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The spin 1/2 entropy of electrons trapped in a quantum dot has previously been measured with great
accuracy, but the protocol used for that measurement is valid only within a restrictive set of conditions.
Here, we demonstrate a novel entropy measurement protocol that is universal for arbitrary mesoscopic
circuits and apply this new approach to measure the entropy of a quantum dot hybridized with a reservoir.
The experimental results match closely to numerical renormalization group (NRG) calculations for small
and intermediate coupling. For the largest couplings investigated in this Letter, NRG calculations predict a
suppression of spin entropy at the charge transition due to the formation of a Kondo singlet, but that
suppression is not observed in the experiment. 2




* Distinguish quantum states otherwise similar by their
conductance for example

* Distinguish non-abelian quasi-particles from abelian ones
* Challenging due to small signal size around kg



Paper 1

Entropy-to-charge conversion in a ‘few-electron GaAs quantum dot’: Principle

/\ Maxwell relation, where
p : pressure
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aT aN I : temperature
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Paper 1

Device operation

Charge sensor simulation
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Paper 1

Device operation details

where G, quantifies the sensor sensitivity, @="L is the thermal
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Paper 1
Results
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Paper 2
More general entropy extraction method
d® = —SdT — (Nyes + N)dp + Nde + ..

| N /]

Grand Average Local potential for
potential occupation occupatlon N, or gate-tuned
of reservoir QD energy
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Paper 2 .
Device

Charge
detector
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From Eugenia Pyurbeeva and Jan A. Mol, A thermodynamic
approach to measuring entropy in a few-electron nano-
device, Entropy 23, 640 (2021)
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Paper2 Charge sensor characterisation

Weak coupling to reservoir Strong coupling to reservoir
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Paper 2
Experimental implementation
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Paper 2
Verification of new technique in weakly coupled regime

AS=kgln(3): three equiprobable macrostates
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Paper 2

Transition from weakly
coupled to strongly
coupled regime

NRG = numerical renormalisation group
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Paper 2
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Kondo effect: quasibound singlet state
between the localized spin and a cloud of
delocalized spins in the reservoir at
temperatures below Ty

o
o0

AS(V,) [k,
o
o)

No magnetic moment and zero entropy 0.4 ’ _rkaT
for a single-election QD, so the measured : :gjg 23 :2'210 3
entropy should remain zero for T < Tk (e) 0.2 220mV- 5+1
0.0 e -190mV; 183
However, this is not observed in (c) 10
experimental data. '
0.8
Charge measurements are dephasing the @
Kondo singlet? At least no dependence ~ 0.6
observed when changing the charge “5 04-

sensor bias from 300pV to 50uV.

o
A

o
=

AV, (mV), Ag, [arb. units]



Conclusion and outlook

* Measurement of quantum dot entropy from charge sensor using
temperature dependence of charge sensor reading (in both DC or AC)

* Entropy changes in kgln(/) where i is an integer show the discrete
changes in the number of accessible microstates

* Latest approach works even for strong coupling to the environment

* Expected Kondo physics is hot showing up in the measurements, what
could be the reason?

* To what other systems could this kind of entropy measurement be
applied?
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Extra: On-Chip Maxwell’'s Demon as an Information-
Powered Refrigerator, J. V. Koski et al. (2015)
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Entropy move from system to demon, cooling (?) the SET
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LACK OF DEPENDENCE ON CHARGE SENSOR BIAS
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FIG. S5. The lineshape of Alcs, here plotted vs occupation instead of Vp, shows no dependence on Vs within experimental
noise, though of course the magnitude of Ics and Alcg scales linearly with Veog. The case of I'/kpT = 24 is shown here. In
particular, Alcs remains peaked at N ~ 0.5, in contrast to the NRG calculation (solid line) in which the shifted peak reflects
the screening of spin entropy in the mixed valence regime due to the formation of the Kondo singlet.



SCALING FROM Al¢cs TO dN/dT

The complete procedure for scaling from Alog to dN/dT is comprised of two parts: Conversion of Algg to AN,
and calculation of the corresponding AT, expressed in equivalent mV on Vp.

The procedure for scaling the Alcg measurements to d/N/dT involves scaling Alcs — AN, then dividing by AT as
described in the main text. The Alcs — AN conversion is a straightforward division by I. (Fig. S3), the net change
of current through the charge sensor for the addition of 1 full electron to the QD. In order to extract I. from the
data, measurements of Iog are fit to NRG calculations of dot occupation across the transition, after adding a fixed
offset that account for the setting of the charge sensor in the middle of its first charge step, and a linear term that
accounts for cross capacitance between Vp and the charge sensor. Examples of the fixed and linear terms are seen
clearly in Fig. Sla, where a very whide scan of Vp (over a much larger range than required for the charge transition)
is able to completely pinch off the charge sensor, or to bring it to the first plateau. The cross capacitive effect of Vp
is much smaller than that of Vp: its lever arm to the QD energy level is much larger, so much only mV or sub-mV
changes are required in Vp to sweep across a charge transition.

