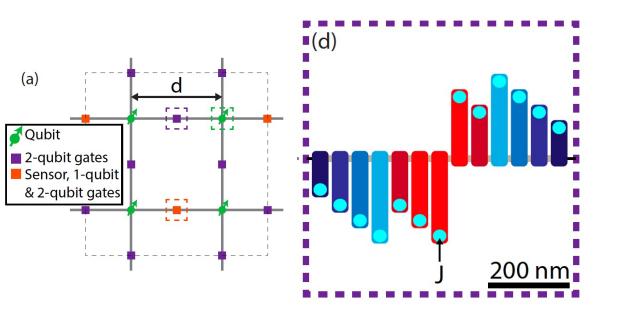

The *spider-web* array–a sparse spin qubit array **A** ASML UNSW Jelmer M. Boter,^{1,2} Juan P. Dehollain,^{1,2,3} Jeroen P. G. van Dijk,^{1,2,4} Yuanxing Xu,^{1,2} Toivo Hensgens,^{1,2} Richard Versluis,^{1,5} Henricus W. L. Naus,^{1,5} James S. INTEL Clarke,⁶ Menno Veldhorst,^{1,2} Fabio Sebastiano,^{1,4} and Lieven M. K. Vandersypen^{1,2,6,*} ¹QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands ²Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands ³School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo NSW 2007, Australia ⁴Department of Quantum and Computer Engineering, Delft University of Technology, 2628 CJ Delft, The Netherlands ⁵Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft, The Netherlands ⁶Components Research, Intel Corporation, 2501 NE Century Blvd, Hillsboro, OR 97124, USA (Dated: October 4, 2021)

Contents

- Elements of the Sparse Array achitecture
- Operation principle and surface code implementation
- Integration of classical control electronics
- Footprint , line scaling & heat discipation (1Million Qbits example)

Array Design and Operation

Sparse Array Architecture:

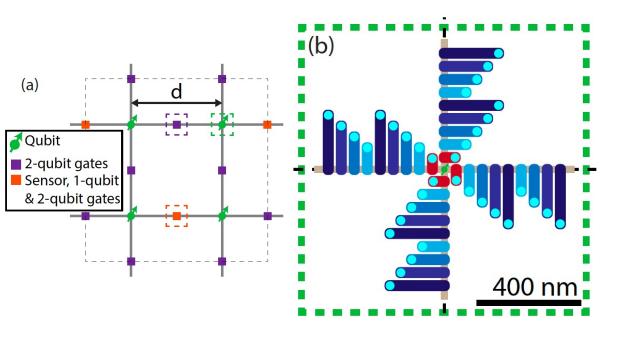

- Allows integration of control electronics (DC bias)
- Robust against inhomogeneities in the substrate
- Reduces crosstalk
- Requires coherent spin shuttling along um distances

Components:

- Unit cell \rightarrow 4 (2 Data+2 Ancilla) Qubits \rightarrow d=10um
- Module → common DC bias & Readout
- Space in final die for extra electronics

Unit Cell Operation

2 Qubit Gate Area

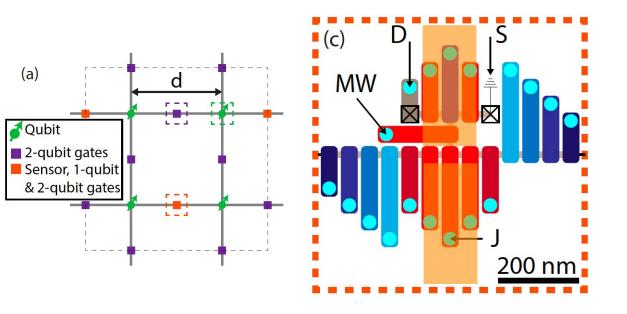


- 6 per unit cell
- 2 vertice gates (red) act both for confinment & tunneling to shuttling channel (C)
- 4 phase shifted signals at groups of 4 gates(blue) create travelling potential wave for shuttling (P)
- 2 plungers (for the spins) amd 1 exchange barrier gate J for 2 Qubit operations (fine)

Region	Regions in	Fine	Coarse	Pulsed
	unit cell	$(1 \ \mu V)$	(1 mV)	gates
Two-qubit only	6	3	2	5

