SPIN Journal Club 19-09-2022, arXiv:2208.12131

Scalable on-chip multiplexing of low-noise silicon electron and hole quantum dots

Heorhii Bohuslavskyi[#], Alberto Ronzani, Joel Hätinen, Arto Rantala, Andrey Shchepetov, Panu Koppinen,

Mika Prunnila[#], and Janne S. Lehtinen[#]

VTT Technical Research Centre of Finland, Tietotie 3, 02150 Espoo, Finland

PhD thesis (12/2018): Cryogenic electronics and quantum dots on silicon-on-insulator for quantum computing

supervised by Marc Sanquer (Grenoble)

Previous work by VTT and John Morton's group

Applied Physics Letters ARTICLE scitation.org/journal/apl Dispersive readout of reconfigurable ambipolar published Online: 20 April 2021; doi: 10.1063/5.0040259 Submitted: 11 December 2020 · Accepted: 9 March 2021 · Published Online: 20 April 2021

Jingyu Duan,^{1,2,a)} D Janne S. Lehtinen,³ D Michael A. Fogarty,^{1,2} D Simon Schaal,^{1,2} Michelle M. L. Lam,⁴ Alberto Ronzani,³ Andrey Shchepetov,³ Panu Koppinen,³ Mika Prunnila,³ Fernando Gonzalez-Zalba,² and John J. L. Morton^{1,2,5,a)}

AFFILIATIONS

¹London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom

²Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom

³VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT Espoo, Finland

⁴Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

⁵Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom

Previous work by VTT and John Morton's group

VTT's Micronova cleanroom facilities

Based in Espoo, Finland; jointly run by VTT and Aalto University; total area of 2600 m²

https://www.vttresearch.com/en/ourservices/micronova-centerapplied-micro-and-nanotechnology Processing capabilities in Micronova fab: VTT has more than 200 equipment in the semiconductor fab.

Lithography

o i-line stepper, 5:1, 0.35 μm CD

- Contact/proximity aligners
- O Electron-beam writing

Plating, Spin

Cu (via or wiring), Ni, Sn-Ag,

Coating

Sn-Pb,

o In-Sn. Au

Polyimide, BCB

- Nanoimprinting (step & stamp)
 - Deep silicon etching;

Polysilicon/nitride

Oxide Etching

Oxide; thin film and Advanced

Etching

- Anhydrous HF vapor
- Wet etching, various
- O Critical-point drying

3D Integration

- CMP of Si/oxide or copper
- Direct wafer bonding
- O Grinding

Ion Implantation

doping of silicon

Medium-current: n- or p-type

- Spin-etching
- Thin-wafer handling
- o Ion trimming

Back End

- o Wafer dicing
- Flip-chip bonding
- Wire bonding
- Thermal compression bonding

Deposition

- Six sputtering tools
- LPCVD of nitride, poly, and oxide
- Metals; Al, Mo, Ti-W, Nb (TCP)
 TEOS, LTO
 - PECVD; nitride and oxide
 - ALD: aluminium oxide, titanium oxide
 - o Parylene

Characterization

- Scanning electron microscope
- Scanning probe microscope
- Scanning acoustic microscope
- Optical film characterization
- O Profilometers
- Atomic force microscope
- Alignment accuracy measurement
- Wafer defect inspection system

Testing

- Wafer level test systems
- High speed electrical and optical testing capabilities
- Multiple labs for offline testing and characterization

Key findings

Scalable on-chip multiplexing of low-noise silicon electron and hole quantum dots

Heorhii Bohuslavskyi[#], Alberto Ronzani, Joel Hätinen, Arto Rantala, Andrey Shchepetov, Panu Koppinen,

Mika Prunnila[#], and Janne S. Lehtinen[#]

VTT Technical Research Centre of Finland, Tietotie 3, 02150 Espoo, Finland

- Hybrid quantum-dot-CMOS technology:
 QDs embedded in a 64-channel cryogenic
 CMOS multiplexer
 - scalable interfacing of up to millions of QDs for variability analysis and qubit geometry optimization
- Low-noise electron and hole QDs:
 - \circ unprecedentedly low charge noise at 5.6K
 - CMOS process that utilizes a conventional doped-Poly-Si/SiO2/Si MOS stack

