: A **sparse** spin-qubit array Jelmer M. Boter et al.

SWAP

Coherent spin-state transfer via Heisenberg exchange Yadav P. Kandel et al.

Resonator mediated

Coherent Spin-Spin Coupling Mediated by Virtual Microwave Photons Patrick Harvey-Collard et al.

Interfacing spin qubits in quantum dots and donors LMK Vandersypen et al.

Spiderweb array: A **sparse** spin-qubit array Jelmer M. Boter et al.

SWAP gate

Coherent spin-state transfer via Heisenberg exchange Yadav P. Kandel et al.

Resonator mediated

Coherent Spin-Spin Coupling Mediated by Virtual Microwave Photons Patrick Harvey-Collard et al.

Prior Art on Shuttling

Electrons surfing on a sound wave Sylvain Hermelin et al. (2019)

Coherent shuttle of electron-spin states Takafumi Fujita et al. (2015)

Prior Art on Shuttling

Electrons surfing on a sound wave Sylvain Hermelin et al. (2019)

Coherent shuttle of electron-spin states Takafumi Fujita et al. (2015)

Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture Inga Seidler et al. (2022)

A shuttling-based twoqubit logic gate for linking distant silicon quantum processors Akito Noiri et al. (2022)

Device

Si²⁸/SiGe 3 layer 5 QDs + 2 SETs/Reservoirs

- Yield of devices low leakage between gates
- Valley spitting random can be 50-150 μeV no PSB many times
- $B \rightarrow 1.3 T$, $Ez \rightarrow 150 \mu eV$

Electron shuttling protocol

- Load an electron (→ Latching due to low tunnelling rate)
- Abruptly pulse to a point close to but before the anticrossing,
- Ramp through the anticrossing (2 μ s over a \approx 300 μ eV detuning range)
- Abruptly pulse far beyond the anticrossing.
- Readout (spin selective)

- Tunnel couplings 4-7 GHz
- Deplete the rest of dots
- Charge transfer as sensed by the SET Time in each QD 100-400 μs

Spin shuttling

 $T_{1,1} = 129 \pm 33 \text{ ms}$ $T_{1,2} = 257 \pm 79 \text{ ms}$ $T_{1,3} = 152 \pm 48 \text{ ms}$

$$T_{1,\text{weighted}} = 170 \pm 18 \text{ ms}$$

 $3(1/T_{1,1}+1/T_{1,2}+1/T_{1,3})^{-1} = 164\pm47 \text{ ms}$

- No indication of T1 suppression due to shuttling
- Shuttling T1 agrees with respective T1 od each dot
- Fastest wait time between shuttling is 12.5 µs

Discussion & Conclusion

- Absence of micromagent SOI Nuclear spins leads to large T1 during shuttling similar to the original T1 of each dot
- Fastest shuttling needed for a useful scheme that can characterize T2*
- Conveyor-mode is the scalable route but larger valley spitting and dot homogeneity is needed
- How SOI can influence this in a hole spin shuttling ?? (coming next...)