Unit Cell Operation

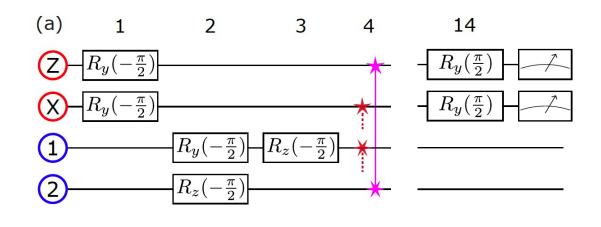
Idling Qubit Area

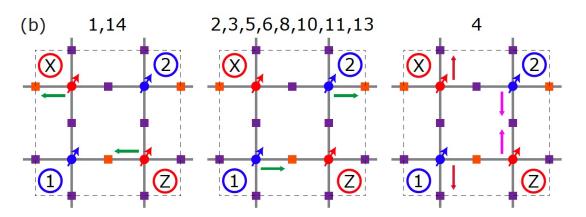


- 4 per unit cell
- 4 barrier gates (red) act both for confinment & tunneling to shuttling channel (C)
- 4 phase shifted signals at groups of 4 gates (blue) create travelling potential wave for shuttling (P)
- Shuttling gate do not require DC bias by using large potential amplitude to eliminate inhomogeneities

Region	Regions in	Fine	Coarse	Pulsed
	unit cell	$(1 \ \mu V)$	(1 mV)	gates
Qubit idling	4	-	4	4

Unit Cell Operation

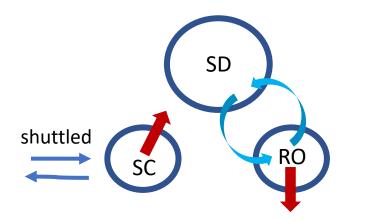

Readout, 1 & 2 Qubit Gates

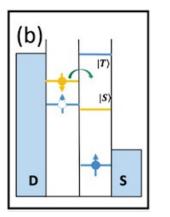


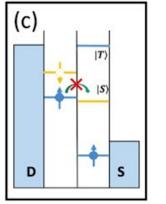
- 2 per unit cell
- 2 barrier gates (red) control tunneling to shuttling channel (C)
- 4 phase shifted signals at groups of 4 gates (blue) create travelling potential wave for shuttling (P)
- SET = 2 barriers (c)+ 1 plunger (C) + 2 Ohmics
- 1 Microwave line for driving single qubit gates
- 2 plungers (for the spins) amd 1 exchange barrier gate J for 2 Qubit operations (fine)

Region	Regions in unit cell	Fine $(1 \ \mu V)$	$\begin{array}{c} \text{Coarse} \\ (1 \text{ mV}) \end{array}$	
Qubit operation	2	7	2	6

Example: Surface code cycle





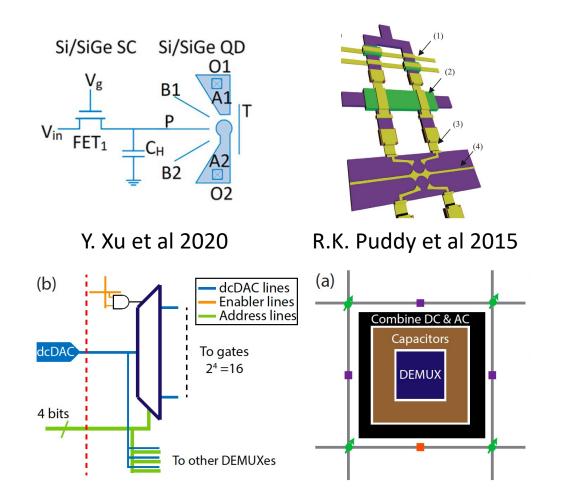

- Single Qubit rotations achieved by tuning EDSR microwave pulse
- Two Qubit gates achieved by the pulse applied to the J gate (SWAP based 3 step gate), (red purple stars)
- Readout only at the SC-ancilla qubits at the dedicated points
- Shuttling gate not require DC bias by using large
 V amplitude to eliminate inhomogeneities
- Time of cycle:

$$t_{sc} = 22 t_{sh} + 14 t_{1q} + 8 t_{sw} + t_r$$

Readout

Protocol

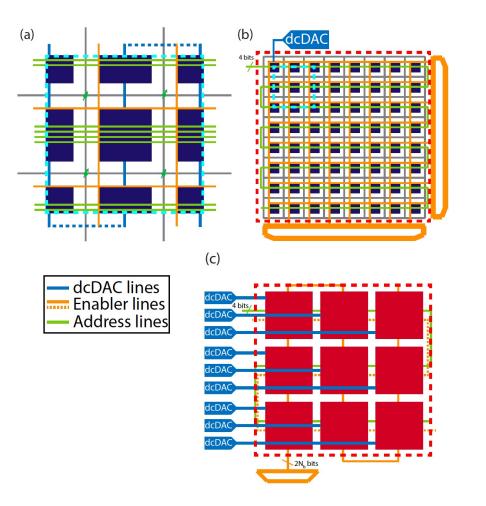
- PSB readout technique for higher T operation
- Readout Ancilla (RO) used to distinguise S-T transistion
- Transition detected by SET
- RO intialized and stored from and to the SET


Wiring

- i) Sequential readout in a module
- All drains connected to a single line
- Plungers controled by global demux outside

