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Orlglnal Idea [1] A. Schmid, Diffusion and localization in a dissipative

quantum system, Phys. Rev. Lett 51, 1506 (1983).
[2] S. Bulgadaev, Phase diagram of a dissipative guantum
system, JETP Lett 39, 264 (1984).
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Presenter Notes
Presentation Notes
Original Idea was proposed already in 1983. The idea is very simple. We have a circuit with only 2 elements in it. JJ and environment resistance. When environment resistance is low – JJ stays superconductive, as usual. When Environment Resistance exceeds a certain threshold resistance, JJ becomes insulating.
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Presenter Notes
Presentation Notes
This is an effective diagram of the phase transition. As you can see, it occurs when environmental resistance crosses 1 resistance quanta (for cooper pairs, so 6.5kOhm). The transition is predicted only at T=0, but theres no obstruction for finite temperatures. A very important thing is that the transition only depends on Re and not on other junction parameters and characteristics.


S
Predicted Phase Transition at T =0

0 | 1 | 2 R,=Re[Z(w - 0)]

University of Basel 6


Presenter Notes
Presentation Notes
The insulating phase is actually just SC destroyed, so NIN junction remains. Of course it has tunnel barrier so it can be called insulating.


Original Idea

[1] A. Schmid, Diffusion and localization in a dissipative
quantum system, Phys. Rev. Lett 51, 1506 (1983).

[2] S. Bulgadaev, Phase diagram of a dissipative guantum
system, JETP Lett 39, 264 (1984).

R,

—

Source Drain

« Schmid and Bulgadaev (SB) worked on the quantum Brownian particle in a
periodic potential (a problem that can be mapped on the RSJJ)

« Consequently, the RSJJ is equivalent problem to boundary sine-Gordon model
in QFT
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Presenter Notes
Presentation Notes
Interestingly, original papers don’t even mention neither supercondcutors nor tunnelling. Instead, they consider a particle in a periodic potential and how dissipation affects the system. The transition was predicted later, when physicists transferred the periodic potential particle problem into RSJJ and later on details were explained using Quantum Field Theory and Numerical Renormalization Group.


Dissipation driven phase transition
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High R, induces voltage noise which couples to the superconducting phase



Presenter Notes
Presentation Notes
So lets talk a little about the mechanism of the transition. It is somewhat reminiscent of Dynamical Coulomb blockade, because the charge becomes localized as the Re resistance is increased. But in contrast, the transition here is very sharp and does not depend on parameters such as charging energy. There are a few levels on which this can be explained so I tried to make a combination of those to provide an intuitive idea. The easiest way to look at it is to consider the environmental resistance as a source of voltage noise. The noise then couples to the superconducting phase of the JJ. High noise induces strong phase fluctuations. Actually, as you remember, the original paper only considered particle in periodic potential and the dissipative environment made it localized in coordinate space. This is exactly the same formulation, but now the physical coordinate space is just replaced with this superconducting phase.


Dissipation driven phase transition
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Presenter Notes
Presentation Notes
So, if the R is high, the voltage noise high and so the phase becomes delocalized. This means that the charge inside the JJ became localized. This can be understood from the uncertainty principle provided by Anderson already in 1964. It can also be understood just from DC JJ equations that the current is proportional to sin of  the phase, but now the phase is not well defined anymore, and on average the current becomes 0.
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Why the confusion?

YES NO MAYBE?
Yagi et al. (1997) Murani et al. (2020) Subero et al. (2023)
Kuzmin et al. (2024) Murani et al. (2021)

-"Would the predicted insulating phase exist, the junctions would be in the quantum
critical regime where one expects the junction admittance to follow a power law of
the temperature [28]. This is clearly not the case in our experiments.”

-”In the second step, we explain the exact nature of the predicted transition and
provide arguments according to which JJs are actually not expected to become
insulating in any Ohmic environment.”
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This caused

theoretical debates

« What s the role of T?

 E,/E_influence?
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Experiment Devices

Determined by
measuring
isolated JJ device

Cr Strip JJ
!

device Ry (k) E; (K) R. (k) L (um)

1 2.43 1
2 226 0.330  4.00 2
3 8.80 4
4 22.2 10
; 73.3 0.102 40.8 20
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So far agrees with the prediction for R

What about energies?

(@) 045

E,E,

0.1

University of Basel 17



Experiment Devices

\ Capacitance was obtained

by fitting IV with P(E)
model

Device JJ area (nm?®) Rj(kQ) C™" (fF) E; (K) Ec (K)
(a) 180 x 50 20.49  0.80 0.375 1.20
(b) 150 x 50 51.80  0.42 0.145 2.21
(c) 100 x 50 62.87  0.40 0.119 2.30
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G(uS)

R, = 19.2 kQ

CD/CDO — O

Device JJ area (nm?®) R;(kQ) C*" (fF) E; (K) Ec (K)

(a) 180 x 50 20.49  0.80 0.375 1.20
(b) 150 x 50 51.80  0.42 0.145 2.21
(c) 100 x 50 62.87 0.40 0.119 2.30
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JJ area (nm?) R.(kQ) R;(kQ) CO(fF) E; (K) Ec (K)

60 x 60 3.3 12.4 0.18 0.60 5.16
60 x 60 4.5 9.6 0.18 0.78 5.16
CI)/CDO — O

140 ~(e) ) | T -

-0.3 0.0 0.3
V(imV)
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Claims to be independent of Ej/Ec ratio
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Conclusions

« Even after so much theoretical and experimental effort, the exact dynamics of
this phase transition are still unclear

« Oiriginal predictions are mostly proven

* Not many direct applications but many fields are benefit from understanding
the mechanism
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What about temperature?
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What about temperature?
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