A CMOS silicon spin qubit

R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer & S. De Franceschi

Nature Comm. (2016), 7:13575

Spin Qubit Virtual Meeting 23.6.2020

Presentation by Rafael Eggli

Introductory Notes

- Hole spin qubits in silicon double quantum dots
- Etched nanowire field-effect transistor
- 2 Gates
- No single-shot readout
- Demonstrate two-axis qubit control
- Accessible style of writing
- Extensive supplementary materials and explanations

The Device

- Two gates:
 - G1 used for qubit operation (EDSR)
 - G2 defines readout-QD
 - 35nm wide and separated by 30nm
 - 5nm TiN (red), 50nm polysilicon (blue)
 - Insulating SiN spacers (purple)
- Channel:
 - Undoped Si (10nm thick, 15-20nm wide)
 - Oriented along [110]-direction
 - Fully covered by gates and spacers
- Source/Drain:
 - Boron ion implantation for p-type doping
 - Low-resistance ohmic contacts

Device Fabrication

- Deep-UV (DUV) lithography and subsequent etching of channel
- Gates added by DUV and ebeam lithography (EBL)
- Self-aligned spacers
- All steps (except for EBL) are CMOS-compatible
- High-precision realignment and multiple patterning allows for DUV to replace EBL steps

Double-Dot Characterisation: Dot Occupancy

- Room-temperature SD-current vs gate voltage measurements
- Estimate threshold voltages (blue/red dots)
- Few hole regime not accessible
 - Full blockade of transport at estimated threshold for low temperatures
- Assume N = 0 at threshold
- Average spacing of two charge states (insert b)): $\sim 20mV$
- Hole occupation estimation (base of bias triangle at $(V_1, V_2) \approx (465, 635) mV$:

•
$$N_{QD1} = 12 \pm 5$$

$$N_{QD2} = {}^{33} \pm {}^{5}$$

Pauli Spin Blockade

- Basis of bias triangle at Vsd = -10mV
- Define detuning-axis ε
- Current drops along ε for $B \rightarrow 0$
- Indication of PSB-relaxation through spin-orbit coupling at nonzero magnetic Field
- Relaxation rate $\Gamma = 1.75 \ MHz$ extracted from lorentzian fit
- Blocking of excited states not explained -> unclear to us as well?

EDSR

- Operate in spin-blockade regime
- MW signal applied on gate G1
- Observe 2 linear features in I(f,B)-scan
- In line with theoretical expectation:

$$hf = g\mu_B B$$

- Bright: QD1, g = 1.63
- Faint (white arrow): QD2, g = 1.92

Coherent Spin Manipulation

- G1 used to swich to coulomb blockade regime
- After manipulation: »abrupt» return to spin blockade regime for readout
- No single-shot readout

Rabi Oscillations

- Current as function of different pulse length and MW power $\frac{\widehat{\xi}}{2}$ 10–
- Operated with B = 0.144T and f = 8.938 GHz (white) $f_{Rabi} \propto \sqrt{P_{MW}} \propto V_{MW,amplitude}$

• Highest P_{MW} leads to $f_{Rabi} \approx 85 \ MHz$

Spin Relaxation during Manipulation

- Rabi experiments with MW pulse at start/end of manipulation phase
- No changes in burst-duration dependence observed

 \implies $T_1 \gg 175 ns$ (= manipulation time)

Dephasing and Decoherence

Spin Echo

- Ramsey sequences with varying phase of second pulse
- Extract ΔI_{SD} from sin
- π -Pulse after $\frac{\tau}{2}$ leads to an increase in T_2^* to $T_{echo} \approx 245 ns$

- Possible explanations for short decoherence times:
 - Paramagnetic impurities, charge noise or hyperfine interaction with boron dopants

Conclusion and Outlook

- First demonstration of a hole spin qubit
- CMOS compatible fabrication
- Demonstrate coherent control of the qubit
- Next steps:
 - Implementation of single-shot readout (charge sensing)
 - Investigation of other pulse sequences (different echos?)
 - Investigation of the reasons for short decoherence times
 - Potentially overcome need for doping?