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Requirements for 99% visibility

 For a LD spin qubit that uses Elzerman readout, the 
minimum requirements for achieving 99% visibility are [1]: 

1. large Zeeman splitting 𝐸𝐸𝑧𝑧 relative to the electron 
temperature 𝑇𝑇𝑒𝑒, 𝐸𝐸𝑧𝑧 ≳ 13𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒

2. fast tunnel out time 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜↑ for a spin-up electron relative to 
the spin relaxation time 𝑇𝑇1, 𝑇𝑇1 ≳ 100𝑡𝑡↑𝑜𝑜𝑜𝑜𝑜𝑜

3. fast sampling rate Γ𝑠𝑠 relative to the reload rate 1/𝑡𝑡𝑖𝑖𝑖𝑖↓ , 
Γ𝑠𝑠 ≳ 12/𝑡𝑡𝑖𝑖𝑖𝑖↓ . 

If any of these requirements are not met, 99% visibility 
Elzerman spin readout is not possible. 

[1] D. Keith, S. K. Gorman, L. Kranz, Y. He, J. G. Keizer, M. A. Broome, 
and M. Y. Simmons, Benchmarking high fidelity single-shot readout 
of semiconductor qubits, New J. Phys. 21, 063011 (2019). 
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Device

 The device [0]:
• Si/SiGe heterostructure with an isotopically purified 28Si (800 ppm residual 29Si) quantum well

• Lithographically defined overlapping aluminum gate electrodes

• 6 quantum dots with 2 proximal charge sensors 
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[0] D. M. Zajac, T. M. Hazard, X. Mi, K. Wang, and J. R. Petta, A reconfigurable 
gate architecture for Si/SiGe quantum dots, Appl. Phys. Lett. 106, 223507 
(2015) 



Measurement circuit for readout

 Optimization of charge state readout:
• 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 @ 1 MHz is applied to S1 and the drain current flows to ground through a 20 kΩ resistor

• The voltage drop across the 20 kΩ resistor is amplified by 2 high-electron mobility transistors 
(HEMT) @ 1K and 4K before a RT amplifier

• 𝑐𝑐𝑝𝑝∼8 pF which limits the circuit bandwidth to ∼1 MHz 
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Charge sensor – Coulomb blockade

• Coulomb blockade peak in the charge sensor 
conductance 𝑔𝑔𝑆𝑆𝑆 as the sensor dot plunger gate 
voltage 𝑉𝑉𝑃𝑃𝑃𝑃𝑃 is swept

• Changing 𝑁𝑁2 = 0 to 𝑁𝑁2 = 1 shifts the Coulomb 
blockade peak by ~ its FWHM

• When biased on the side of a Coulomb 
blockade peak the sensor dot can easily detect 
real-time tunneling events
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Charge sensor – Coulomb blockade

ç√ç

• Real-time 𝑔𝑔𝑆𝑆𝑆 sampled at 1 MS/s with chemical potential µ2~𝐸𝐸𝐹𝐹,𝑅𝑅𝑅𝑅𝑅𝑅

• The switching rate between 𝑁𝑁2 = 0 and 𝑁𝑁2 = 1 is set by the tunnel coupling Γ between the 
𝐷𝐷2 and Res. to be slower than measurement bandwidth 

03.06.2022 Journal Club - Leonardo Massai 8

• The charge readout SNR 
is set by the separation 
of the two Gaussians 
relative to their spread: 
𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑚𝑚0 −𝑚𝑚1)/ �𝜎𝜎
with �𝜎𝜎 = (𝜎𝜎1+𝜎𝜎0)/2

𝜎𝜎1
𝜎𝜎0
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 SNR and electron temperature 𝑇𝑇𝑒𝑒 as a function of the peak-to-peak excitation voltage 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒
from the charge sensor. 
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• Operation voltage: 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 85 µVpp, where the 
𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 12.5 and 𝑇𝑇𝑒𝑒 ≈ 45 mK.

• The electron temperature is estimated by the 
broadening of the tunneling line width for the first 
electron dot-reservoir transition. 

• Values of 𝑇𝑇𝑒𝑒 ≪ 200 mK [2,3].

[2] D. Keith et al, Single-shot spin readout in semiconductors near the shot-noise 
sensitivity limit, Phys. Rev. X 9, 041003 (2019). 
[3] A. Morello et al, Single-shot read- out of an electron spin in silicon, Nature 
(London) 467, 687 (2010). 
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Charge sensor – 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑇𝑇𝑒𝑒

 SNR and electron temperature 𝑇𝑇𝑒𝑒 as a function of the peak-to-peak excitation voltage 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒
from the charge sensor. 
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• In theory a 𝑆𝑆𝑆𝑆𝑆𝑆 = 12.5 yields a lower bound 
estimate of the charge state infidelity 1 − 𝐹𝐹𝑐𝑐 ≥
3𝑒𝑒−10 [4]. 

