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Motivation
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Topic: Enable targeted control of specific quantum dots for complex QD arrays

Novelty: Reliable automated capacitive coupling identification with identification of
spurious dots near operating regime
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Capacitive Cross-Talk
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Linear combination of gate voltage - mapped to onsite energy differences
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Method of autonomous detection

Until now: autonomous identification in device use conventional fittting and machine learning techniques
Problem: Rely on least-square fitting procedures or Hough transform

— Unreliable if data imperfect

— Sensitive to noise

— Complex to analyse

Conventional fitting Convolutional neural networks

+ More flexible + Suited for high-level feature

— Susceptible to local minima

. . — |dentify data outside of training
— Time-consuming

distribution

but. simplified data with high-level representation + conventional fitting

- more targeted to key information (efficient and quick)
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Data processing
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Data processing

Current (arb. units)
0.8 el 1.4

-

0.30 0.32

Low-level QD data

Use neighboring pairs of gates

Pixel classifier

ﬁ

Vp, (V)

0.29 -

0.27 -

NT LT CT RT PL

0.30  0.32 Vp, (V)

High-level QD data

Extract classes

ﬁ

I Fit via linear regression

Different classes

left-dot transition

inter-dot transition

right-dot transition

1

Center of pixel region

CapaCitive COUp|ingZ average S|Ope Of f|tted I|neS (weighted by standard deviations of each fit)

1 192

21

1

)(

Vp,
Vp,

)

IBM Research

Zurich



Training the ML tool

Using simulation of QD device

- Improve Robustness: add noise

- Improve Performance for various data: Change effect of strongly coupled QD charge sensor to plunger gates

Training: 1.6 x 10> devices 10 small scans per device

(Use pixel classification, extract slopes of transition lines)

Test data: 8 simulated devices with variations: screening length, device pitch,
positions of one plunger gate -> 50 small scans (use increasing noise)

Test with large experimental measurements with spurious QDs
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Performance of the algorithm

Pixel classifier:

— Error: defined as fraction of pixels with true transitions,
not contained Iin line segment in output

— Dependent on noise level 24 i [ F

Slope extractions

— Use 8 large scans -> window 1.5 x charging energy +
cropped output by one pixel

— Group in distinct clusters, if more than 5 pixel with
individual fit -> error from fitted line
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Virtualized gates

Experiment

Virt. gate
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- Confirmation that pixel classifier and fit work
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Spurious dots detection

Properly formed dots

Contain spurious dots
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Recap & Outlook

— Increasing in device size and complexity =2 need reliable and automated tune-up
— Established orthogonal control is needed for tune-up of larger QD arrays
— Use ML based pixel-classification with curve fitting = showed reliable output

— Shown detection of spurious dots

- Automated navigation of voltage space for targeted measurement
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Spatial relevance of virtual gates

Rel. virt. gate off-diag. x10~2
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effectively capture variation across charge stability diagram
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Hough transform
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