A new FDSOI spin qubit platform with 40nm effective control pitch

T. Bédécarrats¹, B. Cardoso Paz², B. Martinez Diaz³, H. Niebojewski¹, B. Bertrand¹, N. Rambal¹, C. Comboroure¹,
A. Sarrazin¹, F. Boulard¹, E. Guyez¹, J.-M. Hartmann¹, Y. Morand¹, A. Magalhaes-Lucas¹, E. Nowak¹, E. Catapano¹,
M. Cassé¹, M. Urdampilleta², Y.-M. Niquet³, F. Gaillard¹, S. De Franceschi³, T. Meunier², M. Vinet¹

Université Grenoble Alpes and ¹ CEA-Leti, ² CNRS Institut Néel, ³ CEA-Irig, F-38000 Grenoble, France

presented by Simon Geyer

8/8/2022

Contents

- state-of-the-art
- simulations
- fabrication
- RT characterization
- low-T characterization

State-of-the-art FDSOI platform

- 300mm process with immersion-DUV litho
- linear chain of electron/hole qubits
- 2xN arrays of QDs (face-to-face gates)
- natural barriers by self-aligned spacers
- global top- and back-gate
- high-temperature single-shot spin readout (PSB)
- single-shot qubit readout (Elzerman)

Hutin *et al.,* IWDM 2019

Duan *et al.,* Nano Lett. 2020

Maurand et al., Nat. Comm. 2016

State-of-the-art FDSOI platform

• problem: no control over tunnel barriers if each gate accumulates one QD

State-of-the-art FDSOI platform

 problem: large QDs needed for scheme with QD below every second gate -> no quibts

Vivien Schmitt, APS march meeting 2022

New FDSOI platform

• Solution: local exchange gates (J-gates)

Simulations

- Poisson + effective mass simulation
- periodic structure of 2xN array
- two modes:
 - face-to-face coupling (readout)
 - longitudinal coupling (2-qubit gates)

Simulations

- Poisson + effective mass simulation
- periodic structure of 2xN array
- two modes:
 - face-to-face coupling (readout)
 - longitudinal coupling (2-qubit gates)

ightarrow simulation shows more control than with global top gate

Fabrication

- 300mm wafer scale using 193nm immersion DUV
- mesa: ~20nm Si, BOx: 145nm
- gate stack:
 - 2.5nm SiO₂ + high-k?
 - ~7nm TiN / 25nm polySi
- gate pitch: 80nm
- spacer: 25(?)nm SiN
- contacts
 - epitaxial growth: Si:P or SiGe:B
 - NiPt silicidation
- E-beam litho: trenches for J-gates (material?)
- effective pitch: 40nm

Fabrication

RT characterization

- from now on: only 1D arrays of electron QDs
- mass test of 2500 DQD devices (2 plunger+ 3 J-gates)
- 98.3% yield in leakage test of J1

RT characterization 2

- 90nm pitch devices
- select 79 out of 384 4-QD devices that work nicely (4 plunger + 5 J-gates)
- \rightarrow yield 21%
- test variability in G1-G4 (old gate layer)

Fig. 12: in logaritmic scale (blue curves, left axis) and linear scale (orange curves, right axis) Drain current I_D versus gate voltage V_G curves for 79 functional 4-QDs in series, at $V_{DS} = 50$ mV, an unsewpt serie gate bias of 1.5 V and J-gates set to 0V. (functionality criteria : all gates must have I_D ,max > 10 μ A/ μ m, I_D ,min < 10 pA/ μ m, I_G ,max <10pA/ μ m and $V_T \in [0.3; 0.48]$ V).

RT characterization 3

10⁻⁶

10⁻⁸

10⁻¹⁰

 10^{-1}

-10

-5

0

I_D (A/µm)

- test variability in J (new gate layer)
- all J-gates shorted

79

1 t G3

7E

V_.] = [-10:+10] V

• gate pitch 80, 90 and 100nm

Ö

< FG

← TCAD Simulation

5

10

Low-T characterization: QD

- back to DQD devices (2 plunger+ 3 J-gates) at 4.2 K
- back gate +25V to push QD to back interface
- operate as single QD

Low-T characterization: DQD

• tune from single QD to DQD using J-gate voltage

Role of gates

• Is switching the role of P and J-gates beneficial?

Bruna Paz, APS march meeting 2022

Conclusion

- new device layout with 40nm pitch
- simulations predict subthreshold slope and tunneling rates
- RT characterization shows good yield for DQD devices and small variability for pre-selected sample of 4QD devices
- 4K characterization shows control over tunnel coupling of neighboring QDs
- quantitative study of tunneling rates vs V_j is to be shown