A single hole spin with enhanced coherence in natural silicon

N. Piot,^{1, *} B. Brun,^{1, *} V. Schmitt,¹ S. Zihlmann,¹ V. P. Michal,² A. Apra,¹ J. C. Abadillo-Uriel,² X. Jehl,¹ B. Bertrand,³ H. Niebojewski,³ L. Hutin,³ M. Vinet,³ M. Urdampilleta,⁴ T. Meunier,⁴ Y.-M. Niquet,² R. Maurand,^{1, †} and S. De Franceschi^{1, ‡}

 ¹Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.
 ²Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-MEM-L_Sim, Grenoble, France.
 ³Univ. Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France.
 ⁴Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France. (Dated: January 24, 2022)

https://arxiv.org/pdf/2201.08637.pdf

Journal club 31.01.2022

Nico Hendrickx

LETI devices

- Silicon finFET devices
- SOI fin
- Transport qubits in 2016
- Optical + ebpg
- LETI/Copenhagen/UCL/EPFL

Maurand et al. Nat. Comm. 13575 (2016) https://www.nature.com/articles/ncomms13575.pdf

Device design (fig. 1a-b)

- Gate stack:
 - Metal topgate
 - 250 nm SiO2
 - 35 nm Si3N4 (etch stop)
 - 50 nm polySi
 - 6 nm TiN
 - 6 nm SiO2
 - Natural Si fin
 - BOX
 - Doped Si (back gate)

Device design (fig. 1a-b)

- Four gate device
 - G₃/G₄ large dot (sensor)
 - G1 dot to screen S (no mention of effect)
 - Scalebar = 100 nm

Dot accumulation (fig. S2 / S4b)

- Poisson solver
 - Two corner dots are preferred
 - E-field is stronger
 - Assume: degeneracy due to disorder
 - Result: only a single corner dot
 - Strong intermixing of LH/HH states

а

Charge stability diagram (fig. S1)

- Off-the-shelve resonator connected to drain.
- D <-> G₃/G₄ dot transitions as sensor

Spin readout (fig. S1)

• Elzerman readout

g-factor measurement (fig. 1d/e)

- Measure resonance frequency a.f.o. field orientation (B = ??)
- Not very anisotropic
- No XY data (1 axis of their vector magnet broken ...)

___MW1_____ g-factor measurement (fig. 1d/e)

- Not very anisotropic
 - Result of the strong HH/LH mixing (due to lateral fields)

g-factor fit (fig. S5)

- Rotational shift
 - 35 deg shift in ZX
 - 10 deg shift in ZY
 - In modelling: assume B-field misalignement
 - Hypothesis is cool down strain (but polySi gates ?)
 - shear strain: 0.1 %
- Discrepancy in size
 - Disorder
 - σ_{trap} at Si/SiO2 interface
 - $ho_{
 m trap}$ in Si3N4 spacer

E-field dependence of Larmor frequency (fig. 2)

• They coin the term LSES: Longitudinal spin-electic susceptibility

• i.e. LSES =
$$\frac{\delta f_q}{\delta V_{gate}}$$

- Assumptions:
 - G1 purely parallel
 - G2 purely perpendicular
 - But also: "Note that the action of VG1 is strongly screened by the hole gas beneath"

LSES of gate 2 (vertical) (fig. 2a / S6)

- Probe Chevron while applying gate voltage pulse to G2
- Rabi frequency clearly varying
- Measure df/dV for different angles in ZX plane

LSES of gate 1 ('horizontal') (fig. 2bcd)

- Use Hahn echo to measure frequency shift
 - Unclear why the different methods for G1/G2
- No zero nodes for G1

Inducto

MW1

LSES of gate 1 ('horizontal') (fig. 2)

- Large discrepancy with the fit
 - They attribute this to charge disorder
- I wonder if this is a result of the horizontal/vertical assumption

Coherence times (fig. 3a)

- Measure Hahn coherence time to probe coherence
 - This eliminates low freq noise

•
$$\exp\left(-\left(\frac{\tau_w}{T_2^E}\right)^{\beta}\right)$$

•
$$\beta = 1.5$$
, i.e. noise spectrum $S \propto \sqrt{f}$

Coherence times (fig. 3b)

- Measure dependence on angle B in ZX plane
- Fit using obtained df/dV from before

$$\frac{1}{T_2^{\rm E}} \approx 7.8 f_0^{1/3} \left(\sum_i \left(\frac{\partial f_L}{\partial V_{\rm Gi}} \right)^2 S_{\rm Gi}^{\rm hf} \right)^{2/3} \qquad \text{hf = high frequency,} \\ \text{not hyperfine!}$$

• Optimum near best points in G1 and G2

Coherence times

- Would there be much charge noise in z direction?
- Their fit:

$$\tilde{S}_{G1}^{hf} = (2.6 \,\mu V / \sqrt{Hz})^2$$

 $\tilde{S}_{G2}^{hf} = (0.1 \,\mu V / \sqrt{Hz})^2.$

- Not much comment, but I find it highly unlikely...
 - (or the fins are really dirty)

CPMG (fig. 3cd)

- Up to 400 us coherence
- Confirms noise spectrum $S \propto \sqrt{f}$

Driving (fig. S7cd)

- Driving possible for all field angles
- Rabi frequency changes, don't specify how much
- At the sweet spot max ~ 3 MHz, a lot stronger driving on G2.

T2* (fig 4ab)

- Measured (at sweet spot) as a function of integration time
 - Decreases for longer measurements, as expected

T2* (fig 4c)

- Angle dependence of T2*
- Deminishes for longer integration

➤ Low freq noise is not dominated by charge noise
 ➤ Supported by calculation of expected T2* for only the √f noise: ~50 us.

≻Hyperfine?

Noise spectrum (fig. S8)

- CPMG: S $\propto \sqrt{f}$ at high freq
- FID: $S \propto f$ at low freq

Conclusion

- Nice data, showing good promise for using sweet spots to increase hole coherence.
- I have some doubts with some of their fits/explanations
 - Many degrees of freedom and bold assumptions in my opinion.

Other figures: setup (fig. S9)

Other figures: chevron and power (fig. S7ab)

Other figures: different random charge arrangements (fig. S5b)

