

A single hole spin with enhanced coherence in natural silicon

N. Piot,^{1,*} B. Brun,^{1,*} V. Schmitt,¹ S. Zihlmann,¹ V. P. Michal,² A. Apra,¹ J. C. Abadillo-Uriel,² X. Jehl,¹ B. Bertrand,³ H. Niebojewski,³ L. Hutin,³ M. Vinet,³ M. Urdampilleta,⁴ T. Meunier,⁴ Y.-M. Niquet,² R. Maurand,^{1,†} and S. De Franceschi^{1,‡}

 ¹Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
 ²Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-MEM-L_Sim, Grenoble, France.
 ³Univ. Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France.
 ⁴Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France. (Dated: January 24, 2022)

> Pierre Chevalier Kwon 19.08.2022

Top View:

Top View:

Setup and dots configuration

Setup and dots configuration

Setup and dots configuration

Motivation

Motivation

See:

- S. Bosco, B. Hetenyi, and D. Loss, Hole spin qubits in Si finfets with fully tunable spin-orbit coupling and sweet spots for charge noise," PRX Quantum 2, 010348 (2021).
- Z. Wang, E. Marcellina, A. R. Hamilton, J. H. Cullen, S. Rogge, J. Sal, and D. Culcer, Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits," npj Quantum Information 7, 54 (2021).

Readout of first hole in QD2

• Elzerman readout

First hole accumulation (k.p model)

- Strong 2-axes confinement favours HH-LH mixing
- This manifest in the g-factor anisotropy

First hole accumulation (k.p model)

Assumption for the calculated g-factor: B-field misalignement + shear strain: 0.1 % + disorder

First hole accumulation (k.p model)

Assumption for the calculated g-factor: B-field misalignement + shear strain: 0.1 % + disorder

Longitudinal Spin-Electric Susceptibility (LSES)

$$LSES = \frac{\delta f_L}{\delta V_{gate}}$$

• LSES of gate 2 (~out of plane E field)

Longitudinal Spin-Electric Susceptibility (LSES)

$$LSES = \frac{\delta f_L}{\delta V_{gate}}$$

• LSES of gate 1 (~in plane E field)

Coherence Times

• Hahn echo

• $\beta = 1.5 \pm 0.1 \rightarrow noise \ spectrum \ S \propto 1/\sqrt{f}$

Coherence Times

• CPMG sequence ($\theta = 99^\circ$)

- T₂^{CPMG} = 0.4 ms for N_π = 256
 ✓ Longest coherence ever reported for hole spins
- Confirms noise spectrum $S \propto 1/\sqrt{f}$

Coherence Times

- T_2^* measurement
 - ✓ Ramsey sequence (no refocusing pulse)

• Low fequency noise, $S \propto 1/f$

Conclusion

Existence of coherence sweet spot when swiping B-field angle

A lot of nice datas (quite complete paper)

Not sure if the model is trustworthy

Thank you for your attention!