Identifying and mitigating errors in hole spin qubit readout

Eoin Gerard Kelly,¹ Leonardo Massai,¹ Bence Hetényi,¹ Marta Pita-Vidal,¹ Alexei Orekhov,¹ Cornelius Carlsson,¹ Inga Seidler,¹ Konstantinos Tsoukalas,¹ Lisa Sommer,¹ Michele Aldeghi,¹ Stephen W. Bedell,² Stephan Paredes,¹ Felix J. Schupp,¹ Matthias Mergenthaler,¹ Andreas Fuhrer,¹ Gian Salis,¹ and Patrick Harvey-Collard^{1, *}

¹IBM Research Europe – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland ²IBM Quantum, T.J. Watson Research Center, Yorktown Heights, NY, USA (Dated: April 9, 2025)

> Presented by Aakash Shandilya Thursday, 03/07/2025

Spin Readout

How do we do it?

Spin to Charge conversion

+

Charge readout

Charge readout

Charge sensor

• Different coupling capacitances enable sensitivity to charge distribution.

Spin to Charge conversion

Pauli spin blockade

Article Open access Published: 03 October 2024

High-fidelity spin readout via the double latching mechanism

Haruki Kiyama ^M, <u>Danny van Hien</u>, <u>Arne Ludwig</u>, <u>Andreas D. Wieck</u> & <u>Akira Oiwa</u>

npj Quantum Information **10**, Article number: 95 (2024) <u>Cite this article</u>

2034 Accesses 19 Altmetric Metrics

Single Latching

Double Latching

Double Latching

Takeaway

- Single latching improves the contrast of the sensor signal. Because it differentiates between 1e and 2e charges, as opposed to 2e(1,1) and 2e(2,0) charges with just PSB readout.
- Double latching prevents the decay of the 2e charge configuration to 1e.

Coming back to the original paper

All measurements performed with $V_{SD} = 0$

How do they do the spin readout

Avenues for errors:

- Spin to charge conversion.
- Reading out the charge.

In more detail

$$\begin{pmatrix} vP1 \\ vP2 \end{pmatrix} = \begin{pmatrix} -0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} \varepsilon \\ U \end{pmatrix}$$

U (mV)

Point L

Spin to Charge conversion

Evolution of energy from M to PSB

ε

Adiabaticity of ramps at ST₂ and ST₀ anticrossings

- Super-SAP (Super slow adiabatic passage):
 - ST_ Adiabatic (slow)
 - ST₀ Adiabatic (slow)
- **SAP** (Slow adiabatic passage):
 - ST_ Adiabatic (slow)
 - ST₀ Diabatic (fast)
- **RAP** (Rapid adiabatic passage):
 - ST_ Diabatic (fast)
 - ST₀ Diabatic (fast)

Small detour

Adiabaticity of ramps at ST₂ and ST₀ anticrossings

Choosing between Super-SAP/SAP/RAP

- Ideally going as fast as possible is desired to minimise errors due to relaxation and dephasing of the qubit.
- So, RAP should be the best.
- But is it achievable in this setup.
- Note that two different ramps to address the two different anticrossings is not possible in this setup as the two anticrossings have significant overlap.

Choosing between Super-SAP/SAP/RAP

- $t_{ramp in}$ Ramp time to the point M.
- Wait for t_{wait} at point M.
- $t_{ramp out}$ Ramp time from the point M.
- They set $t_{ramp in} = t_{ramp out} = t_{ramp}$
- Also set B = 40 mT

Choosing between Super-SAP/SAP/RAP

- Oscillations due to mixing of different spin states.
- Observable in fast ramp times.
- Super-SAP is the only option.

Variation of t_{ramp} with \vec{B} field orientation

- Optimum points of qubit coherence exist at certain magnetic field orientations due to the highly anisotropic nature of hole-g tensors in Ge.
- Fix $t_{ramp in}$ to a large value to start with $|\downarrow\downarrow\rangle$.
- Plot $t_{ramp \ out}$ vs $\varphi_{\rm B}$ and $\theta_{\rm B}$, the azimuthal and polar angles for the magnetic field.
- Z axis is $P_{\text{Unblocked}}$, which is the probability of measuring the unblocked (2,0) state.