• The negligible charge state infidelity implies that 
the overall readout performance will be limited 
by the spin-to-charge conversion process. 

[4] J. Z. Blumoff et al., Fast and high-fidelity state preparation and measurement in 
triple-quantum-dot spin qubits, arXiv:2112.09801 (2021).



Spin-to-charge conversion

 Process of spin-to-charge conversion for a spin-up electron:

• The |↑⟩ e- tunnels off the dot in ~1/Γ𝑜𝑜𝑜𝑜𝑜𝑜↑ and is 
replaced by |↓⟩ e- that tunnels into the dot in ~1/Γ𝑖𝑖𝑖𝑖↓ . 

• 1/Γ𝑜𝑜𝑜𝑜𝑜𝑜↑ < 𝑇𝑇1 and Γ𝑖𝑖𝑖𝑖↓ must be slow enough to be 
detectable, given the finite bandwidth of the 
measurement circuit

• The overall tunnel rate Γ is set by 𝑉𝑉𝐵𝐵𝐵
• Γ𝑜𝑜𝑜𝑜𝑜𝑜↑ /Γ𝑖𝑖𝑖𝑖↓ is adjusted by Δ (𝐸𝐸𝐹𝐹,𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐸𝐸|↓⟩)

• 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 = 410 mT, with 𝐸𝐸𝑍𝑍 = 19.105 GHz 79 μeV
and 𝑇𝑇1 = 31.5 ms
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Spin-to-charge conversion

 Process of spin-to-charge conversion for a spin-up electron:

• The optimal Δ is large enough to suppress thermal 
errors and small enough to maximize the ratio Γ𝑜𝑜𝑜𝑜𝑜𝑜↑ /Γ𝑖𝑖𝑖𝑖↓

• The rates Γ𝑜𝑜𝑜𝑜𝑜𝑜↑ and Γ𝑖𝑖𝑖𝑖↓ are extracted by the tunneling 
times from many single shot traces Fig. (b) and fitting 
to an exponential decay

• Fig. (c) shows the visibility 𝑉𝑉 = 𝐹𝐹↑ + 𝐹𝐹↓ − 1 (preparing 
10000 states and measuring) in function of Δ

• The optimal values:  ∆∗ ≈ 30 μeV resulting in Γ𝑜𝑜𝑜𝑜𝑜𝑜↑ ≈
Γ𝑖𝑖𝑖𝑖↓ ≈ 20 kHz
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Data acquisition parameters

 Optimization of data acquisition parameters: 
• Conductance threshold 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 and duration of the readout window 𝑡𝑡𝑅𝑅

• |↑⟩ state is registered when 𝑔𝑔𝑆𝑆𝑆 > 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 within the time window 𝑡𝑡𝑅𝑅, Fig. (a)

• If 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 is set too low ⇒ noise can lead to false positives (𝐹𝐹↓ ↘)
• If 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 is set too high ⇒ we miss the short events that don’t reach full amplitude (𝐹𝐹↑ ↘)
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Data acquisition parameters

 Optimization of data acquisition parameters: 
• Conductance threshold 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 and duration of the readout window 𝑡𝑡𝑅𝑅

• if 𝑡𝑡𝑅𝑅 is too low ⇒ not able to catch all hopping events from spin-to-
charge conversion (𝐹𝐹↑ ↘)

• if 𝑡𝑡𝑅𝑅 ≫ 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜↑ ⇒ more thermal errors (𝐹𝐹↓ ↘)
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Data acquisition parameters

 Optimization of data acquisition parameters: 
• Conductance threshold 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 and duration of the 

readout window 𝑡𝑡𝑅𝑅

• Optimization of 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑅𝑅 preparing 10000 states 
and measuring, using the optimized Δ∗

• Fidelity 𝐹𝐹 as a function of 𝑔𝑔𝑡𝑡𝑡𝑡𝑡:
⇒ Optimal 𝑔𝑔𝑡𝑡𝑡𝑡𝑡∗ = 0.22 e2/h, Fig. (b)
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• If 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 ↘ ⇒ 𝐹𝐹↓ ↘
• If 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 ↗ ⇒ 𝐹𝐹↑ ↘



Data acquisition parameters

 Optimization of data acquisition parameters: 
• Conductance threshold 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 and duration of the 

readout window 𝑡𝑡𝑅𝑅

• Optimization of 𝑔𝑔𝑡𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑅𝑅 preparing 10000 states 
and measuring, using the optimized Δ∗