AT is easily extracted in units of equivalent gate voltage (Vp) for weakly coupled Vr by fitting cold and hot
occupation data to NRG. For strongly coupled transitions, however, AT does not result in a broadening of the
transition lineshape, so it must be determined in another way. The real temperature change of the reservoir does not
depend on V7, of course, but the lever arm « does depend on V. We calculate AT (V) in equivalent mV on Vp by

1. fitting hot and cold transitions for a range of weakly coupled Vr, to determine both AT (Vr) in equivalent Vp
and a(Vr) through this range.

2. a(Vr) is observed to be linear in Vp, and extrapolated to strongly-coupled Vp (dashed line in Fig. 1lc, main
text).

3. AT in equivalent Vp is calculated for strongly coupled transitions using a(V7) determined above.
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FIG. S3. Variation of lever arm «, and charge step I. measured independently over the full range of V1 explored in this
experiment. Dashed line: extrapolation of « into the strongly-coupled regime where it cannot be measured directly.



We conclude with a few notes to encourage the application of
this entropy measurement protocol to other mesoscopic systems.
The crucial ingredients in achieving the high accuracy reported
here were: the ability to oscillate temperature rapidly enough to
avoid 1/f noise; the ability to measure charging transitions with-
out perturbing the localized states; and the fact that the charging
transitions were thermally broadened. The last criterion enabled
the entropy determination purely by asymmetry, without the
need to know 8T or other measurement parameters accurately,
yielding an uncertainty of less than 5%. With this level of preci-
sion, it should be possible, for example, to distinguish the k In 2
entropy of a non-Abelian Majorana bound state from the k In2
entropy of an Andreevbound state at an accidental degeneracy'"'~
Similarly, the S —%kB In 2 two-channel Kondo state could be
clearly distinguished from fully screened (S=0) or unscreened
(S=kgIn2) spin states'”.

Methods

The device was built on a AlGaAs/GaAs heterostructure, hosting a 2DEG with density and
mobility at 300 mK of 2.42 x 10" cm™2 and 2.56 x 10 cm?/(Vs) respectively, determined ina
separate measurement. Mesas and NiAuGe ohmic contacts to the 2DEG were defined by
standard photolithography techniques, followed by atomic layer deposition of 10 nm HfO, to
improve the gating stability in the device. Fine gate structures, shown in Fig. 1a, were defined

by electron beam lithography and deposition of 3 nm Ti/18 nm Au.

The measurement was carried out in a dilution refrigerator with a two-axis magnet. The 2DEG
was aligned parallel to the main axis with the second axis used to compensate for sample
misalignment. In practice, out-of-plane fields up to 100 mT showed no effect on our data. A
retuning of the quantum dot gates was necessary to capture the bias spectroscopy data in
Figs. 3d.e and 4e.f. The rightmost gate (Fig. 1a) on the quantum dot was used to tune between
the one- and two-lead configurations, for the entropy and bias spectroscopy measurements,
respectively. This tuning had a significant effect on the shape of the potential well, accounting
for variations in parameters such as gand Agrbetween the two measurement configurations.
Charge sensor conductance was measured using a d.c. voltage bias of 200-350 pV; we find
that Joule heating through the sensor does not affect our reservoir temperatures up to Veang -
500 pV. The d.c. current ({,.,s) was measured using an analogue-digital convertor while the
a.c. current (8/gens) was measured using a lock-in amplifier. The d.c. conductance reported

here is Geens = Jsens/ Vsens While the oscillations are defined as 6Ggens = (6/sens)/ Vsens-

The temperature of the reservoir was raised above the substrate temperature using /j,q, at a.c.
or d.c., with the QPC heater set by gate voltages to 20 kQ. Applying a.c. current at fheq = 48.7

Hz yields an oscillating Joule power, Phea = Rqpc . To leading order, this gives

hefu
oscillations in temperature, and therefore 6 Gy, at 2fjex- These are captured by the lock-in
amplifier at the second harmonic of Ihea. EXcept where noted, measurements of AS were
made at 87 - 50 mK, although the error bars in Fig. 2 demonstrate that the measurements

would have been just as accurate with 6T set to 30 mK. 21



Charge
detector

Figure 1. Experimental regimes of Coulomb-blocked nanodevices: (a) A quantum dot coupled
to a thermal bath and exchanging electrons with it. The charge state of the quantum dot can be
independently determined. (b) A quantum dot coupled to two electrodes through tunnel junctions.
A potential difference dV between can be applied between them and current through the quantum
dot is measured.

22



	Default Section
	Slide 1: Journal club: quantum dot entropy measurement
	Slide 2
	Slide 3: Why measure entropy?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Conclusion and outlook
	Slide 17

	Other slides
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22