ε

Variation of t_{ramp} with \vec{B} field orientation

• They operate at $(\varphi_{\rm B}, \theta_{\rm B}) = (194^\circ, 90^\circ)$ orientation to minimise spin decay errors during spin-tocharge conversion.

Measuring the errors during the StCC ramps

- Super-SAP state preparation of $|\downarrow\downarrow\rangle$ with $t_{ramp\ in} = 120$ ns.
- Application of spin-flip pulses.
- Super-SAP back-and-forth ramp (M→PSB→M), repeated N times.
- Mapped back down to $|\downarrow\downarrow\rangle$ with spin-flip pulses.
- A final StCC mapping followed by double-latched readout.

Measuring the errors during the StCC ramps

 Define r_{StCC} as the probability of not detecting the signal of the prepared state after one back-andforth.

Charge readout

To refresh

Spin decay errors at point PSB

- Spin decay times for the blocked spin states at the PSB points as a function of B with $(\varphi_{\rm B}, \theta_{\rm B}) = (196^\circ, 90^\circ).$
- So, operating at low B is beneficial for readout, in addition to qubit coherence.
- \bullet But the spin still decays at low B in 20 $\mu s.$

Latching

- Minimise the time spent at PSB by performing latching.
- It also improves the contrast of the sensor signals.

• Point PSB

• Point L

- The right dot decaying to the drain is faster than it decaying to the left dot.
- Wait here for time $t_{\rm L}$
- If $t_{\rm L}$ is too short, then (1,1) stays (1,1).

- Point DL
- Perform readout with an integration time of 50 µs.
- Note that this is longer than the spin decay time of 20 µs at lowest B.
- So, the spin decays to (2,0) during readout.

- Point DL
- Perform readout with an integration time of 50 µs.
- Note that this is longer than the spin decay time of 20 µs at lowest B.
- So, the spin decays to (2,0) during readout.
- We readout (2,0) instead (1,0)

The other case

• Point PSB

- Point L
- Wait here for time $t_{\rm L}$
- If t_L is too long, then (2,0) becomes (1,0).

- Point DL
- We readout (1,0), instead of (2,0).

To remedy this

• $P_{\text{Unblocked}}$ is measured, after preparing $|\uparrow\downarrow\rangle$ and $|\downarrow\downarrow\rangle$ separately, as a function of t_{L}

To remedy this

- $P_{\text{Unblocked}}$ is measured, after preparing $|\uparrow\downarrow\rangle$ and $|\downarrow\downarrow\rangle$ separately, as a function of t_{L}
- |↑↓> relaxes from (2,0) to (1,0) exponentially with a characteristic time of 91 ns.
- |↓↓) relaxes from (2,0) to (1,0) with a characteristic time of 206 µs.

Why do the DL, still?

- Being somewhere in between 91 ns and 206 µs should be enough to distinguish between (2,0) and (1,0) without any unwanted relaxations.
- But the measurement is still limited by the integration time t_{int} , which is not much faster than 206 μ s.
- With $t_{int} = 50 \ \mu s$, there is still an error of 11.4% in the readout.

DL saves the day!

- Waiting for an optimal time at point L and then pulsing to DL prevents further decay of the (2,0) state entirely.
- With $t_{\rm L} = 2 \,\mu$ s, the (2,0) decay error during integration is reduced to 0.97%.

Conclusion

- Super-SAP is chosen as the StCC regime, because it accommodates the relatively large ΔST₋ and circumvents the challenges of using double ramps that make SAP difficult in this hole system.
- *B* field orientation is chosen such that it minimises the time required to reach the Super-SAP regime, to prevent spin-decay during StCC.
- Spin decay at the PSB point is extended by operating at low \vec{B} . This relaxation alone would yield an average readout fidelity of 64% for the PSB readout without latching, assuming the same $t_{\rm int} = 50 \ \mu s$.

Conclusion

- The enhanced **latching readout (without double latching) increases this fidelity to 92.5%** under the same measurement conditions.
- After double latching, average single-qubit SPAM fidelity of 97.0(5)% is achieved, only limited by |↓↓⟩ initialization errors (1.7%) as well as SNR errors (≤ 1.3%).

Rabi decay times of $T_2^R = 10.8(7) \ \mu s$ for the left dot, and $T_2^R = 19.6(13) \ \mu s$ for the right dot.

Thank you