• Measurement infidelities 1 − 𝐹𝐹 as a function of 
𝑡𝑡𝑅𝑅:
⇒ Optimal 𝑡𝑡𝑅𝑅∗ = 670 µs, Fig. (c)
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Fidelities with optimized parameters

 Reached fidelities with optimized parameters (𝑉𝑉𝑃𝑃𝑃𝑃𝑃∗ , 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒∗ , Δ∗, g𝑡𝑡𝑡𝑡𝑡∗ and t𝑅𝑅∗ ):

• 𝐹𝐹↓ = 99.86% ± 0.05%, 𝐹𝐹↑ = 99.26% ± 0.12%
⇒ average measurement fidelity 𝐹𝐹𝑀𝑀 = 99.56%

• The probability of missing a spin bump 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − 1−𝑒𝑒(𝑅𝑅𝑠𝑠
↑−𝑅𝑅𝑠𝑠

↓)/2 𝑅𝑅𝑠𝑠
1−𝑒𝑒𝑅𝑅𝑠𝑠

↑/2 𝑅𝑅𝑠𝑠↑−𝑅𝑅𝑠𝑠↓
with 𝑅𝑅𝑆𝑆↑ = 𝑡𝑡𝑆𝑆/𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜↑ , 𝑅𝑅𝑆𝑆↓ = 𝑡𝑡𝑆𝑆/𝑡𝑡𝑖𝑖𝑖𝑖↓ and 𝑡𝑡𝑆𝑆 = 1 µs (sampling rate)
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Rabi oscillations 

 Rabi oscillations

• Spin-up probability 𝑃𝑃↑ as a function of the 
frequency detuning ∆𝑓𝑓 from resonance 
(19.105 GHz) and the microwave burst length 𝜏𝜏𝑅𝑅, 
Fig. (a). 

• Rabi oscillations at resonance, Fig. (b). 
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Gate and SPAM fidelities - GST

 Gate and State Preparation And Measurement (SPAM) fidelities

• High gate and SPAM fidelities verified using Gate Set Tomography (GST) protocols for 
single qubit gates (𝐼𝐼,𝑋𝑋,𝑌𝑌) [5] 

• GST yields to:
 𝜌𝜌0,𝐺𝐺𝐺𝐺𝐺𝐺 = 99.76% ± 0.04%
 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 = 99.35% ± 0.1%
 SQGGST = 99.956% ± 0.002%

• The gate fidelity is limited by incoherent noise (𝑇𝑇2∗ = 3.2 μs, 𝑇𝑇2𝐻𝐻 = 139 μs
measured using Ramsey and Hahn echo pulse sequences)
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[5] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout, 
Gate Set Tomography, Quantum 5, 557 (2021). 



Gate and SPAM fidelities - IRB

 (𝑋𝑋,𝑋𝑋2,−𝑋𝑋,𝑌𝑌,𝑌𝑌2,−𝑌𝑌 ) fidelities with Interleaved Randomized 
Benchmarking (IRB) [6]:

• 𝑘𝑘 = 200 unique sequences per point, with 100
averages 

• Sequence lengths of up to 𝑁𝑁𝐶𝐶𝐶 = 4096 Clifford 
operations are employed to achieve full saturation of the 
sequence fidelity curves, Fig. (c).
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[6] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and robust randomized 
benchmarking of quantum pro- cesses, Phys. Rev. Lett. 106, 180504 (2011). 

• traces shifted by 0.25



Gate and SPAM fidelities – GST & IRB

 Average gate fidelities, Table 1:
• Retuning routines every ∼ 30 mins during long measurements (∼ 14 hrs.) to correct for 

readout and qubit frequency drifts
• The charge sensor excitation is turned off during qubit manipulation to reduce heating 

at the device

03.06.2022 Journal Club - Leonardo Massai 22



Summary

1. Introduction
 Requirements for 99% visibility

2. System overview and optimizing oparation parameters
Measurement circuit for readout
 Charge sensor and spin-to-charge conversion
 Data acquisition parameters

3. SPAM and Single Qubit Gates fidelities
 GST and IRB fidelities

4. Conclusions
03.06.2022 Journal Club - Leonardo Massai 23



Conclusions

 Si spin qubits can be operated reliably with all-around high performance metrics:

• Optimal SPAM requires careful tuning of operation parameters to minimize the loss of 
spin information due to relaxation and a finite 1 MHz measurement bandwidth

• Measurement fidelities > 99%

• GST and IRB are implemented to demonstrate average 𝑆𝑆𝑆𝑆𝑆𝑆 fidelities > 99.95% under 
the same operating conditions
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