Thermometry Based on a Superconducting Qubit

Kristupas Razas

22.08.2025

Journal Club

Content

MEASUREMENT TECHNIQUE

ANALYSIS AND MODELLING

DEVICE DESIGN

Superconducting Qubit

Energy gap between levels is different

Temperature

Occupation by Boltzmann Distribution

$$\frac{p_{\rm e}}{p_{\rm g}} = e^{-\frac{\hbar\omega_{\rm ge}}{k_{\rm B}T}}$$

Depends on Energy gap and Temperature

Measurement Response

 φ_{i} - Pure state Response

 p_{i} - Pure state Probability

Thermalized State

$$|f>$$
 $-$

$$e>-$$

Measurement

$$\varphi = \varphi_{\rm g} p_{\rm g} + \varphi_{\rm e} p_{\rm e} + \varphi_{\rm f} p_{\rm f}$$

Measuring Excited State

Possible excitations in 3 level systems

6 possible outcomes possible

Systematic Measurements

- 1. Photon Temperature $T_{\rm MXC}$ using ${\rm RuO_x}$
- 2. Population (all 6 iterations)
- 3. Qubit Relaxation time au_1
- 4. Ramsey oscillations au_2^R
- 5. Hahn echo $au_2^{
 m E}$

Extracting Temperature

$$x_{0} = p_{g}\varphi_{g} + p_{e}\varphi_{e} + p_{f}\varphi_{f}, \qquad \text{(no pulse)}$$

$$x_{1} = p_{e}\varphi_{g} + p_{g}\varphi_{e} + p_{f}\varphi_{f}, \qquad (\pi_{ge})$$

$$x_{2} = p_{e}\varphi_{g} + p_{f}\varphi_{e} + p_{g}\varphi_{f}, \qquad (\pi_{ge}\pi_{ef})$$

$$y_{0} = p_{g}\varphi_{g} + p_{f}\varphi_{e} + p_{e}\varphi_{f}, \qquad (\pi_{ef})$$

$$y_{1} = p_{f}\varphi_{g} + p_{g}\varphi_{e} + p_{e}\varphi_{f}, \qquad (\pi_{ef}\pi_{ge})$$

$$y_{2} = p_{f}\varphi_{g} + p_{e}\varphi_{e} + p_{g}\varphi_{f}. \qquad (\pi_{ef}\pi_{ge}\pi_{ef})$$

$$B_{2} = \frac{x_{1} - y_{1}}{y_{0} - x_{2}} = \dots = \frac{p_{e} - p_{f}}{p_{g} - p_{e}} = \dots = \frac{1 - e^{\frac{-\ln \omega_{fe}}{k_{B}T}}}{\frac{-\hbar \omega_{ge}}{k_{B}T} - 1}$$

Solving System of Linear Equations

Extracting Temperature

9 Ways to Calculate Temperature

TABLE I. Different ways of the qubit effective temperature calculation from the qubit state readout results.

Ratio	Calculation method			Dogult	Equation	
	1	2	3	Result	Equation	
A	$\frac{x_0-x_1}{y_0-y_1}$	$\tfrac{y_0-x_2}{x_0-y_2}$	$\frac{y_1-y_2}{x_1-x_2}$	$rac{p_g - p_e}{p_g - p_f}$	$A = \frac{1 - \exp\left(-\hbar\omega_{ge}/k_BT\right)}{1 - \exp\left(-\hbar\omega_{gf}/k_BT\right)}$	
В	$\frac{x_2-y_2}{x_0-x_1}$	$\tfrac{x_1-y_1}{y_0-x_2}$	$rac{x_0-y_0}{y_1-y_2}$	$rac{p_{m{e}} - p_{m{f}}}{p_{m{g}} - p_{m{e}}}$	$B = \frac{\exp(-\hbar\omega_{ge}/k_BT) - \exp(-\hbar\omega_{gf}/k_BT)}{1 - \exp(-\hbar\omega_{ge}/k_BT)}$	
C	$\tfrac{x_2-y_2}{y_0-y_1}$	$\tfrac{x_1-y_1}{x_0-y_2}$	$rac{x_0-y_0}{x_1-x_2}$	$rac{p_e - p_f}{p_g - p_f}$	$C = \frac{\exp(-\hbar\omega_{ge}/k_BT) - \exp(-\hbar\omega_{gf}/k_BT)}{1 - \exp(-\hbar\omega_{gf}/k_BT)}$	

Extracted Temperature

• Gray dashed line $T_{\rm eff} = T_{\rm MXC}$

Red/Blue/Green: Different devices

Axes: linear, y origin offset

Deviation Mechanisms

Source of Heat

Mixing Chamber

Source of Heat

Mixing Chamber

Environment 1

Environment 2

Environment n-1

Environment n

Multiple Bath Model

$$\gamma_{1} = \sum_{i} \left(\Gamma_{\downarrow}^{(i)} + \Gamma_{\uparrow}^{(i)} \right) = \sum_{i} \gamma^{(i)} (2n_{i} + 1)$$

$$n_{i} = \frac{1}{e^{\frac{h\omega}{k_{B}T^{(i)}}} - 1}$$

Qubit energy relaxation rate

 $n_{\rm eff} = \frac{1}{\gamma_1^0} \sum_i \gamma^{(i)} n_i$

 $n_{
m eff}$ Average photon number over different baths, weighted by their coupling

