An electrically-driven single-atom ‘flip-flop’ qubit

IBM-Uni. Basel Journal Club
An electrically-driven single-atom ‘flip-flop’ qubit

Rostyslav Savytskyy,¹,² Tim Botzem,¹,²,¹² Irene Fernandez de Fuentes,¹,² Benjamin Joecker,¹,² Fay E. Hudson,¹,² Kohei M. Itoh,³ Alexander M. Jakob,⁴,² Alexander M. Jakob,⁴,² Brett C. Johnson,⁴,² David N. Jamieson,⁴,² Andrew S. Dzurak,¹,² and Andrea Morello¹,²,¹

¹School of Electrical Engineering & Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
²Centre for Quantum Computation & Communication Technology
³School of Fundamental Science and Technology, Keio University, Kohoku-ku, Yokohama, Japan
⁴School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
(Dated: February 10, 2022)

- Quantum information encoded in electron-nuclear states of P donor in Si
- Qubit controlled by local electric fields
- Electrical drive mediated by modulating the electron-nuclear hyperfine coupling
Flip-flop Qubit

\[H = \gamma_e B_0 S_z + \gamma_n B_0 I_z + AS \cdot I \]

- Nucleus: \(I = \frac{1}{2} \), \(\gamma_n = 17.23 \text{ MHz/T} \) - basis states \(|\uparrow\rangle, |\downarrow\rangle \)
- Electron: \(S = \frac{1}{2} \), \(\gamma_e = 27.97 \text{ GHz/T} \) - basis states \(|\uparrow\rangle, |\downarrow\rangle \)
- At \(B_0 \gg A \): eigenstates are tensor-product states \(|\downarrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle \)
- Fermi contact hyperfine interaction: eigenstates are \(|S\rangle = (|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle)/\sqrt{2} \) and \(|T_0\rangle = (|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)/\sqrt{2} \)
Flip-flop Qubit

\[H = (\gamma_+)B_0 \sigma_z + A \sigma_x \]

- Flip-flop subspace: \(|0\rangle = |\downarrow\uparrow\rangle \), \(|1\rangle = |\uparrow\downarrow\rangle \) (z-operator eigenstates)

- \(|S\rangle = (|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle)/\sqrt{2} \) and \(|T_0\rangle = (|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)/\sqrt{2} \) are x-operator eigenstates

- Flip-flop resonance frequency:
 \[\epsilon_{eff} = \sqrt{(\gamma_+ B_0)^2 + A(E_{dc})^2} \]

- Modulating hyperfine interaction by electric field drives qubit transitions
Device

- MOS device with ion-implanted ^{31}P donor
- Fast Donor (FD) gate for EDSR
- SET for electron spin readout (spin-dependent tunnelling)
- Microwave antenna for ESR and NMR
Resonant Transitions

- ESR1 and ESR2 separated by $A = 114.1$ MHz – close to 117.53 MHz found in bulk (bulk-like donor)

- Flip-flop transition: microwave tone applied to FD, then nuclear spin orientation is measured

- Nuclear spin readout:
 - adiabatic frequency sweep around ESR1 (adiabatic inversion) – aESR1
 - Readout electron spin
 - If $|\uparrow\rangle$, then nuclear spin was $|\downarrow\rangle$

- High probability P_{flip} of the nuclear state changing from one shot to the next -> indicates flip-flop resonance being driven
Initialization

- Electron-Nuclear Double Resonance (ENDOR) pulse sequence to initialize in the flip-flop ground state $|\downarrow\uparrow\rangle$
- aESR2 pulse followed by aNMR1 pulse
- If system is in $|\downarrow\uparrow\rangle$:
 - aESR2 flips electron spin to $|\uparrow\uparrow\rangle$
 - aNMR pulse is off-resonant and electron readout will initialize back to $|\downarrow\uparrow\rangle$
- If system is in $|\downarrow\downarrow\rangle$:
 - aESR2 pulse is off-resonant
 - aNMR1 pulse will flip the nucleus to $|\downarrow\uparrow\rangle$
Coherent Electrical Control

- ENDOR initialization -> EDSR -> flip-flop readout
- Flip flop readout:
 - readout electron spin
 - reload electron onto donor
 - perform nuclear spin readout
Rabi Frequency, Hyperfine Modulation

- Maximum Rabi frequency of 118.5 kHz (5x typical NMR drive) – limited by bulk-like donor state (small dipole)
 \[f_{\text{rabi}} = \left(\frac{\partial A(E)}{2 \partial E} \right) E_{ac} \]

- \[\frac{\partial A}{\partial V_{FD}} = 512 \text{ kHz/V} \] with positive slope – expectation that this should be negative

- Limited control of hyperfine interaction due to charging of nearby donors

Relaxation

- T_{1ff} found by saturating the ESR1 transition
 - Start from $|\downarrow\downarrow\rangle$
 - Calibrated slow frequency inversion sweep used to create $a|\downarrow\downarrow\rangle + b|\uparrow\downarrow\rangle$
 - $|a|^2 = |b|^2 = 0.5$

- aESR1 applied every 5 s to counteract T_{1e} process

- Measure leakage out of flip-flop subspace

- $T_{1ff} = 173$ s
Decoherence

- Both T_{2ff}^* and T_{2ff}^H measured

- Decoherence Mechanisms:
 - EDSR pulse induced resonance shift (poorly understood)
 - Residual ^{29}Si in substrate (splitting of flip-flop ESR resonances – coupling to ^{29}Si nuclei)

<table>
<thead>
<tr>
<th></th>
<th>T_1 (s)</th>
<th>T_2^* (μs)</th>
<th>T_2^H (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>6.45(39)</td>
<td>14.6(9)</td>
<td>336(10)</td>
</tr>
<tr>
<td>n</td>
<td>–</td>
<td>240(42)</td>
<td>541(72)</td>
</tr>
<tr>
<td>ff</td>
<td>173(12)</td>
<td>4.08(88)</td>
<td>184(24)</td>
</tr>
</tbody>
</table>

\[T_{2ff}^* \] and \[T_{2ff}^H \] measured

\[T_{2ff}^* = 4.09(88) \text{ μs} \]

\[T_{2ff}^H = 184(24) \text{ μs} \]
Single Qubit Gate Fidelities

- Average $F_{1Q} = 97.5\% - 98.5\%$ from Gate Set Tomography
- $F_{1Q} = 98.4\%$ from Randomised Benchmarking
Conclusion

- This time:
 - large gate voltage swing necessary to move the electron away from the donor under study would unsettle the charge state of nearby donors (limits Rabi frequency)

- Next time:
 - large dipole regime where Rabi frequency would be maximum (30 ns for $\frac{\pi}{2}$ rotation)
 - deterministic single-ion implantation will help

- Future:
 - Different donors, e.g. ^{123}Sb with $I > 1/2$ for all-electrical control (electric quadrupole moment enables nuclear electric resonance)
Thanks for your attention!