Electron charge qubits on solid neon with 0.1 millisecond coherence time

Xianjing Zhou,^{1,2,*} Xinhao Li,^{1,*} Qianfan Chen,¹ Gerwin Koolstra,³ Ge Yang,^{4,5} Brennan Dizdar,⁶ Xu Han,¹ Xufeng Zhang,⁷ David I. Schuster,^{2,6,8,†} and Dafei Jin^{1,2,9,‡}

¹Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA

- ²Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- ³Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- ⁴ The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, USA
- ⁵Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

⁶ James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

- ⁷Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- ⁸Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- ⁹Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA

Felix J. Schupp 14/11/2022

Theory/proposal and related work

- Idea is to remove "solid state qubit" from noisy crystal. (Similar idea exists for superfluid Helium)
- Proposal/theory paper on spin-qubit on solid Ne: https://arxiv.org/pdf/2205.00589.pdf

Metric	T ₁	T ₂ *	T ₂ echo
Natural Ne (2700ppm ²¹ Ne)	Long (not specified)	0.16 ms	30ms
purified Ne (1000ppm ²¹ Ne)	Long (not specified)	0.43 ms	81s

• Related work: Electrons on superfluid LHe (probably same device but different "filling")

<u>Device</u>

"Fabrication":

- Make chip with Nb gates/resonator on Si in "normal" fabrication
- Cool down in pressure cell with self-made regulator ("gas-handling puff system")
- Walk through phase diagram to form best possible solid Ne in cooldown
- Electron(s) gets emitted from a tungsten filament and placed onto surface

From electron on LHe paper

Position across channel y (µm)

Solid Neon

- 1. Fill controlled amount of Ne in cell at 26K to wet the chip
- 2. Cool down along liquid-gas coexisting line
- 3. Keep going across Triple Point at 24.6K (0.43bar) to turn into solid
- 4. "anneal" at 10K for 1-2h
- 5. Cool to base (10mK)
- 6. Final state: Estimate ~10s nm of Neon on top of chip

Standard cQED measurements

Experiments:

- Change qubit frequency with left vs right guard voltage ΔV_{rg}
- Bring on resonance and see anticrossing (c,d)
 -> extract g and losses (κ + γ)
- Fix resonator and drive qubit with second tone
 -> find charge qubit sweetspot vs detuning (e)
- Cuts across sweetspot with varying drive power show Stark-shift
 -> Find single photon limit (d)

Extracted numbers*:

fr=6.4262 GHz, $\kappa/2\pi$ = 0.46 MHz, g/2 π =2.3MHz, $\gamma/2\pi$ =0.36MHz

Single qubit: Dispersive shift and Rabi

- Drive qubit using Gaussian drive tone
- On sweet spot!
- See dispersive shift (Fig c,d)
- Measure Rabi: T_{rabi}=80µs
- Dispersive shift: $\chi/2\pi$ =-0.13MHz

Single qubit: On/off sweetspot

Single qubit: CPMG and fidelities

Important note: This is in another configuration using "another electron"

- In previous setting they were limited by Purcell-type decay for read-out (T₁ limit)
- In new potential the resonator is further from the qubit frequency at the sweetspot (-270MHz vs -34.7MHz)
- Here $T_1 = 88.4 \mu s$, $T_2^* = 3.9 \mu s$ which makes it a worse qubit but better for read-out.
- Do CPMG and recover most of previous level of T_2^{echo} with 80 CPMG pulses
- Read out fidelity (without SC amplifiers) 97.5%
- Randomized benchmarking: Gate fidelity 99.95%

Wigner-molecule might be a bit different...

Coupling two electrons to the resonator

ΔVr : "(offset) resonator voltage" Is that the offset compared to trap?

 $\Delta Vrg:$ Resonator guard bias

- Two electrons in same trap (where is not clear)
- Tune with resonator offset voltage ΔV_r and trap guard voltage ΔV_{rg}
- Results matched with input-output theory
- g₁/2π=3.6MHz, g₂/2π=1.8MHz, γ₁/2π=1.5MHz, γ₂/2π=1.6MHz