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Spin Readout



How do we do it?

Spin to Charge conversion

+

Charge readout



Charge readout

Charge sensor

* Different coupling capacitances
enable sensitivity to charge

distribution.
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Spin to Charge conversion



Pauli spin blockade
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Single Latching
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Double Latching
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Takeaway

* Single latching improves the contrast of the sensor signal.
Because it differentiates between 1e and 2e charges, as opposed
to 2e(1,1) and 2¢e(2,0) charges with just PSB readout.

* Double latching prevents the decay of the 2e charge configuration
to 1e.



Coming back to the original paper
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How do they do the spin readout
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In more detail
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vP2
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Spin to Charge conversion



Evolution of energy from M to PSB

M ~ PSB window
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Adiabaticity of ramps at ST_and ST, anticrossings

* Super-SAP (Super slow adiabatic passage):
* ST_Adiabatic (slow)
* ST, Adiabatic (slow)

* SAP (Slow adiabatic passage):
* ST_Adiabatic (slow)
* ST, Diabatic (fast)

* RAP (Rapid adiabatic passage):
* ST Diabatic (fast)
* ST, Diabatic (fast)



Small detour
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Adiabaticity of ramps at ST_and ST, anticrossings
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Choosing between Super-SAP/SAP/RAP

* |deally going as fast as possible is desired to minimise errors due
to relaxation and dephasing of the qubit.

* So, RAP should be the best.
* Butis it achievable in this setup.

* Note that two different ramps to address the two different
anticrossings is not possible in this setup as the two antlcrossmgs

have significant overlap. =0 \
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Choosing between Super-SAP/SAP/RAP

* tramp in — Ramp time to the point M.
* Wait for t,,,;+ atpoint M.

* tramp out — RAMp time from the point M.
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Choosing between Super-SAP/SAP/RAP
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* Observable in
fast ramp times.
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Variation of t,4mp, With B field orientation

* Optimum points of qubit coherence exist at certain magnetic field

orientations due to the highly anisotropic nature of hole-g tensors
in Ge.

* Fix trqmp in to a large value to start with [11) .

* Plot t,qmp our VS @p and 0O, the azimuthal and polar angles for
the magnetic field.

* Z axisis Pynblocked> Which is the probability of measurlng the
unblocked (2,0) state.
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Measuring the errors during the StCC ramps

* Super-SAP state preparation of [{) with t;,.4;, in = 120 ns.

* Application of spin-flip pulses.
* Super-SAP back-and-forth ramp (M>PSB->M), repeated N times.
* Mapped back down to [ll) with spin-flip pulses.

* Afinal StCC mapping followed by double-latched readout.

Energy




Measuring the errors during the StCC ramps
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Charge readout



To refresh
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Spin decay errors at point PSB

PSB decay time (us)

* Spin decay times for the
blocked spin states at the PSB
points as a function of B with
(B, 0g) = (196°,90°).

* S0, operating at low B is
beneficial for readout, in
addition to qubit coherence.

* But the spin still decays at low
Bin 20 us.



Latching

* Minimise the time spent at PSB by performing latching.
* [t also improves the contrast of the sensor signals.



Latching vs Decay

* Point PSB
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Latching vs Decay

* Point L
A

* The right dot decaying to
1(T) the drain is faster than it
decaying to the left dot.

/-\ * Wait here for time t;.

* If t, is too short, then
(1,1) stays (1,1).
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Latching vs Decay

(\ (\ e Point DL
ﬂ  Perform readout with an

Integration time of 50 ps.

* Note that this is longer
1(T) than the spin decay time

of 20 ps at lowest B.

* S0, the spin decays to
(2,0) during readout.
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Latching vs Decay

e Point DL

(\ 0() (\ * Perform readout with an
E— Integration time of 50 ps.

* Note that this is longer
2(T) than the spin decay time
— of 20 ys at lowest B.

Ly * S0, the spin decays to
(2,0) during readout.
* We readout (2,0) instead
(1,0)
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The other case



Latching vs Decay
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Latching vs Decay
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Latching vs Decay

(\ (\ * Point DL
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of (2,0).
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To remedy this

* Pynblocked 1S Mmeasured,
after preparing |Tl) and
|Ll) separately, as a
function of £,

P unblocked




To remedy this

* Pynblocked 1S Mmeasured,
after preparing |Tl) and
|Ll) separately, as a
function of £,

 |Tl) relaxes from (2,0) to
(1,0) exponentially with a
characteristic time of 91 ns.

 [L!l) relaxes from (2,0) to
(1,0) with a characteristic
time of 206 us.

P unblocked




Why do the DL, still?

* Being somewhere in between 91 ns
and 206 ps should be enough to
distinguish between (2,0) and (1,0)
without any unwanted relaxations.

e But the measurement s still
limited by the integration time ti,
which is not much faster than 206

us.

* With t;,; = 50 ps, there is still an
error of 11.4% in the readout.
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DL saves the day!

* Waiting for an optimal time at point L and then pulsing to DL
prevents further decay of the (2,0) state entirely.

* With t; = 2 s, the (2,0) decay error during integration is reduced
to 0.97%.
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Conclusion

* Super-SAP is chosen as the StCC regime, because it
accommodates the relatively large AST_ and circumvents the
challenges of using double ramps that make SAP difficult in this
hole system.

. l_f field orientation is chosen such that it minimises the time
required to reach the Super-SAP regime, to prevent spin-decay
during StCC.

* Spin decay at the PSB point is extended by operating at low B.
This relaxation alone would yield an average readout fidelity of
64% for the PSB readout without latching, assuming the same

tint = S0 ps.



Conclusion

* The enhanced latching readout (without double latching)
increases this fidelity to 92.5% under the same measurement
conditions.

* After double latching, average single-qubit SPAM fidelity of
97.0(5)% is achieved, only limited by [{l) initialization errors
(1.7%) as well as SNR errors (< 1.3%).

1.0 7 1.0

{e L4 1 10t | BRI ]
0.8—"I|’M" e ¥ o8 - Thillldreittter, s ¢ .
os 4 [TILR4]1 I 0 # ﬂ Rabi decay times of TR = 10.8(7) s

Pl | T b % | pan | SN LR et for the left dot,

04 = |11 148/ 1 & s ° 0.4 - o & 1l (11141114 8 ! R )

e L5 + IS and T,' = 19.6(13) us for the right dot.
02 - HH’”" oz~ gPIpf[{HqdT1eel 5 =

ol ten 11111 23
0.0 = T 1 1 0.0 = 1 1 | 1

0 5 10 15 0 5 10 15 20

tpulse (ps) tpulse (IJS)



Thank you
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