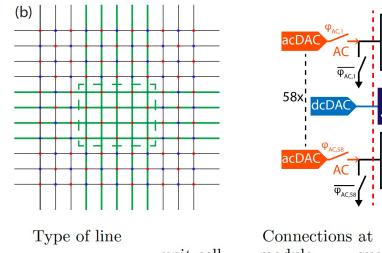
ii) Simultaneous readout

- Amplitute modulation: Different bias Vp for each SET plunger
- Frequency mod: RF readout of SET -> Local resonators -> large size


Local Control Electronics

- Sample-and-hold scheme to apply a local DC bias to gates
- Two resolutions : Coarse (C) of ΔV=1uV (electron charge) & fine (F) ΔV=1mV (thermal noise)
- Two hold capacitors : $C_c = 0.16 \text{ fF } \& C_F = 0.16 \text{ fF}$

- Enabler line for each demux and dcDAC connection
- 64 DC bias gates per unit cell
 - 1 to 16 demux (4 bits) in each open region
 - 4 demuxes per unit cell


Local Control Electronics

- Demux enabled by crossbar addressing in-module sequentialy all modules in parallel
- All array updated in a single module refresh cycle

Gates	Routing
Shuttling (blue)	Source \rightarrow gate
Pulsed (red)	DC: source \rightarrow local demux & S/H \rightarrow gate AC: source \rightarrow gate
Sensing dot plunger (purple)	DC: source \rightarrow local demux & S/H \rightarrow gate AC: source \rightarrow global demux \rightarrow gate
Drain contacts	Measurement device \leftarrow Ohmic

Local Control Electronics

acDAC AC $\overline{\phi_{Ac_1}}$ 58x dcDAC	To other unit cells To gate
acDAC AC AC $\phi_{AC,S8}$	To other unit cells DC To gate

Type of line	Connections at		
	unit cell	module	quantum plane
DC biasing	9	$4N_b + 5$	$M_b^2 + 4N_b + 4$
Shuttling	4	4	4
Pulsed signals & MW	58	58	58
Logical operations	4x	$4N_bx$	$4N_bM_bx$
Readout	3	$\frac{2\log_2 N_r - \log_2 r + 1}{\log_2 r + 1}$	$\frac{M_r^2 + 2\log_2 N_r - \log_2 r}{\log_2 r}$
Total	74 + 4x	$4N_b(1+x)+2\log_2 N_r-\log_2 r+68$	$ M_b^2 + M_r^2 + 4N_b(1 + M_b x) +2 \log_2 N_r - \log_2 r + 66 $

- AC signals (MW and pulsed) generated remotely by acDAC before circuit that combines AC and DC
- Crossbar network design to control barrier gate to enable • surface codes.

- 4 enablers + 4 address 1 dcDAC= 9 lines for biasing p.u.c. •
- Only enabler scale with the # of u.c. as 4Nb per module ٠
- Address lines and dcDAC shared between all u.c. ٠
- Shuttling (4) and AC signals (58) are shared in the array ٠
- For crossbar depends on the encoding for logical qubits χ ٠

Million Qubit Array example

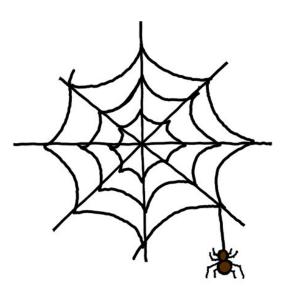
Footprint

Capacitor $A_c = 450 \text{ um}^2$ Demux (40 nm tech) = 180 um² Qubit pitch d = 12-14 um \rightarrow 50nm QD pitch \rightarrow 260 QD per lattice arm

Heat Dissipation

- Parasitic capacitances of the $P_p = \frac{1}{2}C_p v_p^2 f_p$ routing lines
- Discipation for the sample-and- $P_d < 140 \text{ nW}$ hold circuits for 4 Demux p.u.c.
- AC thin lines power discipation $P_t = 1.1 \frac{\mathrm{nW \, ns^2}}{\mathrm{V^2}} \, \left(v_t f_t \right)^2$

Million Qubit Array:


- 2^{20} (10^{6}) qubits, or U = 2^{18} unit cells
- 256 modules maximum clock frequency of the demux biasing to f_b=6 GHz
- Rent's exponent = 0.43 + crossbar = 0.5

Area covered by the quantum plane = 177 mm² Duration of a surface code cycle:

- Shuttling time t_{sh} 50 ns [B. Buonacorsi et al.]
- Gate time $t1_{q}$, t_{sw} =25 ns [R. C. C. Leon et al.]
- PSB Readout time $t_r = 1 \mu s$ [E. J. Connors et al.] Total cycle time, $t_{sc} = 6 \mu s < T_2^* = 20 \mu s$

Power discipation 100mW \rightarrow 0.2 K self heating

Thanks!!