Two Bath Model

Qubit energy relaxation rate \bullet $n_{\rm eff}$ Average photon number

Mixing Chamber

Environment

$$\gamma_1 = \sum_i \gamma^{(i)} (2n_i + 1)$$

$$\gamma_1 = \gamma_{\text{MXC}} (2n_{\text{MXC}} - \gamma_1) (2n_{\text{eff}} + 1)$$

$$\gamma_1 = \gamma_{\text{MXC}}(2n_{\text{MXC}} + 1) + \gamma_{\text{env}}(2n_{\text{env}} + 1) =
= \gamma_1^0 (2n_{\text{eff}} + 1)$$

$$n_{\rm eff} = \frac{1}{e^{\frac{h\omega}{k_{\rm B}T_{\rm eff}}} - 1}$$

Temperature – Photon Number

Coupling Strength

Ratio of coupling strength is deduced from the slope

Guessing Environment

$$n_{\rm eff} = \frac{\gamma_{\rm MXC}}{\gamma_1^0} n_{\rm MXC} + \frac{\gamma_{\rm env}}{\gamma_1^0} n_{\rm env}$$

Environment coupling and temperature are obtained from "Best Fit"

TABLE III. Parameters of the linear fits shown in Fig. 3c.

Eitting Danamatana		San	ıple	
Fitting Parameters	R4-I	R2-I	R3-II	Q2-III
$dn_{ m eff}/dn_{ m MXC}$	0.849 ± 0.014	0.812 ± 0.012	0.596 ± 0.012	0.673 ± 0.024
$rac{dn_{ m eff}/dn_{ m MXC}}{n_{ m eff}^0, imes 10^{-3}}$	24.0 ± 0.7	18.5 ± 0.7	18.1 ± 0.6	12.6 ± 1.1
$T_{ m env}, { m mK}$	102.0 ± 1.6	162.9 ± 3.4	127.0 ± 1.7	100.3 ± 0.7

Effective Environment

Theoretical Confirmation

Hot environment

$$\frac{\hbar\omega}{k_{\rm B}T_{\rm env}} \ll 1$$

• Strong coupling to MXC $\frac{\gamma_{\rm MXC}}{\gamma_1^0} \sim 1$

$$T_{\rm eff} pprox rac{\gamma_{
m env}}{\gamma_1^0} T_{
m env}$$

High Temperatures

Quasiparticles

Temperature dependence of au_1 and au_{arphi}

Quasiparticles

$$x_{0} = p_{g}\varphi_{g} + p_{e}\varphi_{e} + p_{f}\varphi_{f}, \qquad \text{(no pulse)}$$

$$x_{1} = p_{e}\varphi_{g} + p_{g}\varphi_{e} + p_{f}\varphi_{f}, \qquad (\pi_{ge})$$

$$x_{2} = p_{e}\varphi_{g} + p_{f}\varphi_{e} + p_{g}\varphi_{f}, \qquad (\pi_{ge}\pi_{ef})$$

$$y_{0} = p_{g}\varphi_{g} + p_{f}\varphi_{e} + p_{e}\varphi_{f}, \qquad (\pi_{ef})$$

$$y_{1} = p_{f}\varphi_{g} + p_{g}\varphi_{e} + p_{e}\varphi_{f}, \qquad (\pi_{ef}\pi_{ge})$$

$$y_{2} = p_{f}\varphi_{g} + p_{e}\varphi_{e} + p_{g}\varphi_{f}. \qquad (\pi_{ef}\pi_{ge}\pi_{ef})$$

- One sample
- Different ways to measure temperature

Relaxation Time

Significant changes at T > 180mK

$$\tau_1 = 1/\{\gamma_1^{qp}(T_{\rm MXC}) + \gamma_1^0[2n(\omega_{ge}, T_{\rm eff}) + 1]\},$$

$$\gamma_1^{qp} = \frac{1}{\pi} \frac{\omega_p^2}{\omega_{ge}} \left\{ x_{qp} \sqrt{\frac{2\Delta}{\hbar \omega_{ge}}} + 4e^{-\frac{\Delta}{k_B T}} \cosh\left(\frac{\hbar \omega_{ge}}{2k_B T}\right) K_0\left(\frac{\hbar \omega_{ge}}{2k_B T}\right) \right\}$$

Including Time Evolution of states

- Solid line: Time evolution during readout
 - Dotted line: Time evolution during readout + imperfect pulsing

Model-Experiment

 Model predicts the error seen in experiment

Probing Environment

- Could be bad qubit
- Could be hot environment

Setup

Devices

TABLE II. Parameters of the devices.

Device	$\omega_{ge}/2\pi, \mathrm{GHz}$	$\omega_{ef}/2\pi, \mathrm{GHz}$	$E_c/h, \mathrm{MHz}$	$\Delta_r/2\pi, \mathrm{GHz}$	$g/2\pi, \mathrm{MHz}$	
R2-I	6.422	6.221	201	1.876	34	
R4-I	6.649	6.417	232	1.753	38	
R3-II	6.732	6.513	219	0.765	44	
Q2-III	7.042	6.835	207	2.151	37	

Applications

- Microscopic thermometer
- Probing environment temperature and coupling

Conclusion

Thank you!

Appendix

Limits

Ramsey Echo

HIGH TXMC

HIGH TXMC

2 Components to consider

Multiple Heat Baths

Quasiparticles

RESULT

$$T_{\rm eff} \approx \frac{\gamma_{\rm MXC}}{\gamma_1^0} T_{\rm MXC}$$

- 2 Taylor expansions assuming $\frac{h\omega}{k_{\mathrm{B}}T}\ll 1$
- Weak coupling to environment

Occupation Probabilities

