A new FDSOI spin qubit platform with 40nm effective control pitch

T. Bédécarrats¹, B. Cardoso Paz², B. Martínez Díaz³, H. Niebojewski¹, B. Bertrand¹, N. Rambal¹, C. Combroux¹, A. Sarrazin¹, F. Boulard¹, E. Guyez¹, J.-M. Hartmann¹, Y. Morand¹, A. Magalhaes-Lucas¹, E. Nowak¹, E. Catapano¹, M. Cassé¹, M. Urdampilleta², Y.-M. Niquet³, F. Gaillard¹, S. De Franceschi³, T. Meunier², M. Vinet¹

Université Grenoble Alpes and ¹ CEA-Leti, ² CNRS Institut Néel, ³ CEA-Irig, F-38000 Grenoble, France

presented by Simon Geyer

8/8/2022
Contents

• state-of-the-art
• simulations
• fabrication
• RT characterization
• low-T characterization
State-of-the-art FDSOI platform

- 300mm process with immersion-DUV litho
- linear chain of electron/hole qubits
- 2xN arrays of QDs (face-to-face gates)
- natural barriers by self-aligned spacers
- global top- and back-gate
- high-temperature single-shot spin readout (PSB)
- single-shot qubit readout (Elzerman)

Hutin et al., IWDM 2019
Duan et al., Nano Lett. 2020
State-of-the-art FDSOI platform

• problem: no control over tunnel barriers if each gate accumulates one QD
State-of-the-art FDSOI platform

• problem: large QDs needed for scheme with QD below every second gate -> no quibts

Vivien Schmitt, APS march meeting 2022
New FDSOI platform

• Solution: local exchange gates (J-gates)
Simulations

- Poisson + effective mass simulation
- Periodic structure of 2xN array
- Two modes:
 - Face-to-face coupling (readout)
 - Longitudinal coupling (2-qubit gates)
Simulations

• Poisson + effective mass simulation
• periodic structure of 2xN array
• two modes:
 • face-to-face coupling (readout)
 • longitudinal coupling (2-qubit gates)

\[D = \text{first gate layer thickness} \]

\(t = \begin{array}{c|c|c}
V_{bg} = 0 \text{ V} & V_{bg} = -2 \text{ V} & V_{bg} = -4 \text{ V} \\
10^3 & 10^1 & 10^1 \\
10^1 & 10^{-1} & 10^{-1} \\
10^{-1} & 10^{-3} & 10^{-3} \\
10^{-3} & 10^{-5} & 10^{-5} \\
10^{-5} & 10^{-7} & 10^{-7} \\
\end{array} \]

\[t_{\parallel} \quad t_{\perp} \]

\(V_j (\text{V}) \)

\[\begin{array}{c|c|c|c|c}
D = 50 \text{ nm} & D = 40 \text{ nm} & D = 30 \text{ nm} & D = 20 \text{ nm} \\
10^0 & 10^{-2} & 10^{-4} & 10^{-6} \\
10^{-2} & 10^{-4} & 10^{-6} & 10^{-8} \\
10^{-4} & 10^{-6} & 10^{-8} & 10^{-10} \\
10^{-6} & 10^{-8} & 10^{-10} & 10^{-12} \\
\end{array} \]

→ simulation shows more control than with global top gate

simon.geyer@unibas.ch
Fabrication

- 300mm wafer scale using 193nm immersion DUV
- mesa: ~20nm Si, BOx: 145nm
- gate stack:
 - 2.5nm SiO$_2$ + high-k?
 - ~7nm TiN / 25nm polySi
- gate pitch: 80nm
- spacer: 25(?)nm SiN
- contacts
 - epitaxial growth: Si:P or SiGe:B
 - NiPt silicidation
- E-beam litho: trenches for J-gates (material?)
- effective pitch: 40nm
RT characterization

• from now on: only 1D arrays of electron QDs
• mass test of 2500 DQD devices (2 plunger+ 3 J-gates)
• 98.3% yield in leakage test of J1
• 90nm pitch devices
• select 79 out of 384 4-QD devices that work nicely (4 plunger + 5 J-gates)
• \(\rightarrow \) yield 21%
• test variability in G1-G4 (old gate layer)
• test variability in J (new gate layer)
• all J-gates shorted
• gate pitch 80, 90 and 100nm

TCAD:
Low-T characterization: QD

- back to DQD devices (2 plunger+ 3 J-gates) at 4.2 K
- back gate +25V to push QD to back interface
- operate as single QD
Low-T characterization: DQD

• tune from single QD to DQD using J-gate voltage
Role of gates

- Is switching the role of P and J-gates beneficial?

<table>
<thead>
<tr>
<th>2nd metal level:</th>
<th>1st metal level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_C</td>
<td>E_C</td>
</tr>
<tr>
<td>4.04meV</td>
<td>3.93meV</td>
</tr>
<tr>
<td>α-factor</td>
<td>α-factor</td>
</tr>
<tr>
<td>0.025</td>
<td>0.30</td>
</tr>
<tr>
<td>C_G</td>
<td>C_G</td>
</tr>
<tr>
<td>9.88×10^{-19}F</td>
<td>1.24×10^{-17}F</td>
</tr>
</tbody>
</table>

Bruna Paz, APS March Meeting 2022
Conclusion

- new device layout with 40nm pitch
- simulations predict subthreshold slope and tunneling rates
- RT characterization shows good yield for DQD devices and small variability for pre-selected sample of 4QD devices
- 4K characterization shows control over tunnel coupling of neighboring QDs
- quantitative study of tunneling rates vs V_J is to be shown

simon.geyer@unibas.ch