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ﬁ% Quick Quantum Hall effect

2DEG with out-of-plane field B,
Landau quantisation
—> chiral edge states
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j% Quick Quantum Hall effect

On a QHE Plateau
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%ﬁ Quick Fractional Quantum Hall effect
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Electrons in B-field
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Speaker: Matthew A. Grayson (EECS, NU)

"The workshop on Semiconductors, Electronic Materials, Thin Films and Photonic Materials"
Tel Aviv University February 22-25,2015

https://www.youtube.com/watch?v=UNyNjZeG1lwc
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Composite Fermions
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. Speaker: Matthew A. Grayson (EECS, NU)
B ce = 0 "The workshop on Semiconductors, Electronic Materials, Thin Films and Photonic Materials"
Tel Aviv University February 22-25,2015
https://www.youtube.com/watch?v=UNyNjZeG1wc
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Interactions between Quasi particles give new feature

Bosons : W(r,.r.rn) =y (. n.T)
Fermions : W(n.1.1) = =W (r.n.rn)

Anyons (2D) : w(n.n.1) = e’y (15.1.7;)

Non-Abelian Anyons(2D): ';ffj(fi 1) = Mrﬂ‘#ﬂ:(?} H,7)

# of degenerate ground states ) = Var

Entropy &p =FkplogD = kgN,,logd
’Stf}tﬂ,f — Sﬂ' -+ Sn
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S . ro
S(T) = S(Tn) + —I(J!T
Ty 1"

” Fermi liquid of CFs

S(T) is negligible. Finally, it may be possible to find S in absolute units at high
temperature, when the CF’s form a Fermi liquid. The entropy of a Fermi liquid is
. known to be linear with an intercept of zero, as illustrated in Figure 3.2. Linear
Crossover/transition behaviour over a wide range of 7' could therefore be used to determine S. This

Sa latter approach has been successfully used in studies of superfluid Helium-3 [49].

Td . Tm T
Ty = 67 mK (assuming the 150 nm size estimate) Anyway we need to measure C
C =Kt




ﬁﬁ The Corbino disc device
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%ﬁ Method: Corbino Disc Thermometry (?)
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%ﬁ Result: 5/2 & 7/3 Heat Conductivity
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Conclusion & Discussion

Joel Heating pulse can be used to measure thermal conductance of Corbino Disc
Electron-Phonon cooling dominates at high temperature

Heat transfer through 2DEG is non-trivial

A primary thermometry is necessary to have Te at low temperature



%ﬁ Appendix: Correction of T and K
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Figure 6.5: Analytical solutions for the temperature profile in our Corbino device
under constant voltage bias. (a) Cooling through the contacts via electron diffusion.

(b) Cooling through the electron-phonon interaction. Insets show the same data as
2D radial color plots.
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II. IN SITU THERMOMETER CALIBRATION OF THE 2DEG

To obtain the temperature 7T, of the two-dimensional electron gas (2DEG) when subjected to a heating power P,
we make use of the temperature dependence of the conductance G(71¢) at the 5/2 FQH state. As can be inferred
from Fig. 1A of the manuscript, this temperature dependence is sharp enough to allow us to extract an electron
temperature T, from the conductance G(7T,) making use of a univariate spline interpolation. This procedure was
applied throughout all the non-exact filling factors v* # 0. However, it is important to note that this procedure is
limited to ~ 20 mK because the temperature dependence gets progressively weaker as the temperature falls below

that range, and thus the thermal conductance could only be extracted for temperatures above 20 mK.
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Figure 7.12: (a) Arrhenius fits to the conductivity at each indicated filling factor,
with data in blue and linear fit to the activated region in red. The inflection point
is marked by a red circle. (b) Corresponding plots of the Arrhenius slope vs. tem-
perature, with data as points and a smoothed spline interpolation in green. The
minima give —A /2, and their locations in temperature give T;.
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