Automated extraction of capacitive coupling for quantum dot systems

Joint Journal Club

Motivation

Automated extraction of capacitive coupling for quantum dot systems

Joshua Ziegler,^{1,*} Florian Luthi,² Mick Ramsey,² Felix Borjans,² Guoji Zheng,² and Justyna P. Zwolak^{1,†} ¹National Institute of Standards and Technology, Gaithersburg, MD 20899, USA ²Intel Components Research, Intel Corporation, 2501 NW 229th Avenue, Hillsboro, Oregon 97124, USA (Dated: January 23, 2023) arXiv:2301.08654v1, Accepted from Phys. Rev. Applied (12.04.23)

Topic:	Enable targeted control of
Novelty:	Reliable automated capac
	spurious dots near operat

f specific quantum dots for complex QD arrays

citive coupling identification with identification of ting regime

Capacitive Cross-Talk virtual gates

Adapted from C. Volk et al. *Quantum Inf* 5, 29 (2019).

Lisa Sommer | IBM Research Europe, Zurich | lisa.sommer@ibm.com

Linear combination of gate voltage - mapped to onsite energy differences

Method of autonomous detection

Until now: autonomous identification in device use conventional fitting and machine learning techniques

Problem: Rely on least-square fitting procedures or Hough transform

- Unreliable if data imperfect
- Sensitive to noise
- Complex to analyse

Conventional fitting

+ More flexible

- Susceptible to local minima
- Time-consuming

but: simplified data with high-level representation + conventional fitting

 \rightarrow more targeted to key information (efficient and quick)

Lisa Sommer | IBM Research Europe, Zurich | lisa.sommer@ibm.com

Convolutional neural networks

+ Suited for high-level feature

 Identify data outside of training distribution

Data processing

 $0.32 V_{P_1}(V)$

Data processing

$$\mathbf{G}^{\text{virt}} \equiv \begin{pmatrix} V_{P_1'} \\ V_{P_2'} \end{pmatrix} = \begin{pmatrix} 1 & \alpha_{12} \\ \alpha_{21} & 1 \end{pmatrix} \begin{pmatrix} V_{P_1} \\ V_{P_2} \end{pmatrix}$$

Lisa Sommer | IBM Research Europe, Zurich | lisa.sommer@ibm.com

Capacitive coupling: average slope of fitted lines (weighted by standard deviations of each fit)

Training the ML tool Using simulation of QD device

- Improve Robustness: add noise

Training: 1.6×10^5 devices 10 small scans per device

(Use pixel classification, extract slopes of transition lines)

Test data: 8 simulated devices with variations: screening length, device pitch, positions of one plunger gate -> 50 small scans (use increasing noise)

Test with large experimental measurements with spurious QDs

"White noise." Wikipedia.

"White Noise Definintion Vs. Pink Noise". Wacoustic Fields.com

Improve Performance for various data: Change effect of strongly coupled QD charge sensor to plunger gates

"Burst noise." Wikipedia,

Performance of the algorithm

Pixel classifier:

- Error: defined as fraction of pixels with true transitions, not contained in line segment in output
- Dependent on noise level

Slope extractions

- Use 8 large scans -> window 1.5 x charging energy + cropped output by one pixel
- Group in distinct clusters, if more than 5 pixel with individual fit -> error from fitted line

Virtualized gates Experiment

$$\mathbf{G}^{\text{virt}} \equiv \begin{pmatrix} V_{P_1'} \\ V_{P_2'} \end{pmatrix} = \begin{pmatrix} 1 \\ \alpha_2 \end{pmatrix}$$

Confirmation that pixel classifier and fit work

Lisa Sommer | IBM Research Europe, Zurich | lisa.sommer@ibm.com

 $\begin{pmatrix} 1 & \alpha_{12} \\ \alpha_{21} & 1 \end{pmatrix} \begin{pmatrix} V_{P_1} \\ V_{P_2} \end{pmatrix}$

Spurious dots detection

Magnitude of α_{12} increases **monotonically**

Recap & Outlook

- Increasing in device size and complexity \rightarrow need reliable and automated tune-up
- Established orthogonal control is needed for tune-up of larger QD arrays
- Use ML based pixel-classification with curve fitting \rightarrow showed reliable output
- Shown detection of spurious dots

-> Automated navigation of voltage space for targeted measurement

Spatial relevance of virtual gates

effectively capture variation across charge stability diagram

Hough transform

Θ	r
15	189.0
30	282.0
45	355.7
60	407.3
75	429.4

a1		θ = 75°	
0	r	0	r
15	318.5	15	419.0
30	376.8	30	443.6
45	407.3	45	438.4
60	409.8	60	402.9
75	385.3	75	340.1

"Hough transform." Wikipedia,