Device fabrication

- 150mm silicon-on-insulator wafers (t_{BOX} =400nm)
- 8 UV and 3 e-beam lithography layers
- Gate oxide: 20nm thermal SiO₂
- NW (fin) height = 24nm, NW width = 70nm

```
Mobilities from [1]:\mu_e = 608cm²/Vs,\mu_h = 260 \text{ cm}^2/\text{Vs}[1] Duan et al., APL 118, 164002 (2021)
```

- n++ doped Poly-Si (thickness = 50nm (1st gate layer)/ 80nm (2nd gate layer)
- RT resistivities of Poly-1 and Poly-2 films: $1.14x10^{-2} \Omega cm$ and $0.19x10^{-2} \Omega cm$
- Gate length 50nm, gate pitch 100nm (?)
- Gate layer isolation oxide: 35nm LPCVD SiO₂
- Ohmic contacts: phosphorous (n-type) or boron (p-type) implantation
 250nm LPCVD SiO₂, anneal at 950C to activate dopants and anneal the dielectrics
- Contact holes for all three layers
 - $\circ~$ dry and wet etching processes
 - $\circ~$ metallization layer consisting of 25nm TiW and 250 nm AlSi
- Forming gas anneal

Multiplexer, CMOS logic and quantum dots

- Cryo-MUX consists of a 6-to-64 decoder and analog switches (pairs of n- and p-MOSFETs)
- To select one of the devices (24 electron and hole single QDs, 24 e and h DQDs, 16 test NWs) a combination of the A0-A5 voltages is supplied to the decoder
- To have the switch transistors fully open
 V_{add}=1.5V is applied
- All 64 devices share the same 5 chip terminals to drive the gate voltages
- Cryo-CMOS logic leakage current <1pA, corresponding to the sub-pW power dissipation level

Subthreshold swing

SŚ

su Low disorder due to **Poly-Si/SiO₂/Si process** and not:

"The recently demonstrated **foundry-grade** hole and electron spin qubits used the T- advanced fabrication process with a high-k metal gate (HKMG) with either high-k oxide and metal gate [9,11] or just a metal gate in the gate stack [10, Basel-IBM devices]

Assuming linear T-scaling: 80 mV/dec/300 K*5.6=1.5mV/decSS(5.6K) = 4 mV/dec

- *SS*-saturation due to a **disorder-induced** tail in the DOS below the edge of conduction and valence bands
- 4 mV/dec is the world's sharpest to-date SS values of 4 mV/dec
- (4 mV/dec value corresponds to 1.5meV band tails below E_c and E_v)

V_{chan}

CMOS inverter

Tunable few-electron double quantum dots

T= 5.6K

Tunable low-noise electron and hole QDs

T= 5.6K

Current devices have **no charge sensor**

 \rightarrow dc transport measurements: they assume that the few-electron/hole regime has been reached

Low-frequency charge noise in electron QDs

Quantum dot variability

Charge noise at 1 Hz

This work:

average $S_e(1\text{Hz}) = 22 \ \mu eV / \sqrt{Hz}$ average $S_h(1\text{Hz}) = 28 \ \mu eV / \sqrt{Hz}$ at T= 5.6K in the few-electron/hole regime(?)

Assuming linear T-scaling of charge noise: Estimated charge noise at 100 mK: $\simeq 0.4 \ \mu eV/\sqrt{Hz}$

Lowest noise values reported so far for Ge/SiGe heterostructure QDs: 0.62 $\mu eV/\sqrt{Hz}$

Reason for low-disorder: all-silicon gate-stack (IMEC 3.6 $\mu eV/\sqrt{Hz}$)

[1] Petit et al., PRL **121**, 076801 (2018), [2] Lodari *et al.*, Mater. Quantum. Technol. **1**, 011002 (2021)

Electron QDs at 300mK

Extended data Fig. 7 | **Electron quantum dots at 300 mK. (a)** A tilted SEM image of the test device measured in a simpler 8-channel MUX with the same circuit topology for the decoder and switches as in 64-channel MUXes #1 and #2 discussed in the main text. (b) The cross-section schematic of the device (a). (c) Coarse-resolution stability diagram showing Coulomb diamonds of the test device measured at 300 mK. Both, quantum dot devices and cryo-CMOS function at sub-Kelvin temperatures.